Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 45 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,127 +1,243 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 77 - (% style="color:#037691"%)**Battery:**76 +== 1.5 Firmware Change log == 78 78 79 -* Li/SOCI2 un-chargeable battery 80 -* Capacity: 8500mAh 81 -* Self Discharge: <1% / Year @ 25°C 82 -* Max continuously current: 130mA 83 -* Max boost current: 2A, 1 second 84 84 85 - (% style="color:#037691"%)**PowerConsumption**79 +**LSE01 v1.0 :** Release 86 86 87 -* STOP Mode: 10uA @ 3.3v 88 -* Max transmit power: [[350mA@3.3v>>mailto:350mA@3.3v]] 89 89 90 90 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 93 -== 1.4 Applications == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 94 94 95 -* Smart Buildings & Home Automation 96 -* Logistics and Supply Chain Management 97 -* Smart Metering 98 -* Smart Agriculture 99 -* Smart Cities 100 -* Smart Factory 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 104 104 105 105 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 107 - ==1.5 PinDefinitions==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 108 108 109 109 110 -[[image:165 7328609906-564.png]]102 +[[image:1654503992078-669.png]] 111 111 112 112 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 -= 2. Use NDDS75 to communicate with IoT Server = 115 115 116 - ==2.1Howitworks==108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 117 117 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 152 + 153 +Uplink payload includes in total 11 bytes. 154 + 155 + 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 198 +Check the battery voltage for LSE01. 199 + 200 +Ex1: 0x0B45 = 2885mV 201 + 202 +Ex2: 0x0B49 = 2889mV 203 + 204 + 205 + 206 +=== 2.3.4 Soil Moisture === 207 + 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 + 210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 + 212 + 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 + 215 + 216 + 217 +=== 2.3.5 Soil Temperature === 218 + 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 + 221 +**Example**: 222 + 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 + 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 + 227 + 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 118 118 ((( 119 - The NDDS75isequippedwith a NB-IoT module,thepre-loaded firmwareinNDDS75 willget environmentdata from sensorsandsendthevalueto localNB-IoTnetwork viathe NB-IoTmodule.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NDDS75.232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 120 120 ))) 121 121 235 +((( 236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 +))) 122 122 123 123 ((( 124 - Thediagram belowshowstheworkingflowin defaultfirmwareofNDDS75:240 +Generally, the EC value of irrigation water is less than 800uS / cm. 125 125 ))) 126 126 127 127 ((( ... ... @@ -128,565 +128,483 @@ 128 128 129 129 ))) 130 130 131 -[[image:1657328659945-416.png]] 132 - 133 133 ((( 134 134 135 135 ))) 136 136 251 +=== 2.3.7 MOD === 137 137 138 - ==2.2 ConfiguretheNDDS75 ==253 +Firmware version at least v2.1 supports changing mode. 139 139 255 +For example, bytes[10]=90 140 140 141 -= == 2.2.1 TestRequirement===257 +mod=(bytes[10]>>7)&0x01=1. 142 142 143 -((( 144 -To use NDDS75 in your city, make sure meet below requirements: 145 -))) 146 146 147 -* Your local operator has already distributed a NB-IoT Network there. 148 -* The local NB-IoT network used the band that NSE01 supports. 149 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 260 +**Downlink Command:** 150 150 151 -((( 152 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 153 -))) 262 +If payload = 0x0A00, workmode=0 154 154 264 +If** **payload =** **0x0A01, workmode=1 155 155 156 -[[image:1657328756309-230.png]] 157 157 158 158 268 +=== 2.3.8 Decode payload in The Things Network === 159 159 160 - ===2.2.2InsertSIMcard===270 +While using TTN network, you can add the payload format to decode the payload. 