Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 40 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,23 +12,28 @@ 12 12 13 13 14 14 14 +**Table of Contents:** 15 15 16 + 17 + 18 + 19 + 20 + 16 16 = 1. Introduction = 17 17 18 -== 1.1 What is N DDS75DistanceDetectionSensor ==23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 23 -((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 31 31 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 32 32 33 33 ))) 34 34 ... ... @@ -35,23 +35,23 @@ 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 39 39 40 40 41 41 42 -== 1.2 46 +== 1.2 Features == 43 43 44 44 45 45 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 46 -* Ultra low power consumption 47 -* Distance Detection by Ultrasonic technology 48 -* Flat object range 280mm - 7500mm 49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 -* Cable Length: 25cm 50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 57 +* Ultra-Low Power consumption 58 +* AT Commands to change parameters 55 55 * Micro SIM card slot for NB-IoT SIM 56 56 * 8500mAh Battery for long term use 57 57 ... ... @@ -65,6 +65,7 @@ 65 65 * Supply Voltage: 2.1v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 72 + 68 68 (% style="color:#037691" %)**NB-IoT Spec:** 69 69 70 70 * - B1 @H-FDD: 2100MHz ... ... @@ -74,619 +74,727 @@ 74 74 * - B20 @H-FDD: 800MHz 75 75 * - B28 @H-FDD: 700MHz 76 76 77 -(% style="color:#037691" %)**Battery:** 78 78 79 -* Li/SOCI2 un-chargeable battery 80 -* Capacity: 8500mAh 81 -* Self Discharge: <1% / Year @ 25°C 82 -* Max continuously current: 130mA 83 -* Max boost current: 2A, 1 second 83 +(% style="color:#037691" %)**Probe Specification:** 84 84 85 - (%style="color:#037691"%)**PowerConsumption**85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 86 86 87 -* STOP Mode: 10uA @ 3.3v 88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 87 +[[image:image-20220708101224-1.png]] 89 89 90 90 91 91 92 - 93 93 == 1.4 Applications == 94 94 95 -* Smart Buildings & Home Automation 96 -* Logistics and Supply Chain Management 97 -* Smart Metering 98 98 * Smart Agriculture 99 -* Smart Cities 100 -* Smart Factory 101 101 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 - 106 - 107 107 == 1.5 Pin Definitions == 108 108 109 109 110 -[[image:1657 328609906-564.png]]101 +[[image:1657246476176-652.png]] 111 111 112 112 113 113 114 -= 2. Use N DDS75to communicate with IoT Server =105 += 2. Use NSE01 to communicate with IoT Server = 115 115 116 116 == 2.1 How it works == 117 117 109 + 118 118 ((( 119 -The N DDS75is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.111 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 120 120 ))) 121 121 122 122 123 123 ((( 124 -The diagram below shows the working flow in default firmware of N DDS75:116 +The diagram below shows the working flow in default firmware of NSE01: 125 125 ))) 126 126 119 +[[image:image-20220708101605-2.png]] 120 + 127 127 ((( 128 128 129 129 ))) 130 130 131 -[[image:1657328659945-416.png]] 132 132 133 -((( 134 - 135 -))) 136 136 127 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 137 137 138 - ==2.2Configure the NDDS75==129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 139 139 140 140 141 - === 2.2.1 Test Requirement ===132 +[[image:1654503992078-669.png]] 142 142 143 -((( 144 -To use NDDS75 in your city, make sure meet below requirements: 145 -))) 146 146 147 -* Your local operator has already distributed a NB-IoT Network there. 148 -* The local NB-IoT network used the band that NSE01 supports. 149 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 150 150 151 -((( 152 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 153 -))) 154 154 138 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 155 155 156 - [[image:1657328756309-230.png]]140 +Each LSE01 is shipped with a sticker with the default device EUI as below: 157 157 142 +[[image:image-20220606163732-6.jpeg]] 158 158 144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 159 159 160 - ===2.2.2sertSIMcard ===146 +**Add APP EUI in the application** 161 161 162 -((( 163 -Insert the NB-IoT Card get from your provider. 