Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 45 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,689 +1,741 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 77 - (% style="color:#037691"%)**Battery:**76 +== 1.5 Firmware Change log == 78 78 79 -* Li/SOCI2 un-chargeable battery 80 -* Capacity: 8500mAh 81 -* Self Discharge: <1% / Year @ 25°C 82 -* Max continuously current: 130mA 83 -* Max boost current: 2A, 1 second 84 84 85 - (% style="color:#037691"%)**PowerConsumption**79 +**LSE01 v1.0 :** Release 86 86 87 -* STOP Mode: 10uA @ 3.3v 88 -* Max transmit power: 350mA@3.3v 89 89 90 -== 1.4 Applications == 91 91 92 -* Smart Buildings & Home Automation 93 -* Logistics and Supply Chain Management 94 -* Smart Metering 95 -* Smart Agriculture 96 -* Smart Cities 97 -* Smart Factory 83 += 2. Configure LSE01 to connect to LoRaWAN network = 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 85 +== 2.1 How it works == 101 101 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 102 102 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 103 103 104 -== 1.5 Pin Definitions == 105 105 106 106 107 - [[image:1657328609906-564.png]]97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 109 109 110 110 111 - = 2. Use NDDS75 to communicatewith IoT Server =102 +[[image:1654503992078-669.png]] 112 112 113 -== 2.1 How it works == 114 114 115 -((( 116 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 117 -))) 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 118 118 119 119 120 -((( 121 -The diagram below shows the working flow in default firmware of NDDS75: 122 -))) 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 123 123 124 -((( 125 - 126 -))) 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 127 127 128 -[[image:16 57328659945-416.png]]112 +[[image:image-20220606163732-6.jpeg]] 129 129 130 -((( 131 - 132 -))) 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 133 133 116 +**Add APP EUI in the application** 134 134 135 -== 2.2 Configure the NDDS75 == 136 136 119 +[[image:1654504596150-405.png]] 137 137 138 -=== 2.2.1 Test Requirement === 139 139 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 140 140 ((( 141 - To useNDDS75inyour city, makesuremeetbelow requirements:153 +Uplink payload includes in total 11 bytes. 142 142 ))) 143 143 144 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.145 - * The local NB-IoT network used the band that NSE01 supports.146 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 147 147 148 -((( 149 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 150 150 ))) 151 151 152 152 153 -[[image:1657328756309-230.png]] 154 154 174 +=== 2.3.2 MOD~=1(Original value) === 155 155 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 156 156 157 -=== 2.2.2 Insert SIM card === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 158 158 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 159 159 ((( 160 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 161 161 ))) 162 162 163 163 ((( 164 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 165 165 ))) 166 166 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 167 167 168 -[[image:1657328884227-504.png]] 169 169 170 170 212 +=== 2.3.4 Soil Moisture === 171 171 172 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 173 173 174 174 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 175 175 ((( 176 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.223 + 177 177 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 178 178 ))) 179 179 180 -[[image:image-20220709092052-2.png]] 181 181 182 -**Connection:** 183 183 184 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 185 185 186 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 187 187 188 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD236 +**Example**: 189 189 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 190 190 191 -I nthe PC, use below serialtool settings:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 192 192 193 -* Baud: (% style="color:green" %)**9600** 194 -* Data bits:** (% style="color:green" %)8(%%)** 195 -* Stop bits: (% style="color:green" %)**1** 196 -* Parity: (% style="color:green" %)**None** 197 -* Flow Control: (% style="color:green" %)**None** 198 198 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 199 199 ((( 200 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNDDS75.NDDS75 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 201 201 ))) 202 202 203 -[[image:1657329814315-101.png]] 250 +((( 251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 +))) 204 204 205 205 ((( 206 - (% style="color:red"%)Note: thevalid ATCommandscan befoundat: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]255 +Generally, the EC value of irrigation water is less than 800uS / cm. 207 207 ))) 208 208 258 +((( 259 + 260 +))) 209 209 262 +((( 263 + 264 +))) 210 210 211 -=== 2. 