Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 91.3
edited by Xiaoling
on 2022/07/09 09:58
Change comment: There is no comment for this version
To version 40.7
edited by Xiaoling
on 2022/06/30 11:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,680 +13,767 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
71 +== 1.3 Specification ==
58 58  
73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
59 59  
60 -== 1.3  Specification ==
75 +[[image:image-20220606162220-5.png]]
61 61  
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
79 +== ​1.4 Applications ==
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
81 +* Smart Agriculture
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
84 +​
76 76  
77 -(% style="color:#037691" %)**Battery:**
86 +== 1.5 Firmware Change log ==
78 78  
79 -* Li/SOCI2 un-chargeable battery
80 -* Capacity: 8500mAh
81 -* Self Discharge: <1% / Year @ 25°C
82 -* Max continuously current: 130mA
83 -* Max boost current: 2A, 1 second
84 84  
85 -(% style="color:#037691" %)**Power Consumption**
89 +**LSE01 v1.0 :**  Release
86 86  
87 -* STOP Mode: 10uA @ 3.3v
88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]]
89 89  
90 90  
93 += 2. Configure LSE01 to connect to LoRaWAN network =
91 91  
95 +== 2.1 How it works ==
92 92  
93 -== ​1.4  Applications ==
97 +(((
98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
99 +)))
94 94  
95 -* Smart Buildings & Home Automation
96 -* Logistics and Supply Chain Management
97 -* Smart Metering
98 -* Smart Agriculture
99 -* Smart Cities
100 -* Smart Factory
101 +(((
102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
103 +)))
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
104 104  
105 105  
107 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
106 106  
107 -== 1.5  Pin Definitions ==
109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
108 108  
109 109  
110 -[[image:1657328609906-564.png]]
112 +[[image:1654503992078-669.png]]
111 111  
112 112  
115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
113 113  
114 -= 2.  Use NDDS75 to communicate with IoT Server =
115 115  
116 -== 2.How it works ==
118 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
117 117  
118 -(((
119 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
120 -)))
120 +Each LSE01 is shipped with a sticker with the default device EUI as below:
121 121  
122 +[[image:image-20220606163732-6.jpeg]]
122 122  
123 -(((
124 -The diagram below shows the working flow in default firmware of NDDS75:
125 -)))
124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
126 126  
127 -(((
128 -
129 -)))
126 +**Add APP EUI in the application**
130 130  
131 -[[image:1657328659945-416.png]]
132 132  
133 -(((
134 -
135 -)))
129 +[[image:1654504596150-405.png]]
136 136  
137 137  
138 -== 2.2 ​ Configure the NDDS75 ==
139 139  
133 +**Add APP KEY and DEV EUI**
140 140  
141 -=== 2.2.1 Test Requirement ===
135 +[[image:1654504683289-357.png]]
142 142  
143 -(((
144 -To use NDDS75 in your city, make sure meet below requirements:
145 -)))
146 146  
147 -* Your local operator has already distributed a NB-IoT Network there.
148 -* The local NB-IoT network used the band that NSE01 supports.
149 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
150 150  
151 -(((
152 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
153 -)))
139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
154 154  
155 155  
156 -[[image:1657328756309-230.png]]
142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
157 157  
144 +[[image:image-20220606163915-7.png]]
158 158  
159 159  
160 -=== 2.2.2 Insert SIM card ===
147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
161 161  
162 -(((
163 -Insert the NB-IoT Card get from your provider.
164 -)))
149 +[[image:1654504778294-788.png]]
165 165  
166 -(((
167 -User need to take out the NB-IoT module and insert the SIM card like below:
168 -)))
169 169  
170 170  
171 -[[image:1657328884227-504.png]]
153 +== 2.3 Uplink Payload ==
172 172  
173 173  
156 +=== 2.3.1 MOD~=0(Default Mode) ===
174 174  
175 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
158 +LSE01 will uplink payload via LoRaWAN with below payload format
176 176  
177 177  (((
178 -(((
179 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
161 +Uplink payload includes in total 11 bytes.