164 -))) 165 165 166 -((( 167 -User need to take out the NB-IoT module and insert the SIM card like below: 168 -))) 149 +[[image:1654504596150-405.png]] 169 169 170 170 171 -[[image:1657328884227-504.png]] 172 172 153 +**Add APP KEY and DEV EUI** 173 173 155 +[[image:1654504683289-357.png]] 174 174 175 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 176 176 177 -((( 178 -((( 179 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 180 -))) 181 -))) 182 182 183 - [[image:image-20220709092052-2.png]]159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 184 184 185 -**Connection:** 186 186 187 - (%style="background-color:yellow"%)USBTTLGND<~-~-~-~->GND162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 188 188 189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD164 +[[image:image-20220606163915-7.png]] 190 190 191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 192 192 167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 193 193 194 - In the PC, use below serial tool settings:169 +[[image:1654504778294-788.png]] 195 195 196 -* Baud: (% style="color:green" %)**9600** 197 -* Data bits:** (% style="color:green" %)8(%%)** 198 -* Stop bits: (% style="color:green" %)**1** 199 -* Parity: (% style="color:green" %)**None** 200 -* Flow Control: (% style="color:green" %)**None** 201 201 172 + 173 +== 2.3 Uplink Payload == 174 + 175 + 176 +=== 2.3.1 MOD~=0(Default Mode) === 177 + 178 +LSE01 will uplink payload via LoRaWAN with below payload format: 179 + 202 202 ((( 203 - Make sure the switch is in FLASHposition,thenpower ondeviceby connecting the jumper on NDDS75. NDDS75 will output systeminfoonce power onas below,we can enter the (% style="color:green" %)**password:12345678**(%%)to access AT Command input.181 +Uplink payload includes in total 11 bytes. 204 204 ))) 205 205 206 -[[image:1657329814315-101.png]] 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 207 207 208 -((( 209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 210 210 ))) 211 211 200 +=== 2.3.2 MOD~=1(Original value) === 212 212 202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 213 213 214 -=== 2.2.4 Use CoAP protocol to uplink data === 204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 205 +|((( 206 +**Size** 215 215 216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 208 +**(bytes)** 209 +)))|**2**|**2**|**2**|**2**|**2**|**1** 210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 211 +Temperature 217 217 213 +(Reserve, Ignore now) 214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 215 +MOD & Digital Interrupt 218 218 219 -**Use below commands:** 217 +(Optional) 218 +))) 220 220 221 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 +=== 2.3.3 Battery Info === 224 224 225 -For parameter description, please refer to AT command set 222 +((( 223 +Check the battery voltage for LSE01. 224 +))) 226 226 227 -[[image:1657330452568-615.png]] 226 +((( 227 +Ex1: 0x0B45 = 2885mV 228 +))) 228 228 230 +((( 231 +Ex2: 0x0B49 = 2889mV 232 +))) 229 229 230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 231 231 232 -[[image:1657330472797-498.png]] 233 233 236 +=== 2.3.4 Soil Moisture === 234 234 238 +((( 239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 240 +))) 235 235 236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 242 +((( 243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 244 +))) 237 237 246 +((( 247 + 248 +))) 238 238 239 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink240 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 **(%%)~/~/toset UDP server address and port241 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary250 +((( 251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 252 +))) 242 242 243 -[[image:1657330501006-241.png]] 244 244 245 245 246 - [[image:1657330533775-472.png]]256 +=== 2.3.5 Soil Temperature === 247 247 258 +((( 259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 260 +))) 248 248 262 +((( 263 +**Example**: 264 +))) 249 249 250 -=== 2.2.6 Use MQTT protocol to uplink data === 266 +((( 267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 268 +))) 251 251 270 +((( 271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 272 +))) 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 260 260 261 -[[image:1657249978444-674.png]] 262 262 276 +=== 2.3.6 Soil Conductivity (EC) === 263 263 264 -[[image:1657330723006-866.png]] 278 +((( 279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 280 +))) 265 265 282 +((( 283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 284 +))) 266 266 267 267 ((( 268 - MQTT protocol has a much higher power consumption comparevs UDP / CoAP protocol. Pleasecheckthepoweranalyzedocumentandadjusttheuplinkperiodtoasuitableinterval.287 +Generally, the EC value of irrigation water is less than 800uS / cm. 269 269 ))) 270 270 290 +((( 291 + 292 +))) 271 271 294 +((( 295 + 296 +))) 272 272 273 -=== 2. 