161 161 162 -((( 163 -Insert the NB-IoT Card get from your provider. 164 -))) 165 165 166 -((( 167 -User need to take out the NB-IoT module and insert the SIM card like below: 168 -))) 273 +[[image:1654505570700-128.png]] 169 169 275 +The payload decoder function for TTN is here: 170 170 171 -[[ima ge:1657328884227-504.png]]277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 172 172 173 173 174 174 175 -== =2.2.3ConnectUSB – TTL to NDDS75 to configureit===281 +== 2.4 Uplink Interval == 176 176 177 -((( 178 -((( 179 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 180 -))) 181 -))) 283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 182 182 183 -[[image:image-20220709092052-2.png]] 184 184 185 -**Connection:** 186 186 187 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND287 +== 2.5 Downlink Payload == 188 188 189 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD289 +By default, LSE50 prints the downlink payload to console port. 190 190 191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD291 +[[image:image-20220606165544-8.png]] 192 192 193 193 194 - In the PC, use below serialtool settings:294 +**Examples:** 195 195 196 -* Baud: (% style="color:green" %)**9600** 197 -* Data bits:** (% style="color:green" %)8(%%)** 198 -* Stop bits: (% style="color:green" %)**1** 199 -* Parity: (% style="color:green" %)**None** 200 -* Flow Control: (% style="color:green" %)**None** 201 201 202 -((( 203 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 204 -))) 297 +* **Set TDC** 205 205 206 - [[image:1657329814315-101.png]]299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 207 207 208 -((( 209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 210 -))) 301 +Payload: 01 00 00 1E TDC=30S 211 211 303 +Payload: 01 00 00 3C TDC=60S 212 212 213 213 214 - ===2.2.4 UseCoAP protocol to uplink data ===306 +* **Reset** 215 215 216 - (%style="color:red"%)Note:if you don't have CoAP server,you can refer this linktoset up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]308 +If payload = 0x04FF, it will reset the LSE01 217 217 218 218 219 -* *Usebelow commands:**311 +* **CFM** 220 220 221 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 224 224 225 -For parameter description, please refer to AT command set 226 226 227 -[[image:1657330452568-615.png]] 228 228 317 +== 2.6 Show Data in DataCake IoT Server == 229 229 230 -A fter configure theserver addressand(% style="color:green"%)**resetthedevice**(%%)(viaAT+ATZ ),NDDS75willstart touplink sensorvalues toCoAPserver.319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 231 231 232 -[[image:1657330472797-498.png]] 233 233 322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 234 234 324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 235 235 236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 237 237 327 +[[image:1654505857935-743.png]] 238 238 239 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 241 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 242 242 243 -[[image:165 7330501006-241.png]]330 +[[image:1654505874829-548.png]] 244 244 332 +Step 3: Create an account or log in Datacake. 245 245 246 - [[image:1657330533775-472.png]]334 +Step 4: Search the LSE01 and add DevEUI. 247 247 248 248 337 +[[image:1654505905236-553.png]] 249 249 250 -=== 2.2.6 Use MQTT protocol to uplink data === 251 251 340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 252 252 253 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 254 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 255 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 256 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 257 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 258 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 259 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 342 +[[image:1654505925508-181.png]] 260 260 261 -[[image:1657249978444-674.png]] 262 262 263 263 264 - [[image:1657330723006-866.png]]346 +== 2.7 Frequency Plans == 265 265 348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 