180 180  )))
181 -)))
182 182  
183 -[[image:image-20220709092052-2.png]]
164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 +|(((
166 +**Size**
184 184  
185 -**Connection:**
168 +**(bytes)**
169 +)))|**2**|**2**|**2**|**2**|**2**|**1**
170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 +Temperature
186 186  
187 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
173 +(Reserve, Ignore now)
174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 +MOD & Digital Interrupt
188 188  
189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
177 +(Optional)
178 +)))
190 190  
191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
180 +=== 2.3.2 MOD~=1(Original value) ===
192 192  
182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
193 193  
194 -In the PC, use below serial tool settings:
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
195 195  
196 -* Baud:  (% style="color:green" %)**9600**
197 -* Data bits:** (% style="color:green" %)8(%%)**
198 -* Stop bits: (% style="color:green" %)**1**
199 -* Parity:  (% style="color:green" %)**None**
200 -* Flow Control: (% style="color:green" %)**None**
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
201 201  
202 -(((
203 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 +MOD & Digital Interrupt
196 +
197 +(Optional)
204 204  )))
205 205  
206 -[[image:1657329814315-101.png]]
200 +=== 2.3.3 Battery Info ===
207 207  
208 208  (((
209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
203 +Check the battery voltage for LSE01.
210 210  )))
211 211  
206 +(((
207 +Ex1: 0x0B45 = 2885mV
208 +)))
212 212  
210 +(((
211 +Ex2: 0x0B49 = 2889mV
212 +)))
213 213  
214 -=== 2.2.4 Use CoAP protocol to uplink data ===
215 215  
216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
217 217  
216 +=== 2.3.4 Soil Moisture ===
218 218  
219 -**Use below commands:**
218 +(((
219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 +)))
220 220  
221 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
222 +(((
223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 +)))
224 224  
225 -For parameter description, please refer to AT command set
226 +(((
227 +
228 +)))
226 226  
227 -[[image:1657330452568-615.png]]
230 +(((
231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 +)))
228 228  
229 229  
230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
231 231  
232 -[[image:1657330472797-498.png]]
236 +=== 2.3.5 Soil Temperature ===
233 233  
238 +(((
239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 +)))
234 234  
242 +(((
243 +**Example**:
244 +)))
235 235  
236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
246 +(((
247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
248 +)))
237 237  
250 +(((
251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 +)))
238 238  
239 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
241 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
242 242  
243 -[[image:1657330501006-241.png]]
244 244  
256 +=== 2.3.6 Soil Conductivity (EC) ===
245 245  
246 -[[image:1657330533775-472.png]]
258 +(((
259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 +)))
247 247  
262 +(((
263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 +)))
248 248  
266 +(((
267 +Generally, the EC value of irrigation water is less than 800uS / cm.
268 +)))
249 249  
250 -=== 2.2.6 Use MQTT protocol to uplink data ===
270 +(((
271 +
272 +)))
251 251  
252 -
253 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
256 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
257 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
258 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
259 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
260 -
261 -[[image:1657249978444-674.png]]
262 -
263 -
264 -[[image:1657330723006-866.png]]
265 -
266 -
267 267  (((
268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
275 +
269 269  )))
270 270  
278 +=== 2.3.7 MOD ===
271 271  
280 +Firmware version at least v2.1 supports changing mode.
272 272  
273 -=== 2.2.7 Use TCP protocol to uplink data ===
282 +For example, bytes[10]=90
274 274  
284 +mod=(bytes[10]>>7)&0x01=1.
275 275  
276 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
278 278  
279 -[[image:image-20220709093918-1.png]]
287 +**Downlink Command:**
280 280  
289 +If payload = 0x0A00, workmode=0
281 281  
282 -[[image:image-20220709093918-2.png]]
291 +If** **payload =** **0x0A01, workmode=1
283 283  
284 284  
285 285  
286 -=== 2.2.8 Change Update Interval ===
295 +=== 2.3.8 ​Decode payload in The Things Network ===
287 287  
288 -User can use below command to change the (% style="color:green" %)**uplink interval**.
297 +While using TTN network, you can add the payload format to decode the payload.
289 289  
290 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
291 291  
300 +[[image:1654505570700-128.png]]
301 +
292 292  (((
293 -(% style="color:red" %)**NOTE:**
303 +The payload decoder function for TTN is here:
294 294  )))
295 295  
296 296  (((
297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
298 298  )))
299 299  
300 300  
311 +== 2.4 Uplink Interval ==
301 301  
302 -== 2. Uplink Payload ==
313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
303 303  
304 -In this mode, uplink payload includes in total 14 bytes
305 305  
306 306  
307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
308 -|=(% style="width: 60px;" %)(((
309 -**Size(bytes)**
310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
317 +== 2.5 Downlink Payload ==
312 312  
313 -(((
314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
315 -)))
319 +By default, LSE50 prints the downlink payload to console port.