2.7Use TCP protocol to uplink data===298 +=== 2.3.7 MOD === 274 274 300 +Firmware version at least v2.1 supports changing mode. 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 302 +For example, bytes[10]=90 278 278 279 - [[image:image-20220709093918-1.png]]304 +mod=(bytes[10]>>7)&0x01=1. 280 280 281 281 282 - [[image:image-20220709093918-2.png]]307 +**Downlink Command:** 283 283 309 +If payload = 0x0A00, workmode=0 284 284 311 +If** **payload =** **0x0A01, workmode=1 285 285 286 -=== 2.2.8 Change Update Interval === 287 287 288 -User can use below command to change the (% style="color:green" %)**uplink interval**. 289 289 290 - *(%style="color:blue"%)**AT+TDC=600 ** (%%)~/~/ Set UpdateIntervalto600s315 +=== 2.3.8 Decode payload in The Things Network === 291 291 317 +While using TTN network, you can add the payload format to decode the payload. 318 + 319 + 320 +[[image:1654505570700-128.png]] 321 + 292 292 ((( 293 - (%style="color:red"%)**NOTE:**323 +The payload decoder function for TTN is here: 294 294 ))) 295 295 296 296 ((( 297 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 298 298 ))) 299 299 300 300 331 +== 2.4 Uplink Interval == 301 301 302 - ==2.3UplinkPayload ==333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 303 303 304 -In this mode, uplink payload includes in total 14 bytes 305 305 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 337 +== 2.5 Downlink Payload == 312 312 313 -((( 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 315 -))) 339 +By default, LSE50 prints the downlink payload to console port. 316 316 341 +[[image:image-20220606165544-8.png]] 317 317 318 -[[image:1657331036973-987.png]] 319 319 320 320 ((( 321 - Thepayload is ASCII string, representativesameHEX:345 +(% style="color:blue" %)**Examples:** 322 322 ))) 323 323 324 324 ((( 325 - 0x72403155615900640c6c19029200where:349 + 326 326 ))) 327 327 328 328 * ((( 329 - DeviceID:0x724031556159 = 724031556159353 +(% style="color:blue" %)**Set TDC** 330 330 ))) 331 -* ((( 332 -Version: 0x0064=100=1.0.0 355 + 356 +((( 357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 333 333 ))) 334 334 335 - *(((336 - BAT: 0x0c6c=3180mV=.180V360 +((( 361 +Payload: 01 00 00 1E TDC=30S 337 337 ))) 338 -* ((( 339 -Signal: 0x19 = 25 363 + 364 +((( 365 +Payload: 01 00 00 3C TDC=60S 340 340 ))) 341 -* ((( 342 -Distance: 0x0292= 658 mm 367 + 368 +((( 369 + 343 343 ))) 371 + 344 344 * ((( 345 - Interrupt:0x00 = 0373 +(% style="color:blue" %)**Reset** 346 346 ))) 347 347 376 +((( 377 +If payload = 0x04FF, it will reset the LSE01 378 +))) 348 348 349 349 350 - ==2.4Payload Explanation and SensorInterface==381 +* (% style="color:blue" %)**CFM** 351 351 383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 352 352 353 -=== 2.4.1 Device ID === 354 354 355 -((( 356 -By default, the Device ID equal to the last 6 bytes of IMEI. 357 -))) 358 358 387 +== 2.6 Show Data in DataCake IoT Server == 388 + 359 359 ((( 360 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 361 361 ))) 362 362 363 363 ((( 364 - **Example:**394 + 365 365 ))) 366 366 367 367 ((( 368 - AT+DEUI=A84041F15612398 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 369 369 ))) 370 370 371 371 ((( 372 - TheDeviceID is storedinanone-erasearea,Upgradethefirmwareorrun **AT+FDR**won't erase DeviceID.402 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 373 373 ))) 374 374 375 375 406 +[[image:1654505857935-743.png]] 376 376 377 -=== 2.4.2 Version Info === 378 378 379 -((( 380 -Specify the software version: 0x64=100, means firmware version 1.00. 381 -))) 409 +[[image:1654505874829-548.png]] 382 382 383 -((( 384 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 385 -))) 386 386 412 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 387 387 414 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 388 388 389 -=== 2.4.3 Battery Info === 390 390 391 -((( 392 -Check the battery voltage for LSE01. 393 -))) 417 +[[image:1654505905236-553.png]] 394 394 395 -((( 396 -Ex1: 0x0B45 = 2885mV 397 -))) 398 398 399 -((( 400 -Ex2: 0x0B49 = 2889mV 401 -))) 420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 402 402 422 +[[image:1654505925508-181.png]] 403 403 404 404 405 -=== 2.4.4 Signal Strength === 406 406 407 -((( 408 -NB-IoT Network signal Strength. 