266 266 267 -((( 268 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 269 -))) 270 270 351 +=== 2.7.1 EU863-870 (EU868) === 271 271 353 +(% style="color:#037691" %)** Uplink:** 272 272 273 - === 2.2.7UseTCP protocolto uplink data ===355 +868.1 - SF7BW125 to SF12BW125 274 274 357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 275 275 276 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 277 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 359 +868.5 - SF7BW125 to SF12BW125 278 278 279 - [[image:image-20220709093918-1.png]]361 +867.1 - SF7BW125 to SF12BW125 280 280 363 +867.3 - SF7BW125 to SF12BW125 281 281 282 - [[image:image-20220709093918-2.png]]365 +867.5 - SF7BW125 to SF12BW125 283 283 367 +867.7 - SF7BW125 to SF12BW125 284 284 369 +867.9 - SF7BW125 to SF12BW125 285 285 286 - === 2.2.8Change Update Interval ===371 +868.8 - FSK 287 287 288 -User can use below command to change the (% style="color:green" %)**uplink interval**. 289 289 290 - *(% style="color:blue" %)**AT+TDC=600** (%%)~/~/ Set Update Intervalto 600s374 +(% style="color:#037691" %)** Downlink:** 291 291 292 -((( 293 -(% style="color:red" %)**NOTE:** 294 -))) 376 +Uplink channels 1-9 (RX1) 295 295 296 -((( 297 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 298 -))) 378 +869.525 - SF9BW125 (RX2 downlink only) 299 299 300 300 301 301 302 -== 2. 3UplinkPayload==382 +=== 2.7.2 US902-928(US915) === 303 303 304 - In thismode,uplinkpayloadincludesin total14 bytes384 +Used in USA, Canada and South America. Default use CHE=2 305 305 386 +(% style="color:#037691" %)**Uplink:** 306 306 307 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 308 -|=(% style="width: 60px;" %)((( 309 -**Size(bytes)** 310 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 311 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 388 +903.9 - SF7BW125 to SF10BW125 312 312 313 -((( 314 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 315 -))) 390 +904.1 - SF7BW125 to SF10BW125 316 316 392 +904.3 - SF7BW125 to SF10BW125 317 317 318 - [[image:1657331036973-987.png]]394 +904.5 - SF7BW125 to SF10BW125 319 319 320 -((( 321 -The payload is ASCII string, representative same HEX: 322 -))) 396 +904.7 - SF7BW125 to SF10BW125 323 323 324 -((( 325 -0x72403155615900640c6c19029200 where: 326 -))) 398 +904.9 - SF7BW125 to SF10BW125 327 327 328 -* ((( 329 -Device ID: 0x724031556159 = 724031556159 330 -))) 331 -* ((( 332 -Version: 0x0064=100=1.0.0 333 -))) 400 +905.1 - SF7BW125 to SF10BW125 334 334 335 -* ((( 336 -BAT: 0x0c6c = 3180 mV = 3.180V 337 -))) 338 -* ((( 339 -Signal: 0x19 = 25 340 -))) 341 -* ((( 342 -Distance: 0x0292= 658 mm 343 -))) 344 -* ((( 345 -Interrupt: 0x00 = 0 346 -))) 402 +905.3 - SF7BW125 to SF10BW125 347 347 348 348 405 +(% style="color:#037691" %)**Downlink:** 349 349 350 - ==2.4PayloadExplanation andSensorInterface==407 +923.3 - SF7BW500 to SF12BW500 351 351 409 +923.9 - SF7BW500 to SF12BW500 352 352 353 - ===2.4.1 DeviceID===411 +924.5 - SF7BW500 to SF12BW500 354 354 355 -((( 356 -By default, the Device ID equal to the last 6 bytes of IMEI. 357 -))) 413 +925.1 - SF7BW500 to SF12BW500 358 358 359 -((( 360 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 361 -))) 415 +925.7 - SF7BW500 to SF12BW500 362 362 363 -((( 364 -**Example:** 365 -))) 417 +926.3 - SF7BW500 to SF12BW500 366 366 367 -((( 368 -AT+DEUI=A84041F15612 369 -))) 419 +926.9 - SF7BW500 to SF12BW500 370 370 371 -((( 372 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 373 -))) 421 +927.5 - SF7BW500 to SF12BW500 374 374 423 +923.3 - SF12BW500(RX2 downlink only) 375 375 376 376 377 -=== 2.4.2 Version Info === 378 378 379 -((( 380 -Specify the software version: 0x64=100, means firmware version 1.00. 381 -))) 427 +=== 2.7.3 CN470-510 (CN470) === 382 382 383 -((( 384 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 385 -))) 429 +Used in China, Default use CHE=1 386 386 431 +(% style="color:#037691" %)**Uplink:** 387 387 433 +486.3 - SF7BW125 to SF12BW125 388 388 389 - === 2.4.3BatteryInfo===435 +486.5 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -Check the battery voltage for LSE01. 