Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 91.1
edited by Xiaoling
on 2022/07/09 09:57
Change comment: There is no comment for this version
To version 55.1
edited by Xiaoling
on 2022/07/08 11:16
Change comment: Uploaded new attachment "1657250217799-140.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,23 +35,23 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
... ... @@ -72,111 +72,90 @@
72 72  * - B20 @H-FDD: 800MHz
73 73  * - B28 @H-FDD: 700MHz
74 74  
75 -(% style="color:#037691" %)**Battery:**
79 +(% style="color:#037691" %)**Probe Specification:**
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
81 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
83 +[[image:image-20220708101224-1.png]]
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: 350mA@3.3v
87 87  
88 88  
89 89  == ​1.4  Applications ==
90 90  
91 -* Smart Buildings & Home Automation
92 -* Logistics and Supply Chain Management
93 -* Smart Metering
94 94  * Smart Agriculture
95 -* Smart Cities
96 -* Smart Factory
97 97  
98 98  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 99  ​
100 100  
101 -
102 -
103 103  == 1.5  Pin Definitions ==
104 104  
105 105  
106 -[[image:1657328609906-564.png]]
97 +[[image:1657246476176-652.png]]
107 107  
108 108  
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
101 += 2.  Use NSE01 to communicate with IoT Server =
111 111  
112 112  == 2.1  How it works ==
113 113  
105 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
107 +The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
116 116  )))
117 117  
118 118  
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
112 +The diagram below shows the working flow in default firmware of NSE01:
121 121  )))
122 122  
123 -(((
124 -
125 -)))
115 +[[image:image-20220708101605-2.png]]
126 126  
127 -[[image:1657328659945-416.png]]
128 -
129 129  (((
130 130  
131 131  )))
132 132  
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
123 +== 2.2 ​ Configure the NSE01 ==
136 136  
125 +
137 137  === 2.2.1 Test Requirement ===
138 138  
139 -(((
140 -To use NDDS75 in your city, make sure meet below requirements:
141 -)))
142 142  
129 +To use NSE01 in your city, make sure meet below requirements:
130 +
143 143  * Your local operator has already distributed a NB-IoT Network there.
144 144  * The local NB-IoT network used the band that NSE01 supports.
145 145  * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 149  )))
150 150  
151 151  
152 -[[image:1657328756309-230.png]]
140 +[[image:1657249419225-449.png]]
153 153  
154 154  
155 155  
156 156  === 2.2.2 Insert SIM card ===
157 157  
158 -(((
159 159  Insert the NB-IoT Card get from your provider.
160 -)))
161 161  
162 -(((
163 163  User need to take out the NB-IoT module and insert the SIM card like below:
164 -)))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
151 +[[image:1657249468462-536.png]]
168 168  
169 169  
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
155 +=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
172 172  
173 173  (((
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
159 +User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
176 176  )))
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
180 180  
181 181  **Connection:**
182 182  
... ... @@ -189,27 +189,25 @@
189 189  
190 190  In the PC, use below serial tool settings:
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
175 +* Baud: (% style="color:green" %)**9600**
193 193  * Data bits:** (% style="color:green" %)8(%%)**
194 194  * Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
178 +* Parity: (% style="color:green" %)**None**
196 196  * Flow Control: (% style="color:green" %)**None**
197 197  
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
182 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
185 +[[image:image-20220708110657-3.png]]
203 203  
204 -(((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
206 -)))
187 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
207 207  
208 208  
209 209  
210 210  === 2.2.4 Use CoAP protocol to uplink data ===
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
193 +(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/index.php?title=Set_up_CoAP_Server>>url:http://wiki.dragino.com/index.php?title=Set_up_CoAP_Server]]
213 213  
214 214  
215 215  **Use below commands:**
... ... @@ -218,48 +218,60 @@
218 218  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 219  * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
220 220  
202 +
203 +
221 221  For parameter description, please refer to AT command set
222 222  
223 -[[image:1657330452568-615.png]]
206 +[[image:1657249793983-486.png]]
224 224  
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
209 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657330472797-498.png]]
211 +[[image:1657249831934-534.png]]
229 229  
230 230  
231 231  
232 232  === 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