2.4Use CoAP protocol to uplink data===266 +=== 2.3.7 MOD === 212 212 213 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]268 +Firmware version at least v2.1 supports changing mode. 214 214 270 +For example, bytes[10]=90 215 215 216 - **Use below commands:**272 +mod=(bytes[10]>>7)&0x01=1. 217 217 218 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 219 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 220 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 221 221 222 - For parameter description,please refer toAT commandset275 +**Downlink Command:** 223 223 224 - [[image:1657330452568-615.png]]277 +If payload = 0x0A00, workmode=0 225 225 279 +If** **payload =** **0x0A01, workmode=1 226 226 227 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 228 228 229 -[[image:1657330472797-498.png]] 230 230 283 +=== 2.3.8 Decode payload in The Things Network === 231 231 285 +While using TTN network, you can add the payload format to decode the payload. 232 232 233 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 234 234 288 +[[image:1654505570700-128.png]] 235 235 236 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 238 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 290 +The payload decoder function for TTN is here: 239 239 240 -[[ima ge:1657330501006-241.png]]292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 241 241 242 242 243 -[[image:1657330533775-472.png]] 244 244 296 +== 2.4 Uplink Interval == 245 245 298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 246 246 247 -=== 2.2.6 Use MQTT protocol to uplink data === 248 248 249 249 250 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 256 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 302 +== 2.5 Downlink Payload == 257 257 258 - [[image:1657249978444-674.png]]304 +By default, LSE50 prints the downlink payload to console port. 259 259 306 +[[image:image-20220606165544-8.png]] 260 260 261 -[[image:1657330723006-866.png]] 262 262 309 +**Examples:** 263 263 264 -((( 265 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 -))) 267 267 312 +* **Set TDC** 268 268 314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 269 269 270 - === 2.2.7 Use TCPprotocoltouplinkdata===316 +Payload: 01 00 00 1E TDC=30S 271 271 318 +Payload: 01 00 00 3C TDC=60S 272 272 273 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 274 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 275 275 276 - [[image:image-20220709093918-1.png]]321 +* **Reset** 277 277 323 +If payload = 0x04FF, it will reset the LSE01 278 278 279 -[[image:image-20220709093918-2.png]] 280 280 326 +* **CFM** 281 281 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 282 282 283 -=== 2.2.8 Change Update Interval === 284 284 285 -User can use below command to change the (% style="color:green" %)**uplink interval**. 286 286 287 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/SetUpdate Intervalto 600s332 +== 2.6 Show Data in DataCake IoT Server == 288 288 289 -((( 290 -(% style="color:red" %)**NOTE:** 291 -))) 334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 292 292 293 -((( 294 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 295 -))) 296 296 337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 297 297 339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 298 298 299 -== 2.3 Uplink Payload == 300 300 301 - In thismode, uplink payload includes in total14bytes342 +[[image:1654505857935-743.png]] 302 302 303 303 304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 -|=(% style="width: 60px;" %)((( 306 -**Size(bytes)** 307 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 308 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 345 +[[image:1654505874829-548.png]] 309 309 310 -((( 311 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 312 -))) 347 +Step 3: Create an account or log in Datacake. 313 313 349 +Step 4: Search the LSE01 and add DevEUI. 314 314 315 -[[image:1657331036973-987.png]] 316 316 317 -((( 318 -The payload is ASCII string, representative same HEX: 319 -))) 352 +[[image:1654505905236-553.png]] 320 320 321 -((( 322 -0x72403155615900640c6c19029200 where: 323 -))) 324 324 325 -* ((( 326 -Device ID: 0x724031556159 = 724031556159 327 -))) 328 -* ((( 329 -Version: 0x0064=100=1.0.0 330 -))) 355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 331 331 332 -* ((( 333 -BAT: 0x0c6c = 3180 mV = 3.180V 334 -))) 335 -* ((( 336 -Signal: 0x19 = 25 337 -))) 338 -* ((( 339 -Distance: 0x0292= 658 mm 340 -))) 341 -* ((( 342 -Interrupt: 0x00 = 0 343 -))) 357 +[[image:1654505925508-181.png]] 344 344 345 345 346 346 347 -== 2. 