393 -))) 437 +486.7 - SF7BW125 to SF12BW125 394 394 395 -((( 396 -Ex1: 0x0B45 = 2885mV 397 -))) 439 +486.9 - SF7BW125 to SF12BW125 398 398 399 -((( 400 -Ex2: 0x0B49 = 2889mV 401 -))) 441 +487.1 - SF7BW125 to SF12BW125 402 402 443 +487.3 - SF7BW125 to SF12BW125 403 403 445 +487.5 - SF7BW125 to SF12BW125 404 404 405 - === 2.4.4SignalStrength===447 +487.7 - SF7BW125 to SF12BW125 406 406 407 -((( 408 -NB-IoT Network signal Strength. 409 -))) 410 410 411 -((( 412 -**Ex1: 0x1d = 29** 413 -))) 450 +(% style="color:#037691" %)**Downlink:** 414 414 415 -((( 416 -(% style="color:blue" %)**0**(%%) -113dBm or less 417 -))) 452 +506.7 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -(% style="color:blue" %)**1**(%%) -111dBm 421 -))) 454 +506.9 - SF7BW125 to SF12BW125 422 422 423 -((( 424 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 425 -))) 456 +507.1 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -(% style="color:blue" %)**31** (%%) -51dBm or greater 429 -))) 458 +507.3 - SF7BW125 to SF12BW125 430 430 431 -((( 432 -(% style="color:blue" %)**99** (%%) Not known or not detectable 433 -))) 460 +507.5 - SF7BW125 to SF12BW125 434 434 462 +507.7 - SF7BW125 to SF12BW125 435 435 464 +507.9 - SF7BW125 to SF12BW125 436 436 437 - ===2.4.5SoilMoisture ===466 +508.1 - SF7BW125 to SF12BW125 438 438 439 - Getthedistance.Flatobject range 280mm - 7500mm.468 +505.3 - SF12BW125 (RX2 downlink only) 440 440 441 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is 442 442 443 -((( 444 -((( 445 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.** 446 -))) 447 -))) 448 448 449 -((( 450 - 451 -))) 472 +=== 2.7.4 AU915-928(AU915) === 452 452 453 -((( 454 - 455 -))) 474 +Default use CHE=2 456 456 457 - ===2.4.6 DigitalInterrupt===476 +(% style="color:#037691" %)**Uplink:** 458 458 459 -((( 460 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 461 -))) 478 +916.8 - SF7BW125 to SF12BW125 462 462 463 -((( 464 -The command is: 465 -))) 480 +917.0 - SF7BW125 to SF12BW125 466 466 467 -((( 468 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 469 -))) 482 +917.2 - SF7BW125 to SF12BW125 470 470 484 +917.4 - SF7BW125 to SF12BW125 471 471 472 -((( 473 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 474 -))) 486 +917.6 - SF7BW125 to SF12BW125 475 475 488 +917.8 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -Example: 479 -))) 490 +918.0 - SF7BW125 to SF12BW125 480 480 481 -((( 482 -0x(00): Normal uplink packet. 483 -))) 492 +918.2 - SF7BW125 to SF12BW125 484 484 485 -((( 486 -0x(01): Interrupt Uplink Packet. 487 -))) 488 488 495 +(% style="color:#037691" %)**Downlink:** 489 489 497 +923.3 - SF7BW500 to SF12BW500 490 490 491 - ===2.4.7+5VOutput===499 +923.9 - SF7BW500 to SF12BW500 492 492 493 -((( 494 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 495 -))) 501 +924.5 - SF7BW500 to SF12BW500 496 496 503 +925.1 - SF7BW500 to SF12BW500 497 497 498 -((( 499 -The 5V output time can be controlled by AT Command. 500 -))) 505 +925.7 - SF7BW500 to SF12BW500 501 501 502 -((( 503 -(% style="color:blue" %)**AT+5VT=1000** 504 -))) 507 +926.3 - SF7BW500 to SF12BW500 505 505 506 -((( 507 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 508 -))) 509 +926.9 - SF7BW500 to SF12BW500 509 509 511 +927.5 - SF7BW500 to SF12BW500 510 510 513 +923.3 - SF12BW500(RX2 downlink only) 511 511 512 -== 2.5 Downlink Payload == 513 513 514 -By default, NSE01 prints the downlink payload to console port. 515 515 516 - [[image:image-20220708133731-5.png]]517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 517 517 519 +(% style="color:#037691" %)**Default Uplink channel:** 518 518 519 -((( 520 -(% style="color:blue" %)**Examples:** 521 -))) 521 +923.2 - SF7BW125 to SF10BW125 522 522 523 -((( 524 - 525 -))) 523 +923.4 - SF7BW125 to SF10BW125 526 526 527 -* ((( 528 -(% style="color:blue" %)**Set TDC** 529 -))) 530 530 531 -((( 