316 316  
321 +[[image:image-20220606165544-8.png]]
317 317  
318 -[[image:1657331036973-987.png]]
319 319  
320 320  (((
321 -The payload is ASCII string, representative same HEX:
325 +(% style="color:blue" %)**Examples:**
322 322  )))
323 323  
324 324  (((
325 -0x72403155615900640c6c19029200 where:
329 +
326 326  )))
327 327  
328 328  * (((
329 -Device ID: 0x724031556159 = 724031556159
333 +(% style="color:blue" %)**Set TDC**
330 330  )))
331 -* (((
332 -Version: 0x0064=100=1.0.0
335 +
336 +(((
337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
333 333  )))
334 334  
335 -* (((
336 -BAT: 0x0c6c = 3180 mV = 3.180V
340 +(((
341 +Payload:    01 00 00 1E    TDC=30S
337 337  )))
338 -* (((
339 -Signal: 0x19 = 25
343 +
344 +(((
345 +Payload:    01 00 00 3C    TDC=60S
340 340  )))
341 -* (((
342 -Distance: 0x0292= 658 mm
347 +
348 +(((
349 +
343 343  )))
351 +
344 344  * (((
345 -Interrupt: 0x00 = 0
353 +(% style="color:blue" %)**Reset**
346 346  )))
347 347  
356 +(((
357 +If payload = 0x04FF, it will reset the LSE01
358 +)))
348 348  
349 349  
350 -== 2.4  Payload Explanation and Sensor Interface ==
361 +* (% style="color:blue" %)**CFM**
351 351  
363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
352 352  
353 -=== 2.4.1  Device ID ===
354 354  
355 -(((
356 -By default, the Device ID equal to the last 6 bytes of IMEI.
357 -)))
358 358  
367 +== 2.6 ​Show Data in DataCake IoT Server ==
368 +
359 359  (((
360 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
361 361  )))
362 362  
363 363  (((
364 -**Example:**
374 +
365 365  )))
366 366  
367 367  (((
368 -AT+DEUI=A84041F15612
378 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
369 369  )))
370 370  
371 371  (((
372 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
382 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
373 373  )))
374 374  
375 375  
386 +[[image:1654505857935-743.png]]
376 376  
377 -=== 2.4.2  Version Info ===
378 378  
379 -(((
380 -Specify the software version: 0x64=100, means firmware version 1.00.
381 -)))
389 +[[image:1654505874829-548.png]]
382 382  
383 -(((
384 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
385 -)))
386 386  
392 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
387 387  
394 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
388 388  
389 -=== 2.4.3  Battery Info ===
390 390  
391 -(((
392 -Check the battery voltage for LSE01.
393 -)))
397 +[[image:1654505905236-553.png]]
394 394  
395 -(((
396 -Ex1: 0x0B45 = 2885mV
397 -)))
398 398  
399 -(((
400 -Ex2: 0x0B49 = 2889mV
401 -)))
400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
402 402  
402 +[[image:1654505925508-181.png]]
403 403  
404 404  
405 -=== 2.4.4  Signal Strength ===
406 406  
407 -(((
408 -NB-IoT Network signal Strength.
409 -)))
406 +== 2.7 Frequency Plans ==
410 410  
411 -(((
412 -**Ex1: 0x1d = 29**
413 -)))
408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
414 414  
415 -(((
416 -(% style="color:blue" %)**0**(%%)  -113dBm or less
417 -)))
418 418  
419 -(((
420 -(% style="color:blue" %)**1**(%%)  -111dBm
421 -)))
411 +=== 2.7.1 EU863-870 (EU868) ===
422 422  
423 -(((
424 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
425 -)))
413 +(% style="color:#037691" %)** Uplink:**
426 426  
427 -(((
428 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
429 -)))
415 +868.1 - SF7BW125 to SF12BW125
430 430  
431 -(((
432 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
433 -)))
417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
434 434  
419 +868.5 - SF7BW125 to SF12BW125
435 435  
421 +867.1 - SF7BW125 to SF12BW125
436 436  
437 -=== 2.4.5  Soil Moisture ===
423 +867.3 - SF7BW125 to SF12BW125
438 438  
439 -Get the distance. Flat object range 280mm - 7500mm.