233 233  
217 +This feature is supported since firmware version v1.0.1
234 234  
219 +
235 235  * (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 236  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 237  * (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
238 238  
239 -[[image:1657330501006-241.png]]
240 240  
241 241  
242 -[[image:1657330533775-472.png]]
226 +[[image:1657249864775-321.png]]
243 243  
244 244  
245 245  
230 +[[image:1657249930215-289.png]]
231 +
232 +
233 +
246 246  === 2.2.6 Use MQTT protocol to uplink data ===
247 247  
236 +This feature is supported since firmware version v110
248 248  
238 +
249 249  * (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 250  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 251  * (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
242 +* (% style="color:blue" %)**AT+UNAME=UNAME  **(%%)~/~/Set the username of MQTT
243 +* (% style="color:blue" %)**AT+PWD=PWD  **(%%)~/~/Set the password of MQTT
244 +* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB  **(%%)~/~/Set the sending topic of MQTT
245 +* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
256 256  
247 +
248 +
257 257  [[image:1657249978444-674.png]]
258 258  
259 259  
260 -[[image:1657330723006-866.png]]
252 +[[image:1657249990869-686.png]]
261 261  
262 262  
255 +
263 263  (((
264 264  MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 265  )))
... ... @@ -269,14 +269,17 @@
269 269  === 2.2.7 Use TCP protocol to uplink data ===
270 270  
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 +This feature is supported since firmware version v110
266 +
267 +
268 +* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 273  * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
274 274  
275 -[[image:image-20220709093918-1.png]]
271 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image023.jpg]]
276 276  
277 277  
278 -[[image:image-20220709093918-2.png]]
279 279  
275 +[[image:file:///C:/Users/93456/AppData/Local/Temp/msohtmlclip1/01/clip_image025.jpg]]
280 280  
281 281  
282 282  === 2.2.8 Change Update Interval ===
... ... @@ -283,165 +283,135 @@
283 283  
284 284  User can use below command to change the (% style="color:green" %)**uplink interval**.
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
282 +**~ (% style="color:blue" %)AT+TDC=600      (%%)**(% style="color:blue" %) (%%)~/~/ Set Update Interval to 600s
287 287  
288 -(((
284 +
289 289  (% style="color:red" %)**NOTE:**
290 -)))
291 291  
292 -(((
293 293  (% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 -)))
295 295  
296 296  
297 297  
298 -== 2.3  Uplink Payload ==
299 299  
300 -In this mode, uplink payload includes in total 14 bytes
301 301  
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 -|=(% style="width: 60px;" %)(((
305 -**Size(bytes)**
306 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
308 308  
309 -(((
310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 -)))
295 +== 2.3 Uplink Payload ==
312 312  
313 313  
314 -[[image:1657331036973-987.png]]
298 +=== 2.3.1 MOD~=0(Default Mode) ===
315 315  
316 -(((
317 -The payload is ASCII string, representative same HEX:
318 -)))
300 +LSE01 will uplink payload via LoRaWAN with below payload format: 
319 319  
320 320  (((
321 -0x72403155615900640c6c19029200 where:
303 +Uplink payload includes in total 11 bytes.
322 322  )))
323 323  
324 -* (((
325 -Device ID: 0x724031556159 = 724031556159
326 -)))
327 -* (((
328 -Version: 0x0064=100=1.0.0
329 -)))
306 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
307 +|(((
308 +**Size**
330 330  
331 -* (((
332 -BAT: 0x0c6c = 3180 mV = 3.180V
333 -)))
334 -* (((
335 -Signal: 0x19 = 25
336 -)))
337 -* (((
338 -Distance: 0x0292= 658 mm
339 -)))
340 -* (((
341 -Interrupt: 0x00 = 0
342 -)))
310 +**(bytes)**
311 +)))|**2**|**2**|**2**|**2**|**2**|**1**
312 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
313 +Temperature
343 343  
315 +(Reserve, Ignore now)
316 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
317 +MOD & Digital Interrupt
344 344  
319 +(Optional)
320 +)))
345 345  
322 +=== 2.3.2 MOD~=1(Original value) ===
346 346  
347 -== 2.4  Payload Explanation and Sensor Interface ==
324 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
348 348  
326 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
327 +|(((
328 +**Size**
349 349  
350 -=== 2.4.1  Device ID ===
330 +**(bytes)**
331 +)))|**2**|**2**|**2**|**2**|**2**|**1**
332 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
333 +Temperature
351 351  
352 -(((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
354 -)))
335 +(Reserve, Ignore now)
336 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
337 +MOD & Digital Interrupt
355 355  
356 -(((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
339 +(Optional)
358 358  )))
359 359  
342 +=== 2.3.3 Battery Info ===
343 +
360 360  (((
361 -**Example:**
345 +Check the battery voltage for LSE01.