409 -))) 426 +== 2.7 Frequency Plans == 410 410 411 -((( 412 -**Ex1: 0x1d = 29** 413 -))) 428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 414 414 415 -((( 416 -(% style="color:blue" %)**0**(%%) -113dBm or less 417 -))) 418 418 419 -((( 420 -(% style="color:blue" %)**1**(%%) -111dBm 421 -))) 431 +=== 2.7.1 EU863-870 (EU868) === 422 422 423 -((( 424 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 425 -))) 433 +(% style="color:#037691" %)** Uplink:** 426 426 427 -((( 428 -(% style="color:blue" %)**31** (%%) -51dBm or greater 429 -))) 435 +868.1 - SF7BW125 to SF12BW125 430 430 431 -((( 432 -(% style="color:blue" %)**99** (%%) Not known or not detectable 433 -))) 437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 434 434 439 +868.5 - SF7BW125 to SF12BW125 435 435 441 +867.1 - SF7BW125 to SF12BW125 436 436 437 - ===2.4.5SoilMoisture ===443 +867.3 - SF7BW125 to SF12BW125 438 438 439 - Get the distance. Flatobjectrange280mm - 7500mm.445 +867.5 - SF7BW125 to SF12BW125 440 440 441 - Forexample,if the data you get from the register is **__0x0B0x05__**,the distance between the sensorand the measured object is447 +867.7 - SF7BW125 to SF12BW125 442 442 443 -((( 444 -((( 445 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.** 446 -))) 447 -))) 449 +867.9 - SF7BW125 to SF12BW125 448 448 449 -((( 450 - 451 -))) 451 +868.8 - FSK 452 452 453 -((( 454 - 455 -))) 456 456 457 - ===2.4.6 DigitalInterrupt===454 +(% style="color:#037691" %)** Downlink:** 458 458 459 -((( 460 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 461 -))) 456 +Uplink channels 1-9 (RX1) 462 462 463 -((( 464 -The command is: 465 -))) 458 +869.525 - SF9BW125 (RX2 downlink only) 466 466 467 -((( 468 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 469 -))) 470 470 471 471 472 -((( 473 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 474 -))) 462 +=== 2.7.2 US902-928(US915) === 475 475 464 +Used in USA, Canada and South America. Default use CHE=2 476 476 477 -((( 478 -Example: 479 -))) 466 +(% style="color:#037691" %)**Uplink:** 480 480 481 -((( 482 -0x(00): Normal uplink packet. 483 -))) 468 +903.9 - SF7BW125 to SF10BW125 484 484 485 -((( 486 -0x(01): Interrupt Uplink Packet. 487 -))) 470 +904.1 - SF7BW125 to SF10BW125 488 488 472 +904.3 - SF7BW125 to SF10BW125 489 489 474 +904.5 - SF7BW125 to SF10BW125 490 490 491 - === 2.4.7+5VOutput===476 +904.7 - SF7BW125 to SF10BW125 492 492 493 -((( 494 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 495 -))) 478 +904.9 - SF7BW125 to SF10BW125 496 496 480 +905.1 - SF7BW125 to SF10BW125 497 497 498 -((( 499 -The 5V output time can be controlled by AT Command. 500 -))) 482 +905.3 - SF7BW125 to SF10BW125 501 501 502 -((( 503 -(% style="color:blue" %)**AT+5VT=1000** 504 -))) 505 505 506 -((( 507 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 508 -))) 485 +(% style="color:#037691" %)**Downlink:** 509 509 487 +923.3 - SF7BW500 to SF12BW500 510 510 489 +923.9 - SF7BW500 to SF12BW500 511 511 512 - ==2.5DownlinkPayload==491 +924.5 - SF7BW500 to SF12BW500 513 513 514 - Bydefault,NSE01prints the downlinkpayload to console port.493 +925.1 - SF7BW500 to SF12BW500 515 515 516 - [[image:image-20220708133731-5.png]]495 +925.7 - SF7BW500 to SF12BW500 517 517 497 +926.3 - SF7BW500 to SF12BW500 518 518 519 -((( 520 -(% style="color:blue" %)**Examples:** 521 -))) 499 +926.9 - SF7BW500 to SF12BW500 522 522 523 -((( 524 - 525 -))) 501 +927.5 - SF7BW500 to SF12BW500 526 526 527 -* ((( 528 -(% style="color:blue" %)**Set TDC** 529 -))) 503 +923.3 - SF12BW500(RX2 downlink only) 530 530 531 -((( 532 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 533 -))) 534 534 535 -((( 536 -Payload: 01 00 00 1E TDC=30S 537 -))) 538 538 539 -((( 540 -Payload: 01 00 00 3C TDC=60S 541 -))) 507 +=== 2.7.3 CN470-510 (CN470) === 542 542 543 -((( 544 - 545 -))) 509 +Used in China, Default use CHE=1 546 546 547 -* ((( 548 -(% style="color:blue" %)**Reset** 549 -))) 511 +(% style="color:#037691" %)**Uplink:** 550 550 551 -((( 552 -If payload = 0x04FF, it will reset the NSE01 553 -))) 513 +486.3 - SF7BW125 to SF12BW125 554 554 515 +486.5 - SF7BW125 to SF12BW125 555 555 556 - *(%style="color:blue"%)**INTMOD**517 +486.7 - SF7BW125 to SF12BW125 557 557 558 -((( 559 -Downlink Payload: 06000003, Set AT+INTMOD=3 560 -))) 519 +486.9 - SF7BW125 to SF12BW125 561 561 521 +487.1 - SF7BW125 to SF12BW125 562 562 523 +487.3 - SF7BW125 to SF12BW125 563 563 564 - == 2.6LEDIndicator==525 +487.5 - SF7BW125 to SF12BW125 565 565 566 -((( 567 -The NSE01 has an internal LED which is to show the status of different state. 