425 +867.5 - SF7BW125 to SF12BW125
440 440  
441 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
427 +867.7 - SF7BW125 to SF12BW125
442 442  
443 -(((
444 -(((
445 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
446 -)))
447 -)))
429 +867.9 - SF7BW125 to SF12BW125
448 448  
449 -(((
450 -
451 -)))
431 +868.8 - FSK
452 452  
453 -(((
454 -
455 -)))
456 456  
457 -=== 2.4.6  Digital Interrupt ===
434 +(% style="color:#037691" %)** Downlink:**
458 458  
459 -(((
460 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
461 -)))
436 +Uplink channels 1-9 (RX1)
462 462  
463 -(((
464 -The command is:
465 -)))
438 +869.525 - SF9BW125 (RX2 downlink only)
466 466  
467 -(((
468 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
469 -)))
470 470  
471 471  
472 -(((
473 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
474 -)))
442 +=== 2.7.2 US902-928(US915) ===
475 475  
444 +Used in USA, Canada and South America. Default use CHE=2
476 476  
477 -(((
478 -Example:
479 -)))
446 +(% style="color:#037691" %)**Uplink:**
480 480  
481 -(((
482 -0x(00): Normal uplink packet.
483 -)))
448 +903.9 - SF7BW125 to SF10BW125
484 484  
485 -(((
486 -0x(01): Interrupt Uplink Packet.
487 -)))
450 +904.1 - SF7BW125 to SF10BW125
488 488  
452 +904.3 - SF7BW125 to SF10BW125
489 489  
454 +904.5 - SF7BW125 to SF10BW125
490 490  
491 -=== 2.4.7  ​+5V Output ===
456 +904.7 - SF7BW125 to SF10BW125
492 492  
493 -(((
494 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
495 -)))
458 +904.9 - SF7BW125 to SF10BW125
496 496  
460 +905.1 - SF7BW125 to SF10BW125
497 497  
498 -(((
499 -The 5V output time can be controlled by AT Command.
500 -)))
462 +905.3 - SF7BW125 to SF10BW125
501 501  
502 -(((
503 -(% style="color:blue" %)**AT+5VT=1000**
504 -)))
505 505  
506 -(((
507 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
508 -)))
465 +(% style="color:#037691" %)**Downlink:**
509 509  
467 +923.3 - SF7BW500 to SF12BW500
510 510  
469 +923.9 - SF7BW500 to SF12BW500
511 511  
512 -== 2.5  Downlink Payload ==
471 +924.5 - SF7BW500 to SF12BW500
513 513  
514 -By default, NSE01 prints the downlink payload to console port.
473 +925.1 - SF7BW500 to SF12BW500
515 515  
516 -[[image:image-20220708133731-5.png]]
475 +925.7 - SF7BW500 to SF12BW500
517 517  
477 +926.3 - SF7BW500 to SF12BW500
518 518  
519 -(((
520 -(% style="color:blue" %)**Examples:**
521 -)))
479 +926.9 - SF7BW500 to SF12BW500
522 522  
523 -(((
524 -
525 -)))
481 +927.5 - SF7BW500 to SF12BW500
526 526  
527 -* (((
528 -(% style="color:blue" %)**Set TDC**
529 -)))
483 +923.3 - SF12BW500(RX2 downlink only)
530 530  
531 -(((
532 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
533 -)))
534 534  
535 -(((
536 -Payload:    01 00 00 1E    TDC=30S
537 -)))
538 538  
539 -(((
540 -Payload:    01 00 00 3C    TDC=60S
541 -)))
487 +=== 2.7.3 CN470-510 (CN470) ===
542 542  
543 -(((
544 -
545 -)))
489 +Used in China, Default use CHE=1
546 546  
547 -* (((
548 -(% style="color:blue" %)**Reset**
549 -)))
491 +(% style="color:#037691" %)**Uplink:**
550 550  
551 -(((
552 -If payload = 0x04FF, it will reset the NSE01
553 -)))
493 +486.3 - SF7BW125 to SF12BW125
554 554  
495 +486.5 - SF7BW125 to SF12BW125
555 555  
556 -* (% style="color:blue" %)**INTMOD**
497 +486.7 - SF7BW125 to SF12BW125
557 557  
558 -(((
559 -Downlink Payload: 06000003, Set AT+INTMOD=3
560 -)))
499 +486.9 - SF7BW125 to SF12BW125
561 561  
501 +487.1 - SF7BW125 to SF12BW125
562 562  
503 +487.3 - SF7BW125 to SF12BW125
563 563  
564 -== 2. ​LED Indicator ==
505 +487.5 - SF7BW125 to SF12BW125
565 565  
566 -(((
567 -The NSE01 has an internal LED which is to show the status of different state.