362 362  )))
363 363  
364 364  (((
365 -AT+DEUI=A84041F15612
349 +Ex1: 0x0B45 = 2885mV
366 366  )))
367 367  
368 368  (((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
353 +Ex2: 0x0B49 = 2889mV
370 370  )))
371 371  
372 372  
373 373  
374 -=== 2.4. Version Info ===
358 +=== 2.3.4 Soil Moisture ===
375 375  
376 376  (((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
361 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
378 378  )))
379 379  
380 380  (((
381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
365 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
382 382  )))
383 383  
384 -
385 -
386 -=== 2.4.3  Battery Info ===
387 -
388 388  (((
389 -Check the battery voltage for LSE01.
369 +
390 390  )))
391 391  
392 392  (((
393 -Ex1: 0x0B45 = 2885mV
373 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
394 394  )))
395 395  
396 -(((
397 -Ex2: 0x0B49 = 2889mV
398 -)))
399 399  
400 400  
378 +=== 2.3.5 Soil Temperature ===
401 401  
402 -=== 2.4.4  Signal Strength ===
403 -
404 404  (((
405 -NB-IoT Network signal Strength.
381 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
406 406  )))
407 407  
408 408  (((
409 -**Ex1: 0x1d = 29**
385 +**Example**:
410 410  )))
411 411  
412 412  (((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
389 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
414 414  )))
415 415  
416 416  (((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
393 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
418 418  )))
419 419  
420 -(((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 -)))
423 423  
397 +
398 +=== 2.3.6 Soil Conductivity (EC) ===
399 +
424 424  (((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
401 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
426 426  )))
427 427  
428 428  (((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
405 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
430 430  )))
431 431  
432 -
433 -
434 -=== 2.4.5  Soil Moisture ===
435 -
436 -Get the distance. Flat object range 280mm - 7500mm.
437 -
438 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
439 -
440 440  (((
441 -(((
442 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
409 +Generally, the EC value of irrigation water is less than 800uS / cm.
443 443  )))
444 -)))
445 445  
446 446  (((
447 447  
... ... @@ -451,68 +451,52 @@
451 451  
452 452  )))
453 453  
454 -=== 2.4. Digital Interrupt ===
420 +=== 2.3.7 MOD ===
455 455  
456 -(((
457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 -)))
422 +Firmware version at least v2.1 supports changing mode.
459 459  
460 -(((
461 -The command is:
462 -)))
424 +For example, bytes[10]=90
463 463  
464 -(((
465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 -)))
426 +mod=(bytes[10]>>7)&0x01=1.
467 467  
468 468  
469 -(((
470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 -)))
429 +**Downlink Command:**
472 472  
431 +If payload = 0x0A00, workmode=0
473 473  
474 -(((
475 -Example:
476 -)))
433 +If** **payload =** **0x0A01, workmode=1
477 477  
478 -(((
479 -0x(00): Normal uplink packet.
480 -)))
481 481  
482 -(((
483 -0x(01): Interrupt Uplink Packet.
484 -)))
485 485  
437 +=== 2.3.8 ​Decode payload in The Things Network ===
486 486  
439 +While using TTN network, you can add the payload format to decode the payload.
487 487  
488 -=== 2.4.7  ​+5V Output ===
489 489  
490 -(((
491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 -)))
442 +[[image:1654505570700-128.png]]
493 493  
494 -
495 495  (((
496 -The 5V output time can be controlled by AT Command.
445 +The payload decoder function for TTN is here:
497 497  )))
498 498  
499 499  (((
500 -(% style="color:blue" %)**AT+5VT=1000**
449 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
501 501  )))
502 502  
503 -(((
504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 -)))
506 506  
453 +== 2.4 Uplink Interval ==
507 507  
455 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
508 508  
509 -== 2.5  Downlink Payload ==
510 510  
511 -By default, NSE01 prints the downlink payload to console port.
512 512  
513 -[[image:image-20220708133731-5.png]]
459 +== 2.5 Downlink Payload ==
514 514  
461 +By default, LSE50 prints the downlink payload to console port.
515 515  
463 +[[image:image-20220606165544-8.png]]
464 +
465 +
516 516  (((
517 517  (% style="color:blue" %)**Examples:**
518 518  )))
... ... @@ -526,7 +526,7 @@
526 526  )))
527 527  
528 528  (((
529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
479 +If the payload=0100003C, it means set the END Nodes TDC to 0x00003C=60(S), while type code is 01.