4PayloadExplanation and SensorInterface==361 +== 2.7 Frequency Plans == 348 348 363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 349 349 350 -=== 2.4.1 Device ID === 351 351 352 -((( 353 -By default, the Device ID equal to the last 6 bytes of IMEI. 354 -))) 366 +=== 2.7.1 EU863-870 (EU868) === 355 355 356 -((( 357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 358 -))) 368 +(% style="color:#037691" %)** Uplink:** 359 359 360 -((( 361 -**Example:** 362 -))) 370 +868.1 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -AT+DEUI=A84041F15612 366 -))) 372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 367 367 368 -((( 369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID. 370 -))) 374 +868.5 - SF7BW125 to SF12BW125 371 371 376 +867.1 - SF7BW125 to SF12BW125 372 372 378 +867.3 - SF7BW125 to SF12BW125 373 373 374 - ===2.4.2VersionInfo ===380 +867.5 - SF7BW125 to SF12BW125 375 375 376 -((( 377 -Specify the software version: 0x64=100, means firmware version 1.00. 378 -))) 382 +867.7 - SF7BW125 to SF12BW125 379 379 380 -((( 381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0. 382 -))) 384 +867.9 - SF7BW125 to SF12BW125 383 383 386 +868.8 - FSK 384 384 385 385 386 - ===2.4.3 BatteryInfo===389 +(% style="color:#037691" %)** Downlink:** 387 387 388 -((( 389 -Check the battery voltage for LSE01. 390 -))) 391 +Uplink channels 1-9 (RX1) 391 391 392 -((( 393 -Ex1: 0x0B45 = 2885mV 394 -))) 393 +869.525 - SF9BW125 (RX2 downlink only) 395 395 396 -((( 397 -Ex2: 0x0B49 = 2889mV 398 -))) 399 399 400 400 397 +=== 2.7.2 US902-928(US915) === 401 401 402 - ===2.4.4SignalStrength===399 +Used in USA, Canada and South America. Default use CHE=2 403 403 404 -((( 405 -NB-IoT Network signal Strength. 406 -))) 401 +(% style="color:#037691" %)**Uplink:** 407 407 408 -((( 409 -**Ex1: 0x1d = 29** 410 -))) 403 +903.9 - SF7BW125 to SF10BW125 411 411 412 -((( 413 -(% style="color:blue" %)**0**(%%) -113dBm or less 414 -))) 405 +904.1 - SF7BW125 to SF10BW125 415 415 416 -((( 417 -(% style="color:blue" %)**1**(%%) -111dBm 418 -))) 407 +904.3 - SF7BW125 to SF10BW125 419 419 420 -((( 421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 -))) 409 +904.5 - SF7BW125 to SF10BW125 423 423 424 -((( 425 -(% style="color:blue" %)**31** (%%) -51dBm or greater 426 -))) 411 +904.7 - SF7BW125 to SF10BW125 427 427 428 -((( 429 -(% style="color:blue" %)**99** (%%) Not known or not detectable 430 -))) 413 +904.9 - SF7BW125 to SF10BW125 431 431 415 +905.1 - SF7BW125 to SF10BW125 432 432 417 +905.3 - SF7BW125 to SF10BW125 433 433 434 -=== 2.4.5 Soil Moisture === 435 435 436 - Getthe distance. Flat objectrange 280mm -7500mm.420 +(% style="color:#037691" %)**Downlink:** 437 437 438 - Forexample,if the data you get from the register is **__0x0Bx05__**,the distance between the sensorand the measured object is422 +923.3 - SF7BW500 to SF12BW500 439 439 440 -((( 441 -((( 442 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.** 443 -))) 444 -))) 424 +923.9 - SF7BW500 to SF12BW500 445 445 446 -((( 447 - 448 -))) 426 +924.5 - SF7BW500 to SF12BW500 449 449 450 -((( 451 - 452 -))) 428 +925.1 - SF7BW500 to SF12BW500 453 453 454 - ===2.4.6DigitalInterrupt===430 +925.7 - SF7BW500 to SF12BW500 455 455 456 -((( 457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server. 458 -))) 432 +926.3 - SF7BW500 to SF12BW500 459 459 460 -((( 461 -The command is: 462 -))) 434 +926.9 - SF7BW500 to SF12BW500 463 463 464 -((( 465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 466 -))) 436 +927.5 - SF7BW500 to SF12BW500 467 467 438 +923.3 - SF12BW500(RX2 downlink only) 468 468 469 -((( 470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 471 -))) 472 472 473 473 474 -((( 475 -Example: 476 -))) 442 +=== 2.7.3 CN470-510 (CN470) === 477 477 478 -((( 479 -0x(00): Normal uplink packet. 480 -))) 444 +Used in China, Default use CHE=1 481 481 482 -((( 483 -0x(01): Interrupt Uplink Packet. 484 -))) 446 +(% style="color:#037691" %)**Uplink:** 485 485 448 +486.3 - SF7BW125 to SF12BW125 486 486 450 +486.5 - SF7BW125 to SF12BW125 487 487 488 - === 2.4.7+5VOutput===452 +486.7 - SF7BW125 to SF12BW125 489 489 490 -((( 491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 492 -))) 454 +486.9 - SF7BW125 to SF12BW125 493 493 456 +487.1 - SF7BW125 to SF12BW125 494 494 495 -((( 496 -The 5V output time can be controlled by AT Command. 