507 +487.7 - SF7BW125 to SF12BW125
568 568  
569 569  
570 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
571 -* Then the LED will be on for 1 second means device is boot normally.
572 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
573 -* For each uplink probe, LED will be on for 500ms.
574 -)))
510 +(% style="color:#037691" %)**Downlink:**
575 575  
512 +506.7 - SF7BW125 to SF12BW125
576 576  
514 +506.9 - SF7BW125 to SF12BW125
577 577  
516 +507.1 - SF7BW125 to SF12BW125
578 578  
579 -== 2.7  Installation in Soil ==
518 +507.3 - SF7BW125 to SF12BW125
580 580  
581 -__**Measurement the soil surface**__
520 +507.5 - SF7BW125 to SF12BW125
582 582  
583 -(((
584 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
585 -)))
522 +507.7 - SF7BW125 to SF12BW125
586 586  
587 -[[image:1657259653666-883.png]]
524 +507.9 - SF7BW125 to SF12BW125
588 588  
526 +508.1 - SF7BW125 to SF12BW125
589 589  
590 -(((
591 -
528 +505.3 - SF12BW125 (RX2 downlink only)
592 592  
593 -(((
594 -Dig a hole with diameter > 20CM.
595 -)))
596 596  
597 -(((
598 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
599 -)))
600 -)))
601 601  
602 -[[image:1654506665940-119.png]]
532 +=== 2.7.4 AU915-928(AU915) ===
603 603  
604 -(((
605 -
606 -)))
534 +Default use CHE=2
607 607  
536 +(% style="color:#037691" %)**Uplink:**
608 608  
609 -== 2.8  Firmware Change Log ==
538 +916.8 - SF7BW125 to SF12BW125
610 610  
540 +917.0 - SF7BW125 to SF12BW125
611 611  
612 -Download URL & Firmware Change log
542 +917.2 - SF7BW125 to SF12BW125
613 613  
614 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
544 +917.4 - SF7BW125 to SF12BW125
615 615  
546 +917.6 - SF7BW125 to SF12BW125
616 616  
617 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
548 +917.8 - SF7BW125 to SF12BW125
618 618  
550 +918.0 - SF7BW125 to SF12BW125
619 619  
552 +918.2 - SF7BW125 to SF12BW125
620 620  
621 -== 2.9  ​Battery Analysis ==
622 622  
623 -=== 2.9.1  ​Battery Type ===
555 +(% style="color:#037691" %)**Downlink:**
624 624  
557 +923.3 - SF7BW500 to SF12BW500
625 625  
559 +923.9 - SF7BW500 to SF12BW500
560 +
561 +924.5 - SF7BW500 to SF12BW500
562 +
563 +925.1 - SF7BW500 to SF12BW500
564 +
565 +925.7 - SF7BW500 to SF12BW500
566 +
567 +926.3 - SF7BW500 to SF12BW500
568 +
569 +926.9 - SF7BW500 to SF12BW500
570 +
571 +927.5 - SF7BW500 to SF12BW500
572 +
573 +923.3 - SF12BW500(RX2 downlink only)
574 +
575 +
576 +
577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
578 +
579 +(% style="color:#037691" %)**Default Uplink channel:**
580 +
581 +923.2 - SF7BW125 to SF10BW125
582 +
583 +923.4 - SF7BW125 to SF10BW125
584 +
585 +
586 +(% style="color:#037691" %)**Additional Uplink Channel**:
587 +
588 +(OTAA mode, channel added by JoinAccept message)
589 +
590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
591 +
592 +922.2 - SF7BW125 to SF10BW125
593 +
594 +922.4 - SF7BW125 to SF10BW125
595 +
596 +922.6 - SF7BW125 to SF10BW125
597 +
598 +922.8 - SF7BW125 to SF10BW125
599 +
600 +923.0 - SF7BW125 to SF10BW125
601 +
602 +922.0 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 +
607 +923.6 - SF7BW125 to SF10BW125
608 +
609 +923.8 - SF7BW125 to SF10BW125
610 +
611 +924.0 - SF7BW125 to SF10BW125
612 +
613 +924.2 - SF7BW125 to SF10BW125
614 +
615 +924.4 - SF7BW125 to SF10BW125
616 +
617 +924.6 - SF7BW125 to SF10BW125
618 +
619 +
620 +(% style="color:#037691" %)** Downlink:**
621 +
622 +Uplink channels 1-8 (RX1)
623 +
624 +923.2 - SF10BW125 (RX2)
625 +
626 +
627 +
628 +=== 2.7.6 KR920-923 (KR920) ===
629 +
630 +Default channel:
631 +
632 +922.1 - SF7BW125 to SF12BW125
633 +
634 +922.3 - SF7BW125 to SF12BW125
635 +