530 530  )))
531 531  
532 532  (((
... ... @@ -546,144 +546,432 @@
546 546  )))
547 547  
548 548  (((
549 -If payload = 0x04FF, it will reset the NSE01
499 +If payload = 0x04FF, it will reset the LSE01
550 550  )))
551 551  
552 552  
553 -* (% style="color:blue" %)**INTMOD**
503 +* (% style="color:blue" %)**CFM**
554 554  
555 -(((
556 -Downlink Payload: 06000003, Set AT+INTMOD=3
557 -)))
505 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
558 558  
559 559  
560 560  
561 -== 2.6 LED Indicator ==
509 +== 2.6 ​Show Data in DataCake IoT Server ==
562 562  
563 563  (((
564 -The NSE01 has an internal LED which is to show the status of different state.
512 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
513 +)))
565 565  
515 +(((
516 +
517 +)))
566 566  
567 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 -* Then the LED will be on for 1 second means device is boot normally.
569 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 -* For each uplink probe, LED will be on for 500ms.
519 +(((
520 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
571 571  )))
572 572  
523 +(((
524 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
525 +)))
573 573  
574 574  
528 +[[image:1654505857935-743.png]]
575 575  
576 -== 2.7  Installation in Soil ==
577 577  
578 -__**Measurement the soil surface**__
531 +[[image:1654505874829-548.png]]
579 579  
580 -(((
581 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 -)))
583 583  
584 -[[image:1657259653666-883.png]]
534 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
585 585  
536 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
586 586  
587 -(((
588 -
589 589  
590 -(((
591 -Dig a hole with diameter > 20CM.
592 -)))
539 +[[image:1654505905236-553.png]]
593 593  
594 -(((
595 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 -)))
597 -)))
598 598  
599 -[[image:1654506665940-119.png]]
542 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
600 600  
601 -(((
602 -
603 -)))
544 +[[image:1654505925508-181.png]]
604 604  
605 605  
606 -== 2.8  ​Firmware Change Log ==
607 607  
548 +== 2.7 Frequency Plans ==
608 608  
609 -Download URL & Firmware Change log
550 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
610 610  
611 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
612 612  
553 +=== 2.7.1 EU863-870 (EU868) ===
613 613  
614 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
555 +(% style="color:#037691" %)** Uplink:**
615 615  
557 +868.1 - SF7BW125 to SF12BW125
616 616  
559 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
617 617  
618 -== 2. Battery Analysis ==
561 +868.5 - SF7BW125 to SF12BW125
619 619  
620 -=== 2.9.1  Battery Type ===
563 +867.1 - SF7BW125 to SF12BW125
621 621  
565 +867.3 - SF7BW125 to SF12BW125
622 622  
567 +867.5 - SF7BW125 to SF12BW125
568 +
569 +867.7 - SF7BW125 to SF12BW125
570 +
571 +867.9 - SF7BW125 to SF12BW125
572 +
573 +868.8 - FSK
574 +
575 +
576 +(% style="color:#037691" %)** Downlink:**
577 +
578 +Uplink channels 1-9 (RX1)
579 +
580 +869.525 - SF9BW125 (RX2 downlink only)
581 +
582 +
583 +
584 +=== 2.7.2 US902-928(US915) ===
585 +
586 +Used in USA, Canada and South America. Default use CHE=2
587 +
588 +(% style="color:#037691" %)**Uplink:**
589 +
590 +903.9 - SF7BW125 to SF10BW125
591 +
592 +904.1 - SF7BW125 to SF10BW125
593 +
594 +904.3 - SF7BW125 to SF10BW125
595 +
596 +904.5 - SF7BW125 to SF10BW125
597 +
598 +904.7 - SF7BW125 to SF10BW125
599 +
600 +904.9 - SF7BW125 to SF10BW125
601 +
602 +905.1 - SF7BW125 to SF10BW125
603 +
604 +905.3 - SF7BW125 to SF10BW125
605 +
606 +
607 +(% style="color:#037691" %)**Downlink:**
608 +
609 +923.3 - SF7BW500 to SF12BW500
610 +
611 +923.9 - SF7BW500 to SF12BW500
612 +
613 +924.5 - SF7BW500 to SF12BW500
614 +
615 +925.1 - SF7BW500 to SF12BW500
616 +