497 -))) 458 +487.3 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -(% style="color:blue" %)**AT+5VT=1000** 501 -))) 460 +487.5 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 505 -))) 462 +487.7 - SF7BW125 to SF12BW125 506 506 507 507 465 +(% style="color:#037691" %)**Downlink:** 508 508 509 - ==2.5DownlinkPayload ==467 +506.7 - SF7BW125 to SF12BW125 510 510 511 - Bydefault,NSE01prints the downlinkpayload to console port.469 +506.9 - SF7BW125 to SF12BW125 512 512 513 - [[image:image-20220708133731-5.png]]471 +507.1 - SF7BW125 to SF12BW125 514 514 473 +507.3 - SF7BW125 to SF12BW125 515 515 516 -((( 517 -(% style="color:blue" %)**Examples:** 518 -))) 475 +507.5 - SF7BW125 to SF12BW125 519 519 520 -((( 521 - 522 -))) 477 +507.7 - SF7BW125 to SF12BW125 523 523 524 -* ((( 525 -(% style="color:blue" %)**Set TDC** 526 -))) 479 +507.9 - SF7BW125 to SF12BW125 527 527 528 -((( 529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 530 -))) 481 +508.1 - SF7BW125 to SF12BW125 531 531 532 -((( 533 -Payload: 01 00 00 1E TDC=30S 534 -))) 483 +505.3 - SF12BW125 (RX2 downlink only) 535 535 536 -((( 537 -Payload: 01 00 00 3C TDC=60S 538 -))) 539 539 540 -((( 541 - 542 -))) 543 543 544 -* ((( 545 -(% style="color:blue" %)**Reset** 546 -))) 487 +=== 2.7.4 AU915-928(AU915) === 547 547 548 -((( 549 -If payload = 0x04FF, it will reset the NSE01 550 -))) 489 +Default use CHE=2 551 551 491 +(% style="color:#037691" %)**Uplink:** 552 552 553 - *(%style="color:blue"%)**INTMOD**493 +916.8 - SF7BW125 to SF12BW125 554 554 555 -((( 556 -Downlink Payload: 06000003, Set AT+INTMOD=3 557 -))) 495 +917.0 - SF7BW125 to SF12BW125 558 558 497 +917.2 - SF7BW125 to SF12BW125 559 559 499 +917.4 - SF7BW125 to SF12BW125 560 560 561 - == 2.6LEDIndicator==501 +917.6 - SF7BW125 to SF12BW125 562 562 563 -((( 564 -The NSE01 has an internal LED which is to show the status of different state. 503 +917.8 - SF7BW125 to SF12BW125 565 565 505 +918.0 - SF7BW125 to SF12BW125 566 566 567 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 568 -* Then the LED will be on for 1 second means device is boot normally. 569 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 570 -* For each uplink probe, LED will be on for 500ms. 571 -))) 507 +918.2 - SF7BW125 to SF12BW125 572 572 573 573 510 +(% style="color:#037691" %)**Downlink:** 574 574 512 +923.3 - SF7BW500 to SF12BW500 575 575 576 - ==2.7InstallationinSoil ==514 +923.9 - SF7BW500 to SF12BW500 577 577 578 - __**Measurementthesoilsurface**__516 +924.5 - SF7BW500 to SF12BW500 579 579 580 -((( 581 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 582 -))) 518 +925.1 - SF7BW500 to SF12BW500 583 583 584 - [[image:1657259653666-883.png]]520 +925.7 - SF7BW500 to SF12BW500 585 585 522 +926.3 - SF7BW500 to SF12BW500 586 586 587 -((( 588 - 524 +926.9 - SF7BW500 to SF12BW500 589 589 590 -((( 591 -Dig a hole with diameter > 20CM. 592 -))) 526 +927.5 - SF7BW500 to SF12BW500 593 593 594 -((( 595 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 596 -))) 597 -))) 528 +923.3 - SF12BW500(RX2 downlink only) 598 598 599 -[[image:1654506665940-119.png]] 600 600 601 -((( 602 - 603 -))) 604 604 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 605 605 606 -= =2.8FirmwareChangeLog ==534 +(% style="color:#037691" %)**Default Uplink channel:** 607 607 536 +923.2 - SF7BW125 to SF10BW125 608 608 609 - DownloadURL&FirmwareChange log538 +923.4 - SF7BW125 to SF10BW125 610 610 611 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 612 612 541 +(% style="color:#037691" %)**Additional Uplink Channel**: 613 613 614 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]543 +(OTAA mode, channel added by JoinAccept message) 615 615 545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 616 616 547 +922.2 - SF7BW125 to SF10BW125 617 617 618 - ==2.9BatteryAnalysis ==549 +922.4 - SF7BW125 to SF10BW125 619 619 620 - ===2.9.1BatteryType ===551 +922.6 - SF7BW125 to SF10BW125 621 621 553 +922.8 - SF7BW125 to SF10BW125 622 622 555 +923.0 - SF7BW125 to SF10BW125 556 + 557 +922.0 - SF7BW125 to SF10BW125 558 + 559 + 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 561 + 562 +923.6 - SF7BW125 to SF10BW125 563 + 564 +923.8 - SF7BW125 to SF10BW125 565 + 566 +924.0 - SF7BW125 to SF10BW125 567 + 568 +924.2 - SF7BW125 to SF10BW125 569 + 570 +924.4 - SF7BW125 to SF10BW125 571 + 572 +924.6 - SF7BW125 to SF10BW125 573 + 574 + 575 +(% style="color:#037691" %)** Downlink:** 576 + 577 +Uplink channels 1-8 (RX1) 578 + 579 +923.2 - SF10BW125 (RX2) 580 + 581 + 582 + 583 +=== 2.7.6 KR920-923 (KR920) === 584 + 585 +Default channel: 586 + 587 +922.1 - SF7BW125 to SF12BW125 588 + 589 +922.3 - SF7BW125 to SF12BW125 590 + 591 +922.5 - SF7BW125 to SF12BW125 592 + 593 + 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 + 596 +922.1 - SF7BW125 to SF12BW125 597 + 598 +922.3 - SF7BW125 to SF12BW125 599 + 600 +922.5 - SF7BW125 to SF12BW125 601 + 602 +922.7 - SF7BW125 to SF12BW125 603 + 604 +922.9 - SF7BW125 to SF12BW125 605 + 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 623 623 ((( 624 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 625 625 ))) 660 +))) 626 626 627 627 663 +[[image:1654506665940-119.png]] 664 + 628 628 ((( 629 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.666 +Dig a hole with diameter > 20CM. 630 630 ))) 631 631 669 +((( 670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 671 +))) 632 632 673 + 674 +== 2.10 Firmware Change Log == 675 + 633 633 ((( 634 - The battery relateddocumentsasbelow:677 +**Firmware download link:** 635 635 ))) 636 636 637 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]638 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]639 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]680 +((( 681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 682 +))) 640 640 641 641 ((( 642 - [[image:image-20220708140453-6.png]]685 + 643 643 ))) 644 644 688 +((( 689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 690 +))) 645 645 692 +((( 693 + 694 +))) 646 646 647 -=== 2.9.2 Power consumption Analyze === 696 +((( 697 +**V1.0.** 698 +))) 648 648 649 649 ((( 650 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.701 +Release 651 651 ))) 652 652 653 653 705 +== 2.11 Battery Analysis == 706 + 707 +=== 2.11.1 Battery Type === 708 + 654 654 ((( 655 - Instruction touse as below:710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 656 656 ))) 657 657 658 658 ((( 659 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]714 +The battery is designed to last for more than 5 years for the LSN50. 660 660 ))) 661 661 662 - 663 663 ((( 664 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 718 +((( 719 +The battery-related documents are as below: 665 665 ))) 721 +))) 666 666 667 667 * ((( 668 - ProductModel724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 669 669 ))) 670 670 * ((( 671 - UplinkInterval727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 672 672 ))) 673 673 * ((( 674 - WorkingMode730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 675 675 ))) 676 676 677 -((( 678 -And the Life expectation in difference case will be shown on the right. 679 -))) 733 + [[image:image-20220606171726-9.png]] 680 680 681 -[[image:image-20220708141352-7.jpeg]] 682 682 683 683 737 +=== 2.11.2 Battery Note === 684 684 685 -=== 2.9.3 Battery Note === 686 - 687 687 ((( 688 688 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 689 689 ))) ... ... @@ -690,176 +690,303 @@ 690 690 691 691 692 692 693 -=== 2. 9.4Replace the battery ===745 +=== 2.11.3 Replace the battery === 694 694 695 695 ((( 696 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 697 697 ))) 698 698 699 - 700 - 701 -= 3. Access NB-IoT Module = 702 - 703 703 ((( 704 - Userscan directly accesstheATcommand set of theNB-IoTmodule.752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 705 705 ))) 706 706 707 707 ((( 708 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 709 709 ))) 710 710 711 -[[image:1657261278785-153.png]] 712 712 713 713 761 += 3. Using the AT Commands = 714 714 715 -= 4.UsingtheAT Commands =763 +== 3.1 Access AT Commands == 716 716 717 -== 4.1 Access AT Commands == 718 718 719 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 720 720 768 +[[image:1654501986557-872.png||height="391" width="800"]] 721 721 722 -AT+<CMD>? : Help on <CMD> 723 723 724 - AT+<CMD>: Run<CMD>771 +Or if you have below board, use below connection: 725 725 726 -AT+<CMD>=<value> : Set the value 727 727 728 - AT+<CMD>=?:Get the value774 +[[image:1654502005655-729.png||height="503" width="801"]] 729 729 730 730 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 731 731 (% style="color:#037691" %)**General Commands**(%%) 732 732 733 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 734 734 735 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 736 736 737 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 738 738 739 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 740 740 741 -AT+CFG : Print all configurations 742 742 743 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 744 744 745 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 746 746 747 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 748 748 749 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 750 750 751 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 