527 +487.7 - SF7BW125 to SF12BW125 568 568 569 569 570 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 571 -* Then the LED will be on for 1 second means device is boot normally. 572 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 573 -* For each uplink probe, LED will be on for 500ms. 574 -))) 530 +(% style="color:#037691" %)**Downlink:** 575 575 532 +506.7 - SF7BW125 to SF12BW125 576 576 534 +506.9 - SF7BW125 to SF12BW125 577 577 536 +507.1 - SF7BW125 to SF12BW125 578 578 579 - == 2.7InstallationinSoil ==538 +507.3 - SF7BW125 to SF12BW125 580 580 581 - __**Measurementthesoilsurface**__540 +507.5 - SF7BW125 to SF12BW125 582 582 583 -((( 584 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 585 -))) 542 +507.7 - SF7BW125 to SF12BW125 586 586 587 - [[image:1657259653666-883.png]]544 +507.9 - SF7BW125 to SF12BW125 588 588 546 +508.1 - SF7BW125 to SF12BW125 589 589 590 -((( 591 - 548 +505.3 - SF12BW125 (RX2 downlink only) 592 592 593 -((( 594 -Dig a hole with diameter > 20CM. 595 -))) 596 596 597 -((( 598 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 599 -))) 600 -))) 601 601 602 - [[image:1654506665940-119.png]]552 +=== 2.7.4 AU915-928(AU915) === 603 603 604 -((( 605 - 606 -))) 554 +Default use CHE=2 607 607 556 +(% style="color:#037691" %)**Uplink:** 608 608 609 - == 2.8FirmwareChange Log==558 +916.8 - SF7BW125 to SF12BW125 610 610 560 +917.0 - SF7BW125 to SF12BW125 611 611 612 - DownloadURL&FirmwareChange log562 +917.2 - SF7BW125 to SF12BW125 613 613 614 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]564 +917.4 - SF7BW125 to SF12BW125 615 615 566 +917.6 - SF7BW125 to SF12BW125 616 616 617 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]568 +917.8 - SF7BW125 to SF12BW125 618 618 570 +918.0 - SF7BW125 to SF12BW125 619 619 572 +918.2 - SF7BW125 to SF12BW125 620 620 621 -== 2.9 Battery Analysis == 622 622 623 - ===2.9.1 BatteryType==575 +(% style="color:#037691" %)**Downlink:** 624 624 577 +923.3 - SF7BW500 to SF12BW500 625 625 579 +923.9 - SF7BW500 to SF12BW500 580 + 581 +924.5 - SF7BW500 to SF12BW500 582 + 583 +925.1 - SF7BW500 to SF12BW500 584 + 585 +925.7 - SF7BW500 to SF12BW500 586 + 587 +926.3 - SF7BW500 to SF12BW500 588 + 589 +926.9 - SF7BW500 to SF12BW500 590 + 591 +927.5 - SF7BW500 to SF12BW500 592 + 593 +923.3 - SF12BW500(RX2 downlink only) 594 + 595 + 596 + 597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 598 + 599 +(% style="color:#037691" %)**Default Uplink channel:** 600 + 601 +923.2 - SF7BW125 to SF10BW125 602 + 603 +923.4 - SF7BW125 to SF10BW125 604 + 605 + 606 +(% style="color:#037691" %)**Additional Uplink Channel**: 607 + 608 +(OTAA mode, channel added by JoinAccept message) 609 + 610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 611 + 612 +922.2 - SF7BW125 to SF10BW125 613 + 614 +922.4 - SF7BW125 to SF10BW125 615 + 616 +922.6 - SF7BW125 to SF10BW125 617 + 618 +922.8 - SF7BW125 to SF10BW125 619 + 620 +923.0 - SF7BW125 to SF10BW125 621 + 622 +922.0 - SF7BW125 to SF10BW125 623 + 624 + 625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 626 + 627 +923.6 - SF7BW125 to SF10BW125 628 + 629 +923.8 - SF7BW125 to SF10BW125 630 + 631 +924.0 - SF7BW125 to SF10BW125 632 + 633 +924.2 - SF7BW125 to SF10BW125 634 + 635 +924.4 - SF7BW125 to SF10BW125 636 + 637 +924.6 - SF7BW125 to SF10BW125 638 + 639 + 640 +(% style="color:#037691" %)** Downlink:** 641 + 642 +Uplink channels 1-8 (RX1) 643 + 644 +923.2 - SF10BW125 (RX2) 645 + 646 + 647 + 648 +=== 2.7.6 KR920-923 (KR920) === 649 + 650 +Default channel: 651 + 652 +922.1 - SF7BW125 to SF12BW125 653 + 654 +922.3 - SF7BW125 to SF12BW125 655 + 656 +922.5 - SF7BW125 to SF12BW125 657 + 658 + 659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 660 + 661 +922.1 - SF7BW125 to SF12BW125 662 + 663 +922.3 - SF7BW125 to SF12BW125 664 + 665 +922.5 - SF7BW125 to SF12BW125 666 + 667 +922.7 - SF7BW125 to SF12BW125 668 + 669 +922.9 - SF7BW125 to SF12BW125 670 + 671 +923.1 - SF7BW125 to SF12BW125 672 + 673 +923.3 - SF7BW125 to SF12BW125 674 + 675 + 