617 +925.7 - SF7BW500 to SF12BW500
618 +
619 +926.3 - SF7BW500 to SF12BW500
620 +
621 +926.9 - SF7BW500 to SF12BW500
622 +
623 +927.5 - SF7BW500 to SF12BW500
624 +
625 +923.3 - SF12BW500(RX2 downlink only)
626 +
627 +
628 +
629 +=== 2.7.3 CN470-510 (CN470) ===
630 +
631 +Used in China, Default use CHE=1
632 +
633 +(% style="color:#037691" %)**Uplink:**
634 +
635 +486.3 - SF7BW125 to SF12BW125
636 +
637 +486.5 - SF7BW125 to SF12BW125
638 +
639 +486.7 - SF7BW125 to SF12BW125
640 +
641 +486.9 - SF7BW125 to SF12BW125
642 +
643 +487.1 - SF7BW125 to SF12BW125
644 +
645 +487.3 - SF7BW125 to SF12BW125
646 +
647 +487.5 - SF7BW125 to SF12BW125
648 +
649 +487.7 - SF7BW125 to SF12BW125
650 +
651 +
652 +(% style="color:#037691" %)**Downlink:**
653 +
654 +506.7 - SF7BW125 to SF12BW125
655 +
656 +506.9 - SF7BW125 to SF12BW125
657 +
658 +507.1 - SF7BW125 to SF12BW125
659 +
660 +507.3 - SF7BW125 to SF12BW125
661 +
662 +507.5 - SF7BW125 to SF12BW125
663 +
664 +507.7 - SF7BW125 to SF12BW125
665 +
666 +507.9 - SF7BW125 to SF12BW125
667 +
668 +508.1 - SF7BW125 to SF12BW125
669 +
670 +505.3 - SF12BW125 (RX2 downlink only)
671 +
672 +
673 +
674 +=== 2.7.4 AU915-928(AU915) ===
675 +
676 +Default use CHE=2
677 +
678 +(% style="color:#037691" %)**Uplink:**
679 +
680 +916.8 - SF7BW125 to SF12BW125
681 +
682 +917.0 - SF7BW125 to SF12BW125
683 +
684 +917.2 - SF7BW125 to SF12BW125
685 +
686 +917.4 - SF7BW125 to SF12BW125
687 +
688 +917.6 - SF7BW125 to SF12BW125
689 +
690 +917.8 - SF7BW125 to SF12BW125
691 +
692 +918.0 - SF7BW125 to SF12BW125
693 +
694 +918.2 - SF7BW125 to SF12BW125
695 +
696 +
697 +(% style="color:#037691" %)**Downlink:**
698 +
699 +923.3 - SF7BW500 to SF12BW500
700 +
701 +923.9 - SF7BW500 to SF12BW500
702 +
703 +924.5 - SF7BW500 to SF12BW500
704 +
705 +925.1 - SF7BW500 to SF12BW500
706 +
707 +925.7 - SF7BW500 to SF12BW500
708 +
709 +926.3 - SF7BW500 to SF12BW500
710 +
711 +926.9 - SF7BW500 to SF12BW500
712 +
713 +927.5 - SF7BW500 to SF12BW500
714 +
715 +923.3 - SF12BW500(RX2 downlink only)
716 +
717 +
718 +
719 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
720 +
721 +(% style="color:#037691" %)**Default Uplink channel:**
722 +
723 +923.2 - SF7BW125 to SF10BW125
724 +
725 +923.4 - SF7BW125 to SF10BW125
726 +
727 +
728 +(% style="color:#037691" %)**Additional Uplink Channel**:
729 +
730 +(OTAA mode, channel added by JoinAccept message)
731 +
732 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
733 +
734 +922.2 - SF7BW125 to SF10BW125
735 +
736 +922.4 - SF7BW125 to SF10BW125
737 +
738 +922.6 - SF7BW125 to SF10BW125
739 +
740 +922.8 - SF7BW125 to SF10BW125
741 +
742 +923.0 - SF7BW125 to SF10BW125
743 +
744 +922.0 - SF7BW125 to SF10BW125
745 +
746 +
747 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
748 +
749 +923.6 - SF7BW125 to SF10BW125
750 +
751 +923.8 - SF7BW125 to SF10BW125
752 +
753 +924.0 - SF7BW125 to SF10BW125
754 +
755 +924.2 - SF7BW125 to SF10BW125
756 +
757 +924.4 - SF7BW125 to SF10BW125
758 +
759 +924.6 - SF7BW125 to SF10BW125
760 +
761 +
762 +(% style="color:#037691" %)** Downlink:**
763 +
764 +Uplink channels 1-8 (RX1)
765 +
766 +923.2 - SF10BW125 (RX2)
767 +
768 +
769 +
770 +=== 2.7.6 KR920-923 (KR920) ===
771 +
772 +Default channel:
773 +
774 +922.1 - SF7BW125 to SF12BW125
775 +
776 +922.3 - SF7BW125 to SF12BW125
777 +
778 +922.5 - SF7BW125 to SF12BW125
779 +
780 +
781 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
782 +
783 +922.1 - SF7BW125 to SF12BW125
784 +
785 +922.3 - SF7BW125 to SF12BW125
786 +
787 +922.5 - SF7BW125 to SF12BW125
788 +
789 +922.7 - SF7BW125 to SF12BW125
790 +
791 +922.9 - SF7BW125 to SF12BW125
792 +
793 +923.1 - SF7BW125 to SF12BW125
794 +
795 +923.3 - SF7BW125 to SF12BW125
796 +
797 +
798 +(% style="color:#037691" %)**Downlink:**
799 +
800 +Uplink channels 1-7(RX1)
801 +