636 +922.5 - SF7BW125 to SF12BW125
637 +
638 +
639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 +
641 +922.1 - SF7BW125 to SF12BW125
642 +
643 +922.3 - SF7BW125 to SF12BW125
644 +
645 +922.5 - SF7BW125 to SF12BW125
646 +
647 +922.7 - SF7BW125 to SF12BW125
648 +
649 +922.9 - SF7BW125 to SF12BW125
650 +
651 +923.1 - SF7BW125 to SF12BW125
652 +
653 +923.3 - SF7BW125 to SF12BW125
654 +
655 +
656 +(% style="color:#037691" %)**Downlink:**
657 +
658 +Uplink channels 1-7(RX1)
659 +
660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
661 +
662 +
663 +
664 +=== 2.7.7 IN865-867 (IN865) ===
665 +
666 +(% style="color:#037691" %)** Uplink:**
667 +
668 +865.0625 - SF7BW125 to SF12BW125
669 +
670 +865.4025 - SF7BW125 to SF12BW125
671 +
672 +865.9850 - SF7BW125 to SF12BW125
673 +
674 +
675 +(% style="color:#037691" %) **Downlink:**
676 +
677 +Uplink channels 1-3 (RX1)
678 +
679 +866.550 - SF10BW125 (RX2)
680 +
681 +
682 +
683 +
684 +== 2.8 LED Indicator ==
685 +
686 +The LSE01 has an internal LED which is to show the status of different state.
687 +
688 +* Blink once when device power on.
689 +* Solid ON for 5 seconds once device successful Join the network.
690 +* Blink once when device transmit a packet.
691 +
692 +
693 +== 2.9 Installation in Soil ==
694 +
695 +**Measurement the soil surface**
696 +
697 +
698 +[[image:1654506634463-199.png]] ​
699 +
626 626  (((
627 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +(((
702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
628 628  )))
704 +)))
629 629  
630 630  
707 +
708 +[[image:1654506665940-119.png]]
709 +
631 631  (((
632 -The battery is designed to last for several years depends on the actually use environment and update interval. 
711 +Dig a hole with diameter > 20CM.
633 633  )))
634 634  
714 +(((
715 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
716 +)))
635 635  
718 +
719 +== 2.10 ​Firmware Change Log ==
720 +
636 636  (((
637 -The battery related documents as below:
722 +**Firmware download link:**
638 638  )))
639 639  
640 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
641 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
642 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
725 +(((
726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
727 +)))
643 643  
644 644  (((
645 -[[image:image-20220708140453-6.png]]
730 +
646 646  )))
647 647  
733 +(((
734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
735 +)))
648 648  
737 +(((
738 +
739 +)))
649 649  
650 -=== 2.9.2  Power consumption Analyze ===
741 +(((
742 +**V1.0.**
743 +)))
651 651  
652 652  (((
653 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
746 +Release
654 654  )))
655 655  
656 656  
750 +== 2.11 ​Battery Analysis ==
751 +
752 +=== 2.11.1 ​Battery Type ===
753 +
657 657  (((
658 -Instruction to use as below:
755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
659 659  )))
660 660  
661 661  (((
662 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
759 +The battery is designed to last for more than 5 years for the LSN50.
663 663  )))
664 664  
665 -
666 666  (((
667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
763 +(((
764 +The battery-related documents are as below:
668 668  )))
766 +)))
669 669  
670 670  * (((
671 -Product Model
769 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
672 672  )))
673 673  * (((
674 -Uplink Interval
772 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
675 675  )))
676 676  * (((
677 -Working Mode
775 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
678 678  )))
679 679  
680 -(((
681 -And the Life expectation in difference case will be shown on the right.