532 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 533 -))) 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 534 534 535 -((( 536 -Payload: 01 00 00 1E TDC=30S 537 -))) 528 +(OTAA mode, channel added by JoinAccept message) 538 538 539 -((( 540 -Payload: 01 00 00 3C TDC=60S 541 -))) 530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 542 542 543 -((( 544 - 545 -))) 532 +922.2 - SF7BW125 to SF10BW125 546 546 547 -* ((( 548 -(% style="color:blue" %)**Reset** 549 -))) 534 +922.4 - SF7BW125 to SF10BW125 550 550 551 -((( 552 -If payload = 0x04FF, it will reset the NSE01 553 -))) 536 +922.6 - SF7BW125 to SF10BW125 554 554 538 +922.8 - SF7BW125 to SF10BW125 555 555 556 - *(%style="color:blue"%)**INTMOD**540 +923.0 - SF7BW125 to SF10BW125 557 557 558 -((( 559 -Downlink Payload: 06000003, Set AT+INTMOD=3 560 -))) 542 +922.0 - SF7BW125 to SF10BW125 561 561 562 562 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 563 563 564 - ==2.6LEDIndicator==547 +923.6 - SF7BW125 to SF10BW125 565 565 566 -((( 567 -The NSE01 has an internal LED which is to show the status of different state. 549 +923.8 - SF7BW125 to SF10BW125 568 568 551 +924.0 - SF7BW125 to SF10BW125 569 569 570 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 571 -* Then the LED will be on for 1 second means device is boot normally. 572 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 573 -* For each uplink probe, LED will be on for 500ms. 574 -))) 553 +924.2 - SF7BW125 to SF10BW125 575 575 555 +924.4 - SF7BW125 to SF10BW125 576 576 557 +924.6 - SF7BW125 to SF10BW125 577 577 578 578 579 - ==2.7 InstallationinSoil==560 +(% style="color:#037691" %)** Downlink:** 580 580 581 - __**Measurementthesoilurface**__562 +Uplink channels 1-8 (RX1) 582 582 583 -((( 584 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 585 -))) 564 +923.2 - SF10BW125 (RX2) 586 586 587 -[[image:1657259653666-883.png]] 588 588 589 589 590 -((( 591 - 568 +=== 2.7.6 KR920-923 (KR920) === 592 592 593 -((( 594 -Dig a hole with diameter > 20CM. 595 -))) 570 +Default channel: 596 596 597 -((( 598 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 599 -))) 600 -))) 572 +922.1 - SF7BW125 to SF12BW125 601 601 602 - [[image:1654506665940-119.png]]574 +922.3 - SF7BW125 to SF12BW125 603 603 604 -((( 605 - 606 -))) 576 +922.5 - SF7BW125 to SF12BW125 607 607 608 608 609 -= =2.8 FirmwareChangeLog==579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 610 581 +922.1 - SF7BW125 to SF12BW125 611 611 612 - DownloadURL&FirmwareChange log583 +922.3 - SF7BW125 to SF12BW125 613 613 614 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]585 +922.5 - SF7BW125 to SF12BW125 615 615 587 +922.7 - SF7BW125 to SF12BW125 616 616 617 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]589 +922.9 - SF7BW125 to SF12BW125 618 618 591 +923.1 - SF7BW125 to SF12BW125 619 619 593 +923.3 - SF7BW125 to SF12BW125 620 620 621 -== 2.9 Battery Analysis == 622 622 623 - ===2.9.1 BatteryType==596 +(% style="color:#037691" %)**Downlink:** 624 624 598 +Uplink channels 1-7(RX1) 625 625 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 626 626 ((( 627 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 628 628 ))) 645 +))) 629 629 630 630 648 +[[image:1654506665940-119.png]] 649 + 631 631 ((( 632 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.651 +Dig a hole with diameter > 20CM. 633 633 ))) 634 634 654 +((( 655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 656 +))) 635 635 658 + 659 +== 2.10 Firmware Change Log == 660 + 636 636 ((( 637 - The battery relateddocumentsasbelow:662 +**Firmware download link:** 638 638 ))) 639 639 640 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]641 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]642 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]665 +((( 666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 667 +))) 643 643 644 644 ((( 645 - [[image:image-20220708140453-6.png]]670 + 646 646 ))) 647 647 673 +((( 674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 675 +))) 648 648 677 +((( 678 + 679 +))) 649 649 650 -=== 2.9.2 Power consumption Analyze === 681 +((( 682 +**V1.0.