676 +(% style="color:#037691" %)**Downlink:** 677 + 678 +Uplink channels 1-7(RX1) 679 + 680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 681 + 682 + 683 + 684 +=== 2.7.7 IN865-867 (IN865) === 685 + 686 +(% style="color:#037691" %)** Uplink:** 687 + 688 +865.0625 - SF7BW125 to SF12BW125 689 + 690 +865.4025 - SF7BW125 to SF12BW125 691 + 692 +865.9850 - SF7BW125 to SF12BW125 693 + 694 + 695 +(% style="color:#037691" %) **Downlink:** 696 + 697 +Uplink channels 1-3 (RX1) 698 + 699 +866.550 - SF10BW125 (RX2) 700 + 701 + 702 + 703 + 704 +== 2.8 LED Indicator == 705 + 706 +The LSE01 has an internal LED which is to show the status of different state. 707 + 708 +* Blink once when device power on. 709 +* Solid ON for 5 seconds once device successful Join the network. 710 +* Blink once when device transmit a packet. 711 + 712 +== 2.9 Installation in Soil == 713 + 714 +**Measurement the soil surface** 715 + 716 + 717 +[[image:1654506634463-199.png]] 718 + 626 626 ((( 627 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 720 +((( 721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 628 628 ))) 723 +))) 629 629 630 630 726 + 727 +[[image:1654506665940-119.png]] 728 + 631 631 ((( 632 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.730 +Dig a hole with diameter > 20CM. 633 633 ))) 634 634 733 +((( 734 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 735 +))) 635 635 737 + 738 +== 2.10 Firmware Change Log == 739 + 636 636 ((( 637 - The battery relateddocumentsasbelow:741 +**Firmware download link:** 638 638 ))) 639 639 640 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]641 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]642 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]744 +((( 745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 746 +))) 643 643 644 644 ((( 645 - [[image:image-20220708140453-6.png]]749 + 646 646 ))) 647 647 752 +((( 753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 754 +))) 648 648 756 +((( 757 + 758 +))) 649 649 650 -=== 2.9.2 Power consumption Analyze === 760 +((( 761 +**V1.0.** 762 +))) 651 651 652 652 ((( 653 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.765 +Release 654 654 ))) 655 655 656 656 769 +== 2.11 Battery Analysis == 770 + 771 +=== 2.11.1 Battery Type === 772 + 657 657 ((( 658 - Instruction touse as below:774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 659 659 ))) 660 660 661 661 ((( 662 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]778 +The battery is designed to last for more than 5 years for the LSN50. 663 663 ))) 664 664 665 - 666 666 ((( 667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 782 +((( 783 +The battery-related documents are as below: 668 668 ))) 785 +))) 669 669 670 670 * ((( 671 - Product Model788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 672 672 ))) 673 673 * ((( 674 - UplinkInterval791 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 675 675 ))) 676 676 * ((( 677 - WorkingMode794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 678 678 ))) 679 679 680 -((( 681 -And the Life expectation in difference case will be shown on the right. 682 -))) 797 + [[image:image-20220610172436-1.png]] 683 683 684 -[[image:image-20220708141352-7.jpeg]] 685 685 686 686 801 +=== 2.11.2 Battery Note === 687 687 688 -=== 2.9.3 Battery Note === 689 - 690 690 ((( 691 691 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 692 692 ))) ... ... @@ -693,176 +693,302 @@ 693 693 694 694 695 695 696 -=== 2. 9.4Replace the battery ===809 +=== 2.11.3 Replace the battery === 697 697 698 698 ((( 699 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).812 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 700 700 ))) 701 701 702 - 703 - 704 -= 3. Access NB-IoT Module = 705 - 706 706 ((( 707 - Userscan directly accesstheATcommand set of theNB-IoTmodule.816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 708 708 ))) 709 709 710 710 ((( 711 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 712 712 ))) 713 713 714 -[[image:1657261278785-153.png]] 715 715 716 716 825 += 3. Using the AT Commands = 717 717 718 -= 4.UsingtheAT Commands =827 +== 3.1 Access AT Commands == 719 719 720 -== 4.1 Access AT Commands == 721 721 722 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 723 723 832 +[[image:1654501986557-872.png||height="391" width="800"]] 724 724 725 -AT+<CMD>? : Help on <CMD> 