682 -)))
778 + [[image:image-20220610172436-1.png]]
683 683  
684 -[[image:image-20220708141352-7.jpeg]]
685 685  
686 686  
782 +=== 2.11.2 ​Battery Note ===
687 687  
688 -=== 2.9.3  ​Battery Note ===
689 -
690 690  (((
691 691  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
692 692  )))
... ... @@ -693,176 +693,302 @@
693 693  
694 694  
695 695  
696 -=== 2.9. Replace the battery ===
790 +=== 2.11.3 Replace the battery ===
697 697  
698 698  (((
699 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
700 700  )))
701 701  
702 -
703 -
704 -= 3. ​ Access NB-IoT Module =
705 -
706 706  (((
707 -Users can directly access the AT command set of the NB-IoT module.
797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
708 708  )))
709 709  
710 710  (((
711 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
712 712  )))
713 713  
714 -[[image:1657261278785-153.png]]
715 715  
716 716  
806 += 3. ​Using the AT Commands =
717 717  
718 -= 4.  Using the AT Commands =
808 +== 3.1 Access AT Commands ==
719 719  
720 -== 4.1  Access AT Commands ==
721 721  
722 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
723 723  
813 +[[image:1654501986557-872.png||height="391" width="800"]]
724 724  
725 -AT+<CMD>?  : Help on <CMD>
726 726  
727 -AT+<CMD>         : Run <CMD>
816 +Or if you have below board, use below connection:
728 728  
729 -AT+<CMD>=<value> : Set the value
730 730  
731 -AT+<CMD>=?  : Get the value
819 +[[image:1654502005655-729.png||height="503" width="801"]]
732 732  
733 733  
822 +
823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 +
825 +
826 + [[image:1654502050864-459.png||height="564" width="806"]]
827 +
828 +
829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 +
831 +
832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 +
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 +
840 +
734 734  (% style="color:#037691" %)**General Commands**(%%)      
735 735  
736 -AT  : Attention       
843 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
737 737  
738 -AT?  : Short Help     
845 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
739 739  
740 -ATZ  : MCU Reset    
847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
741 741  
742 -AT+TDC  : Application Data Transmission Interval
849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
743 743  
744 -AT+CFG  : Print all configurations
745 745  
746 -AT+CFGMOD           : Working mode selection
852 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
747 747  
748 -AT+INTMOD            : Set the trigger interrupt mode
854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
749 749  
750 -AT+5VT  : Set extend the time of 5V power  
856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
751 751  
752 -AT+PRO  : Choose agreement
858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
753 753  
754 -AT+WEIGRE  : Get weight or set weight to 0
860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
755 755  
756 -AT+WEIGAP  : Get or Set the GapValue of weight
862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
757 757  
758 -AT+RXDL  : Extend the sending and receiving time
864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
759 759  
760 -AT+CNTFAC  : Get or set counting parameters
866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
761 761  
762 -AT+SERVADDR  : Server Address
868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
763 763  
870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
764 764  
765 -(% style="color:#037691" %)**COAP Management**      
872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
766 766  
767 -AT+URI            : Resource parameters
874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
768 768  
876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
769 769  
770 -(% style="color:#037691" %)**UDP Management**
878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
771 771  
772 -AT+CFM          : Upload confirmation mode (only valid for UDP)
880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
773 773  
882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
774 774  
775 -(% style="color:#037691" %)**MQTT Management**
884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
776 776  
777 -AT+CLIENT               : Get or Set MQTT client
778 778  
779 -AT+UNAME  : Get or Set MQTT Username
887 +(% style="color:#037691" %)**LoRa Network Management**
780 780  
781 -AT+PWD                  : Get or Set MQTT password
889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
782 782  
783 -AT+PUBTOPI : Get or Set MQTT publish topic
891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
784 784  
785 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
786 786  
895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
787 787  
788 -(% style="color:#037691" %)**Information**          
897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
789 789  
790 -AT+FDR  : Factory Data Reset
899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
791 791  
792 -AT+PWOR : Serial Access Password
901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