** 683 +))) 651 651 652 652 ((( 653 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.686 +Release 654 654 ))) 655 655 656 656 690 +== 2.11 Battery Analysis == 691 + 692 +=== 2.11.1 Battery Type === 693 + 657 657 ((( 658 - Instruction touse as below:695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 659 659 ))) 660 660 661 661 ((( 662 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]699 +The battery is designed to last for more than 5 years for the LSN50. 663 663 ))) 664 664 665 - 666 666 ((( 667 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 +((( 704 +The battery-related documents are as below: 668 668 ))) 706 +))) 669 669 670 670 * ((( 671 - ProductModel709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 672 672 ))) 673 673 * ((( 674 - UplinkInterval712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 675 675 ))) 676 676 * ((( 677 - WorkingMode715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 678 678 ))) 679 679 680 -((( 681 -And the Life expectation in difference case will be shown on the right. 682 -))) 718 + [[image:image-20220606171726-9.png]] 683 683 684 -[[image:image-20220708141352-7.jpeg]] 685 685 686 686 722 +=== 2.11.2 Battery Note === 687 687 688 -=== 2.9.3 Battery Note === 689 - 690 690 ((( 691 691 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 692 692 ))) ... ... @@ -693,176 +693,303 @@ 693 693 694 694 695 695 696 -=== 2. 9.4Replace the battery ===730 +=== 2.11.3 Replace the battery === 697 697 698 698 ((( 699 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 700 700 ))) 701 701 702 - 703 - 704 -= 3. Access NB-IoT Module = 705 - 706 706 ((( 707 - Userscan directly accesstheATcommand set of theNB-IoTmodule.737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 708 708 ))) 709 709 710 710 ((( 711 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 712 712 ))) 713 713 714 -[[image:1657261278785-153.png]] 715 715 716 716 746 += 3. Using the AT Commands = 717 717 718 -= 4.UsingtheAT Commands =748 +== 3.1 Access AT Commands == 719 719 720 -== 4.1 Access AT Commands == 721 721 722 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 723 723 753 +[[image:1654501986557-872.png||height="391" width="800"]] 724 724 725 -AT+<CMD>? : Help on <CMD> 726 726 727 - AT+<CMD>: Run<CMD>756 +Or if you have below board, use below connection: 728 728 729 -AT+<CMD>=<value> : Set the value 730 730 731 - AT+<CMD>=?:Get the value759 +[[image:1654502005655-729.png||height="503" width="801"]] 732 732 733 733 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 734 734 (% style="color:#037691" %)**General Commands**(%%) 735 735 736 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 737 737 738 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 739 739 740 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 741 741 742 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 743 743 744 -AT+CFG : Print all configurations 745 745 746 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 747 747 748 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 749 749 750 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 751 751 752 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 753 753 754 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 755 755 756 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 757 757 758 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 759 759 760 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 761 761 762 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 763 763 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 764 764 765 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 766 766 767 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 768 768 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 769 769 770 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 771 771 772 