802 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
803 +
804 +
805 +
806 +=== 2.7.7 IN865-867 (IN865) ===
807 +
808 +(% style="color:#037691" %)** Uplink:**
809 +
810 +865.0625 - SF7BW125 to SF12BW125
811 +
812 +865.4025 - SF7BW125 to SF12BW125
813 +
814 +865.9850 - SF7BW125 to SF12BW125
815 +
816 +
817 +(% style="color:#037691" %) **Downlink:**
818 +
819 +Uplink channels 1-3 (RX1)
820 +
821 +866.550 - SF10BW125 (RX2)
822 +
823 +
824 +
825 +
826 +== 2.8 LED Indicator ==
827 +
828 +The LSE01 has an internal LED which is to show the status of different state.
829 +
830 +* Blink once when device power on.
831 +* Solid ON for 5 seconds once device successful Join the network.
832 +* Blink once when device transmit a packet.
833 +
834 +== 2.9 Installation in Soil ==
835 +
836 +**Measurement the soil surface**
837 +
838 +
839 +[[image:1654506634463-199.png]] ​
840 +
623 623  (((
624 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
842 +(((
843 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
625 625  )))
845 +)))
626 626  
627 627  
848 +
849 +[[image:1654506665940-119.png]]
850 +
628 628  (((
629 -The battery is designed to last for several years depends on the actually use environment and update interval. 
852 +Dig a hole with diameter > 20CM.
630 630  )))
631 631  
855 +(((
856 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
857 +)))
632 632  
859 +
860 +== 2.10 ​Firmware Change Log ==
861 +
633 633  (((
634 -The battery related documents as below:
863 +**Firmware download link:**
635 635  )))
636 636  
637 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
866 +(((
867 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
868 +)))
640 640  
641 641  (((
642 -[[image:image-20220708140453-6.png]]
871 +
643 643  )))
644 644  
874 +(((
875 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
876 +)))
645 645  
878 +(((
879 +
880 +)))
646 646  
647 -=== 2.9.2  Power consumption Analyze ===
882 +(((
883 +**V1.0.**
884 +)))
648 648  
649 649  (((
650 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
887 +Release
651 651  )))
652 652  
653 653  
891 +== 2.11 ​Battery Analysis ==
892 +
893 +=== 2.11.1 ​Battery Type ===
894 +
654 654  (((
655 -Instruction to use as below:
896 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
656 656  )))
657 657  
658 658  (((
659 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
900 +The battery is designed to last for more than 5 years for the LSN50.
660 660  )))
661 661  
662 -
663 663  (((
664 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
904 +(((
905 +The battery-related documents are as below:
665 665  )))
907 +)))
666 666  
667 667  * (((
668 -Product Model
910 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
669 669  )))
670 670  * (((
671 -Uplink Interval
913 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
672 672  )))
673 673  * (((
674 -Working Mode
916 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
675 675  )))
676 676  
677 -(((
678 -And the Life expectation in difference case will be shown on the right.
679 -)))
919 + [[image:image-20220610172436-1.png]]
680 680  
681 -[[image:image-20220708141352-7.jpeg]]
682 682  
683 683  
923 +=== 2.11.2 ​Battery Note ===
684 684  
685 -=== 2.9.3  ​Battery Note ===
686 -
687 687  (((
688 688  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
689 689  )))
... ... @@ -690,176 +690,302 @@
690 690  
691 691  
692 692  
693 -=== 2.9. Replace the battery ===
931 +=== 2.11.3 Replace the battery ===
694 694  
695 695  (((
696 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
934 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
697 697  )))
698 698  
699 -
700 -
701 -= 3. ​ Access NB-IoT Module =
702 -
703 703  (((
704 -Users can directly access the AT command set of the NB-IoT module.