793 793  
903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
794 794  
905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
795 795  
796 -= ​5.  FAQ =
907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
797 797  
798 -== 5.1 How to Upgrade Firmware ==
909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
799 799  
911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
800 800  
913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 +
915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 +
919 +
920 +(% style="color:#037691" %)**Information** 
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 +
934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 +
936 +
937 += ​4. FAQ =
938 +
939 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 +
801 801  (((
802 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 +When downloading the images, choose the required image file for download. ​
803 803  )))
804 804  
805 805  (((
806 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 +
807 807  )))
808 808  
809 809  (((
810 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
811 811  )))
812 812  
954 +(((
955 +
956 +)))
813 813  
958 +(((
959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 +)))
814 814  
815 -== 5.2  Can I calibrate NSE01 to different soil types? ==
962 +(((
963 +
964 +)))
816 816  
817 817  (((
818 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
819 819  )))
820 820  
970 +[[image:image-20220606154726-3.png]]
821 821  
822 -= 6.  Trouble Shooting =
823 823  
824 -== 6.1  ​Connection problem when uploading firmware ==
973 +When you use the TTN network, the US915 frequency bands use are:
825 825  
975 +* 903.9 - SF7BW125 to SF10BW125
976 +* 904.1 - SF7BW125 to SF10BW125
977 +* 904.3 - SF7BW125 to SF10BW125
978 +* 904.5 - SF7BW125 to SF10BW125
979 +* 904.7 - SF7BW125 to SF10BW125
980 +* 904.9 - SF7BW125 to SF10BW125
981 +* 905.1 - SF7BW125 to SF10BW125
982 +* 905.3 - SF7BW125 to SF10BW125
983 +* 904.6 - SF8BW500
826 826  
827 827  (((
828 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 +
988 +* (% style="color:#037691" %)**AT+CHE=2**
989 +* (% style="color:#037691" %)**ATZ**
829 829  )))
830 830  
831 -(% class="wikigeneratedid" %)
832 832  (((
833 833  
994 +
995 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
834 834  )))
835 835  
998 +(((
999 +
1000 +)))
836 836  
837 -== 6.2  AT Command input doesn't work ==
1002 +(((
1003 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 +)))
838 838  
1006 +[[image:image-20220606154825-4.png]]
1007 +
1008 +
1009 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 +
1011 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 +
1013 +
1014 += 5. Trouble Shooting =
1015 +
1016 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 +
1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1019 +
1020 +
1021 +== 5.2 AT Command input doesn't work ==
1022 +
839 839  (((
840 840  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 +)))
841 841  
842 -
1027 +
1028 +== 5.3 Device rejoin in at the second uplink packet ==
1029 +
1030 +(% style="color:#4f81bd" %)**Issue describe as below:**
1031 +
1032 +[[image:1654500909990-784.png]]
1033 +
1034 +
1035 +(% style="color:#4f81bd" %)**Cause for this issue:**
1036 +
1037 +(((
1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
843 843  )))
844 844  
845 845  
846 -= 7. ​ Order Info =
1042 +(% style="color:#4f81bd" %)**Solution: **
847 847  
1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
848 848  
849 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1046 +[[image:1654500929571-736.png||height="458" width="832"]]
850 850  
851 851  
1049 += 6. ​Order Info =
1050 +
1051 +
1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 +
1054 +
1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 +
1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 +
1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 +
1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 +
852 852  (% class="wikigeneratedid" %)
853 853  (((
854 854  
855 855  )))
856 856  
857 -= 8.  Packing Info =
1076 += 7. Packing Info =
858 858  
859 859  (((
860 860  
861 861  
862 862  (% style="color:#037691" %)**Package Includes**:
1082 +)))
863 863  
864 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
865 -* External antenna x 1
1084 +* (((
1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
866 866  )))
867 867  
868 868  (((
... ... @@ -869,19 +869,24 @@
869 869  
870 870  
871 871  (% style="color:#037691" %)**Dimension and weight**:
1092 +)))
872 872  
873 -* Size: 195 x 125 x 55 mm
874 -* Weight:   420g
1094 +* (((
1095 +Device Size: cm
875 875  )))
1097 +* (((
1098 +Device Weight: g
1099 +)))
1100 +* (((
1101 +Package Size / pcs : cm
1102 +)))
1103 +* (((
1104 +Weight / pcs : g
876 876  
877 -(((
878 878  
879 -
880 -
881 -
882 882  )))
883 883  
884 -= 9.  Support =
1109 += 8. Support =
885 885  
886 886  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
887 887  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content