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 773 773 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 774 774 775 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 776 776 777 -AT+CLIENT : Get or Set MQTT client 778 778 779 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 780 780 781 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 782 782 783 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 784 784 785 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 786 786 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 787 787 788 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 789 789 790 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 791 791 792 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 793 793 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 794 794 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 795 795 796 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 797 797 798 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 799 799 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 800 800 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 801 801 ((( 802 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 803 803 ))) 804 804 805 805 ((( 806 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 807 807 ))) 808 808 809 809 ((( 810 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 811 811 ))) 812 812 894 +((( 895 + 896 +))) 813 813 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 814 814 815 -== 5.2 Can I calibrate NSE01 to different soil types? == 902 +((( 903 + 904 +))) 816 816 817 817 ((( 818 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 819 819 ))) 820 820 910 +[[image:image-20220606154726-3.png]] 821 821 822 -= 6. Trouble Shooting = 823 823 824 - ==6.1 Connection problemwhenuploadingfirmware==913 +When you use the TTN network, the US915 frequency bands use are: 825 825 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 826 826 827 827 ((( 828 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 829 829 ))) 830 830 831 -(% class=" wikigeneratedid" %)929 +(% class="box infomessage" %) 832 832 ((( 931 +**AT+CHE=2** 932 +))) 933 + 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 938 + 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 942 + 943 +((( 833 833 834 834 ))) 835 835 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 836 836 837 - == 6.2 AT Commandinput doesn't work ==951 +[[image:image-20220606154825-4.png]] 838 838 953 + 954 + 955 += 5. Trouble Shooting = 956 + 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 + 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 839 839 ((( 840 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 841 841 842 - 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 843 843 ))) 844 844 845 845 846 - =7. OrderInfo=983 +(% style="color:#4f81bd" %)**Solution: ** 847 847 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 848 848 849 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**987 +[[image:1654500929571-736.png||height="458" width="832"]] 850 850 851 851 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 852 852 (% class="wikigeneratedid" %) 853 853 ((( 854 854 855 855 ))) 856 856 857 -= 8.1017 += 7. Packing Info = 858 858 859 859 ((( 860 860 861 861 862 862 (% style="color:#037691" %)**Package Includes**: 1023 +))) 863 863 864 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1865 - *Externalantennax 11025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 866 866 ))) 867 867 868 868 ((( ... ... @@ -869,19 +869,30 @@ 869 869 870 870 871 871 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 872 872 873 -* Size: 195 x 125 x 55 mm874 - * Weight:420g1035 +* ((( 1036 +Device Size: cm 875 875 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 876 876 877 -((( 878 - 879 879 880 - 881 881 882 882 ))) 883 883 884 -= 9.1051 += 8. Support = 885 885 886 886 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 887 887 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content