726 726 727 - AT+<CMD>: Run<CMD>835 +Or if you have below board, use below connection: 728 728 729 -AT+<CMD>=<value> : Set the value 730 730 731 - AT+<CMD>=?:Get the value838 +[[image:1654502005655-729.png||height="503" width="801"]] 732 732 733 733 841 + 842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 843 + 844 + 845 + [[image:1654502050864-459.png||height="564" width="806"]] 846 + 847 + 848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 849 + 850 + 851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 852 + 853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 858 + 859 + 734 734 (% style="color:#037691" %)**General Commands**(%%) 735 735 736 -AT 862 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 737 737 738 -AT? 864 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 739 739 740 -ATZ 866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 741 741 742 -AT+TDC 868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 743 743 744 -AT+CFG : Print all configurations 745 745 746 - AT+CFGMOD: Workingmode selection871 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 747 747 748 -AT+I NTMOD:Setthe trigger interruptmode873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 749 749 750 -AT+ 5VTSetextend the timeof5V power875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 751 751 752 -AT+P ROChooseagreement877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 753 753 754 -AT+ WEIGREGet weightorsetweight to 0879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 755 755 756 -AT+ WEIGAPGet or SettheGapValue of weight881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 757 757 758 -AT+ RXDL: Extendthe sendingandreceivingtime883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 759 759 760 -AT+ CNTFACGettcountingparameters885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 761 761 762 -AT+ SERVADDR:ServerAddress887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 763 763 889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 764 764 765 -(% style="color:# 037691" %)**COAPManagement**891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 766 766 767 -AT+ URIsourceparameters893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 768 768 895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 769 769 770 -(% style="color:# 037691" %)**UDPManagement**897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 771 771 772 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 773 773 901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 774 774 775 -(% style="color:# 037691" %)**MQTTManagement**903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 776 776 777 -AT+CLIENT : Get or Set MQTT client 778 778 779 - AT+UNAMEGetSetMQTT Username906 +(% style="color:#037691" %)**LoRa Network Management** 780 780 781 -AT+ PWDGetor SetMQTT password908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 782 782 783 -AT+ PUBTOPICGetorSetMQTTpublishtopic910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 784 784 785 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 786 786 914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 787 787 788 -(% style="color:# 037691" %)**Information**916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 789 789 790 -AT+F DRctoryDataReset918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 791 791 792 -AT+ PWORDSerialAccessPassword920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 793 793 922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 794 794 924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 795 795 796 -= 5.FAQ=926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 797 797 798 -= =5.1HowtoUpgradeFirmware==928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 799 799 930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 800 800 932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 933 + 934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 935 + 936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 937 + 938 + 939 +(% style="color:#037691" %)**Information** 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 944 + 945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 946 + 947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 948 + 949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 950 + 951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 952 + 953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 954 + 955 + 956 += 4. FAQ = 957 + 958 +== 4.1 How to change the LoRa Frequency Bands/Region? == 959 + 801 801 ((( 802 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 962 +When downloading the images, choose the required image file for download. 