752 752 753 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 754 754 755 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 756 756 757 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 758 758 759 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 760 760 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 761 761 762 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 763 763 764 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 765 765 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 766 766 767 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 768 768 769 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 770 770 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 771 771 772 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 773 773 774 -AT+CLIENT : Get or Set MQTT client 775 775 776 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 777 777 778 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 779 779 780 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 781 781 782 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 783 783 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 784 784 785 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 786 786 787 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 788 788 789 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 790 790 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 791 791 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 792 792 793 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 794 794 795 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 796 796 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 797 797 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 798 798 ((( 799 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 800 800 ))) 801 801 802 802 ((( 803 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 804 804 ))) 805 805 806 806 ((( 807 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 808 808 ))) 809 809 909 +((( 910 + 911 +))) 810 810 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 811 811 812 -== 5.2 Can I calibrate NSE01 to different soil types? == 917 +((( 918 + 919 +))) 813 813 814 814 ((( 815 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 816 816 ))) 817 817 925 +[[image:image-20220606154726-3.png]] 818 818 819 -= 6. Trouble Shooting = 820 820 821 - ==6.1 Connection problemwhenuploadingfirmware==928 +When you use the TTN network, the US915 frequency bands use are: 822 822 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 823 823 824 824 ((( 825 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 826 826 ))) 827 827 828 -(% class=" wikigeneratedid" %)944 +(% class="box infomessage" %) 829 829 ((( 946 +**AT+CHE=2** 947 +))) 948 + 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 953 + 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 957 + 958 +((( 830 830 831 831 ))) 832 832 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 833 833 834 - == 6.2 AT Commandinput doesn't work ==966 +[[image:image-20220606154825-4.png]] 835 835 968 + 969 + 970 += 5. Trouble Shooting = 971 + 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 973 + 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 836 836 ((( 837 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 838 838 839 - 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 840 840 ))) 841 841 842 842 843 - =7. OrderInfo=998 +(% style="color:#4f81bd" %)**Solution: ** 844 844 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 845 845 846 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1002 +[[image:1654500929571-736.png||height="458" width="832"]] 847 847 848 848 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 849 849 (% class="wikigeneratedid" %) 850 850 ((( 851 851 852 852 ))) 853 853 854 -= 8.1032 += 7. Packing Info = 855 855 856 856 ((( 857 857 858 858 859 859 (% style="color:#037691" %)**Package Includes**: 1038 +))) 860 860 861 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1862 - *Externalantennax 11040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 863 863 ))) 864 864 865 865 ((( ... ... @@ -866,19 +866,30 @@ 866 866 867 867 868 868 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 869 869 870 -* Size: 195 x 125 x 55 mm871 - * Weight:420g1050 +* ((( 1051 +Device Size: cm 872 872 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 873 873 874 -((( 875 - 876 876 877 - 878 878 879 879 ))) 880 880 881 -= 9.1066 += 8. Support = 882 882 883 883 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 884 884 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content