938 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
705 705  )))
706 706  
707 707  (((
708 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
942 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
709 709  )))
710 710  
711 -[[image:1657261278785-153.png]]
712 712  
713 713  
947 += 3. ​Using the AT Commands =
714 714  
715 -= 4.  Using the AT Commands =
949 +== 3.1 Access AT Commands ==
716 716  
717 -== 4.1  Access AT Commands ==
718 718  
719 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
952 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
720 720  
954 +[[image:1654501986557-872.png||height="391" width="800"]]
721 721  
722 -AT+<CMD>?  : Help on <CMD>
723 723  
724 -AT+<CMD>         : Run <CMD>
957 +Or if you have below board, use below connection:
725 725  
726 -AT+<CMD>=<value> : Set the value
727 727  
728 -AT+<CMD>=?  : Get the value
960 +[[image:1654502005655-729.png||height="503" width="801"]]
729 729  
730 730  
963 +
964 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
965 +
966 +
967 + [[image:1654502050864-459.png||height="564" width="806"]]
968 +
969 +
970 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
971 +
972 +
973 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
974 +
975 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
976 +
977 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
978 +
979 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
980 +
981 +
731 731  (% style="color:#037691" %)**General Commands**(%%)      
732 732  
733 -AT  : Attention       
984 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
734 734  
735 -AT?  : Short Help     
986 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
736 736  
737 -ATZ  : MCU Reset    
988 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
738 738  
739 -AT+TDC  : Application Data Transmission Interval
990 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
740 740  
741 -AT+CFG  : Print all configurations
742 742  
743 -AT+CFGMOD           : Working mode selection
993 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
744 744  
745 -AT+INTMOD            : Set the trigger interrupt mode
995 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
746 746  
747 -AT+5VT  : Set extend the time of 5V power  
997 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
748 748  
749 -AT+PRO  : Choose agreement
999 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
750 750  
751 -AT+WEIGRE  : Get weight or set weight to 0
1001 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
752 752  
753 -AT+WEIGAP  : Get or Set the GapValue of weight
1003 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
754 754  
755 -AT+RXDL  : Extend the sending and receiving time
1005 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
756 756  
757 -AT+CNTFAC  : Get or set counting parameters
1007 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
758 758  
759 -AT+SERVADDR  : Server Address
1009 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
760 760  
1011 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
761 761  
762 -(% style="color:#037691" %)**COAP Management**      
1013 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
763 763  
764 -AT+URI            : Resource parameters
1015 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
765 765  
1017 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
766 766  
767 -(% style="color:#037691" %)**UDP Management**
1019 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
768 768  
769 -AT+CFM          : Upload confirmation mode (only valid for UDP)
1021 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
770 770  
1023 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
771 771  
772 -(% style="color:#037691" %)**MQTT Management**
1025 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
773 773  
774 -AT+CLIENT               : Get or Set MQTT client
775 775  
776 -AT+UNAME  : Get or Set MQTT Username
1028 +(% style="color:#037691" %)**LoRa Network Management**
777 777  
778 -AT+PWD                  : Get or Set MQTT password
1030 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
779 779  
780 -AT+PUBTOPI : Get or Set MQTT publish topic
1032 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
781 781  
782 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
1034 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
783 783  
1036 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
784 784  
785 -(% style="color:#037691" %)**Information**          
1038 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
786 786  
787 -AT+FDR  : Factory Data Reset
1040 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
788 788  
789 -AT+PWOR : Serial Access Password
1042 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
790 790  
1044 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
791 791  
1046 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
792 792  
793 -= ​5.  FAQ =
1048 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
794 794  
795 -== 5.1 How to Upgrade Firmware ==
1050 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
796 796  
1052 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
797 797  
1054 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
1055 +
1056 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
1057 +
1058 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
1059 +
1060 +
1061 +(% style="color:#037691" %)**Information** 
1062 +
1063 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
1064 +