803 803 ))) 804 804 805 805 ((( 806 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]966 + 807 807 ))) 808 808 809 809 ((( 810 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 811 811 ))) 812 812 973 +((( 974 + 975 +))) 813 813 977 +((( 978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 979 +))) 814 814 815 -== 5.2 Can I calibrate NSE01 to different soil types? == 981 +((( 982 + 983 +))) 816 816 817 817 ((( 818 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 819 819 ))) 820 820 989 +[[image:image-20220606154726-3.png]] 821 821 822 -= 6. Trouble Shooting = 823 823 824 - ==6.1 Connection problemwhenuploadingfirmware==992 +When you use the TTN network, the US915 frequency bands use are: 825 825 994 +* 903.9 - SF7BW125 to SF10BW125 995 +* 904.1 - SF7BW125 to SF10BW125 996 +* 904.3 - SF7BW125 to SF10BW125 997 +* 904.5 - SF7BW125 to SF10BW125 998 +* 904.7 - SF7BW125 to SF10BW125 999 +* 904.9 - SF7BW125 to SF10BW125 1000 +* 905.1 - SF7BW125 to SF10BW125 1001 +* 905.3 - SF7BW125 to SF10BW125 1002 +* 904.6 - SF8BW500 826 826 827 827 ((( 828 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1006 + 1007 +* (% style="color:#037691" %)**AT+CHE=2** 1008 +* (% style="color:#037691" %)**ATZ** 829 829 ))) 830 830 831 -(% class="wikigeneratedid" %) 832 832 ((( 833 833 1013 + 1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 834 834 ))) 835 835 1017 +((( 1018 + 1019 +))) 836 836 837 -== 6.2 AT Command input doesn't work == 1021 +((( 1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1023 +))) 838 838 1025 +[[image:image-20220606154825-4.png]] 1026 + 1027 + 1028 +== 4.2 Can I calibrate LSE01 to different soil types? == 1029 + 1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1031 + 1032 + 1033 += 5. Trouble Shooting = 1034 + 1035 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1036 + 1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1038 + 1039 + 1040 +== 5.2 AT Command input doesn't work == 1041 + 839 839 ((( 840 840 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1044 +))) 841 841 842 - 1046 + 1047 +== 5.3 Device rejoin in at the second uplink packet == 1048 + 1049 +(% style="color:#4f81bd" %)**Issue describe as below:** 1050 + 1051 +[[image:1654500909990-784.png]] 1052 + 1053 + 1054 +(% style="color:#4f81bd" %)**Cause for this issue:** 1055 + 1056 +((( 1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 843 843 ))) 844 844 845 845 846 - =7. OrderInfo=1061 +(% style="color:#4f81bd" %)**Solution: ** 847 847 1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 848 848 849 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1065 +[[image:1654500929571-736.png||height="458" width="832"]] 850 850 851 851 1068 += 6. Order Info = 1069 + 1070 + 1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1072 + 1073 + 1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1075 + 1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1082 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1084 + 1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1086 + 1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1089 + 852 852 (% class="wikigeneratedid" %) 853 853 ((( 854 854 855 855 ))) 856 856 857 -= 8.1095 += 7. Packing Info = 858 858 859 859 ((( 860 860 861 861 862 862 (% style="color:#037691" %)**Package Includes**: 1101 +))) 863 863 864 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1865 - *Externalantennax 11103 +* ((( 1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 866 866 ))) 867 867 868 868 ((( ... ... @@ -869,19 +869,24 @@ 869 869 870 870 871 871 (% style="color:#037691" %)**Dimension and weight**: 1111 +))) 872 872 873 -* Size: 195 x 125 x 55 mm874 - * Weight:420g1113 +* ((( 1114 +Device Size: cm 875 875 ))) 1116 +* ((( 1117 +Device Weight: g 1118 +))) 1119 +* ((( 1120 +Package Size / pcs : cm 1121 +))) 1122 +* ((( 1123 +Weight / pcs : g 876 876 877 -((( 878 878 879 - 880 - 881 - 882 882 ))) 883 883 884 -= 9.1128 += 8. Support = 885 885 886 886 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 887 887 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content