1065 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
1066 +
1067 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
1068 +
1069 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
1070 +
1071 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
1072 +
1073 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
1074 +
1075 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
1076 +
1077 +
1078 += ​4. FAQ =
1079 +
1080 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
1081 +
798 798  (((
799 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
1083 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
1084 +When downloading the images, choose the required image file for download. ​
800 800  )))
801 801  
802 802  (((
803 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
1088 +
804 804  )))
805 805  
806 806  (((
807 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
1092 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
808 808  )))
809 809  
1095 +(((
1096 +
1097 +)))
810 810  
1099 +(((
1100 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
1101 +)))
811 811  
812 -== 5.2  Can I calibrate NSE01 to different soil types? ==
1103 +(((
1104 +
1105 +)))
813 813  
814 814  (((
815 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
1108 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
816 816  )))
817 817  
1111 +[[image:image-20220606154726-3.png]]
818 818  
819 -= 6.  Trouble Shooting =
820 820  
821 -== 6.1  ​Connection problem when uploading firmware ==
1114 +When you use the TTN network, the US915 frequency bands use are:
822 822  
1116 +* 903.9 - SF7BW125 to SF10BW125
1117 +* 904.1 - SF7BW125 to SF10BW125
1118 +* 904.3 - SF7BW125 to SF10BW125
1119 +* 904.5 - SF7BW125 to SF10BW125
1120 +* 904.7 - SF7BW125 to SF10BW125
1121 +* 904.9 - SF7BW125 to SF10BW125
1122 +* 905.1 - SF7BW125 to SF10BW125
1123 +* 905.3 - SF7BW125 to SF10BW125
1124 +* 904.6 - SF8BW500
823 823  
824 824  (((
825 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1127 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1128 +
1129 +* (% style="color:#037691" %)**AT+CHE=2**
1130 +* (% style="color:#037691" %)**ATZ**
826 826  )))
827 827  
828 -(% class="wikigeneratedid" %)
829 829  (((
830 830  
1135 +
1136 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
831 831  )))
832 832  
1139 +(((
1140 +
1141 +)))
833 833  
834 -== 6.2  AT Command input doesn't work ==
1143 +(((
1144 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1145 +)))
835 835  
1147 +[[image:image-20220606154825-4.png]]
1148 +
1149 +
1150 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1151 +
1152 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1153 +
1154 +
1155 += 5. Trouble Shooting =
1156 +
1157 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1158 +
1159 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1160 +
1161 +
1162 +== 5.2 AT Command input doesn't work ==
1163 +
836 836  (((
837 837  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1166 +)))
838 838  
839 -
1168 +
1169 +== 5.3 Device rejoin in at the second uplink packet ==
1170 +
1171 +(% style="color:#4f81bd" %)**Issue describe as below:**
1172 +
1173 +[[image:1654500909990-784.png]]
1174 +
1175 +
1176 +(% style="color:#4f81bd" %)**Cause for this issue:**
1177 +
1178 +(((
1179 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
840 840  )))
841 841  
842 842  
843 -= 7. ​ Order Info =
1183 +(% style="color:#4f81bd" %)**Solution: **
844 844  
1185 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
845 845  
846 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1187 +[[image:1654500929571-736.png||height="458" width="832"]]
847 847  
848 848  
1190 += 6. ​Order Info =
1191 +
1192 +
1193 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1194 +
1195 +
1196 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1197 +
1198 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1199 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1200 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1201 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1202 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1203 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1204 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1205 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1206 +
1207 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1208 +
1209 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1210 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1211 +
849 849  (% class="wikigeneratedid" %)
850 850  (((
851 851  
852 852  )))
853 853  
854 -= 8.  Packing Info =
1217 += 7. Packing Info =
855 855  
856 856  (((
857 857  
858 858  
859 859  (% style="color:#037691" %)**Package Includes**:
1223 +)))
860 860  
861 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 -* External antenna x 1
1225 +* (((
1226 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
863 863  )))
864 864  
865 865  (((
... ... @@ -866,19 +866,24 @@
866 866  
867 867  
868 868  (% style="color:#037691" %)**Dimension and weight**:
1233 +)))
869 869  
870 -* Size: 195 x 125 x 55 mm
871 -* Weight:   420g
1235 +* (((
1236 +Device Size: cm
872 872  )))
1238 +* (((
1239 +Device Weight: g
1240 +)))
1241 +* (((
1242 +Package Size / pcs : cm
1243 +)))
1244 +* (((
1245 +Weight / pcs : g
873 873  
874 -(((
875 875  
876 -
877 -
878 -
879 879  )))
880 880  
881 -= 9.  Support =
1250 += 8. Support =
882 882  
883 883  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
884 884  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content