Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 91.1
edited by Xiaoling
on 2022/07/09 09:57
Change comment: There is no comment for this version
To version 32.12
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,689 +1,753 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
12 12  
13 13  
15 += 1. Introduction =
14 14  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
16 -= 1.  Introduction =
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
19 19  
20 20  (((
21 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
22 22  
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
30 30  )))
31 31  
32 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 33  )))
34 34  
39 +
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
43 +[[image:1654503265560-120.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
43 43  
44 -
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 -== 1.3  Specification ==
61 +== 1.3 Specification ==
59 59  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
65 +[[image:image-20220606162220-5.png]]
62 62  
63 -* Supply Voltage: 2.1v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**NB-IoT Spec:**
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
69 +== ​1.4 Applications ==
74 74  
75 -(% style="color:#037691" %)**Battery:**
71 +* Smart Agriculture
76 76  
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
82 82  
83 -(% style="color:#037691" %)**Power Consumption**
76 +== 1.5 Firmware Change log ==
84 84  
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: 350mA@3.3v
87 87  
79 +**LSE01 v1.0 :**  Release
88 88  
89 -== ​1.4  Applications ==
90 90  
91 -* Smart Buildings & Home Automation
92 -* Logistics and Supply Chain Management
93 -* Smart Metering
94 -* Smart Agriculture
95 -* Smart Cities
96 -* Smart Factory
97 97  
98 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 -​
83 += 2. Configure LSE01 to connect to LoRaWAN network =
100 100  
85 +== 2.1 How it works ==
101 101  
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
102 102  
103 -== 1.5  Pin Definitions ==
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
104 104  
105 105  
106 -[[image:1657328609906-564.png]]
107 107  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
111 111  
112 -== 2.1  How it works ==
102 +[[image:1654503992078-669.png]]
113 113  
104 +
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 +
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
153 +Uplink payload includes in total 11 bytes.
116 116  )))
117 117  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
118 118  
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
170 +)))
171 +
172 +
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
199 +Check the battery voltage for LSE01.
121 121  )))
122 122  
123 123  (((
124 -
203 +Ex1: 0x0B45 = 2885mV
125 125  )))
126 126  
127 -[[image:1657328659945-416.png]]
128 -
129 129  (((
130 -
207 +Ex2: 0x0B49 = 2889mV
131 131  )))
132 132  
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
212 +=== 2.3.4 Soil Moisture ===
136 136  
137 -=== 2.2.1 Test Requirement ===
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
138 138  
139 139  (((
140 -To use NDDS75 in your city, make sure meet below requirements:
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
141 141  )))
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
222 +(((
223 +
224 +)))
146 146  
147 147  (((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
149 149  )))
150 150  
151 151  
152 -[[image:1657328756309-230.png]]
153 153  
232 +=== 2.3.5 Soil Temperature ===
154 154  
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
155 155  
156 -=== 2.2.2 Insert SIM card ===
238 +(((
239 +**Example**:
240 +)))
157 157  
158 158  (((
159 -Insert the NB-IoT Card get from your provider.
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
160 160  )))
161 161  
162 162  (((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
164 164  )))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
168 168  
252 +=== 2.3.6 Soil Conductivity (EC) ===
169 169  
254 +(((
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 +)))
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
172 172  
173 173  (((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
265 +
174 174  (((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
267 +
176 176  )))
269 +
270 +(((
271 +
177 177  )))
178 178  
179 -[[image:image-20220709092052-2.png]]
274 +=== 2.3.7 MOD ===
180 180  
181 -**Connection:**
276 +Firmware version at least v2.1 supports changing mode.
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
278 +For example, bytes[10]=90
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
280 +mod=(bytes[10]>>7)&0x01=1.
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
188 188  
283 +**Downlink Command:**
189 189  
190 -In the PC, use below serial tool settings:
285 +If payload = 0x0A00, workmode=0
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
287 +If** **payload =** **0x0A01, workmode=1
197 197  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
299 +The payload decoder function for TTN is here:
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
203 -
204 204  (((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
206 206  )))
207 207  
208 208  
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
308 +== 2.4 Uplink Interval ==
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
213 213  
214 214  
215 -**Use below commands:**
216 216  
217 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
314 +== 2.5 Downlink Payload ==
220 220  
221 -For parameter description, please refer to AT command set
316 +By default, LSE50 prints the downlink payload to console port.
222 222  
223 -[[image:1657330452568-615.png]]
318 +[[image:image-20220606165544-8.png]]
224 224  
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
321 +**Examples:**
227 227  
228 -[[image:1657330472797-498.png]]
229 229  
324 +* **Set TDC**
230 230  
326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
231 231  
232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
328 +Payload:    01 00 00 1E    TDC=30S
233 233  
330 +Payload:    01 00 00 3C    TDC=60S
234 234  
235 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
238 238  
239 -[[image:1657330501006-241.png]]
333 +* **Reset**
240 240  
335 +If payload = 0x04FF, it will reset the LSE01
241 241  
242 -[[image:1657330533775-472.png]]
243 243  
338 +* **CFM**
244 244  
340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
245 245  
246 -=== 2.2.6 Use MQTT protocol to uplink data ===
247 247  
248 248  
249 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
344 +== 2.6 ​Show Data in DataCake IoT Server ==
256 256  
257 -[[image:1657249978444-674.png]]
346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
258 258  
259 259  
260 -[[image:1657330723006-866.png]]
349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
261 261  
351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
262 262  
263 -(((
264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
265 -)))
266 266  
354 +[[image:1654505857935-743.png]]
267 267  
268 268  
269 -=== 2.2.7 Use TCP protocol to uplink data ===
357 +[[image:1654505874829-548.png]]
270 270  
359 +Step 3: Create an account or log in Datacake.
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
361 +Step 4: Search the LSE01 and add DevEUI.
274 274  
275 -[[image:image-20220709093918-1.png]]
276 276  
364 +[[image:1654505905236-553.png]]
277 277  
278 -[[image:image-20220709093918-2.png]]
279 279  
367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
280 280  
369 +[[image:1654505925508-181.png]]
281 281  
282 -=== 2.2.8 Change Update Interval ===
283 283  
284 -User can use below command to change the (% style="color:green" %)**uplink interval**.
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
373 +== 2.7 Frequency Plans ==
287 287  
288 -(((
289 -(% style="color:red" %)**NOTE:**
290 -)))
375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
291 291  
292 -(((
293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
294 -)))
295 295  
378 +=== 2.7.1 EU863-870 (EU868) ===
296 296  
380 +(% style="color:#037691" %)** Uplink:**
297 297  
298 -== 2. Uplink Payload ==
382 +868.1 - SF7BW125 to SF12BW125
299 299  
300 -In this mode, uplink payload includes in total 14 bytes
384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
301 301  
386 +868.5 - SF7BW125 to SF12BW125
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 -|=(% style="width: 60px;" %)(((
305 -**Size(bytes)**
306 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
388 +867.1 - SF7BW125 to SF12BW125
308 308  
309 -(((
310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 -)))
390 +867.3 - SF7BW125 to SF12BW125
312 312  
392 +867.5 - SF7BW125 to SF12BW125
313 313  
314 -[[image:1657331036973-987.png]]
394 +867.7 - SF7BW125 to SF12BW125
315 315  
316 -(((
317 -The payload is ASCII string, representative same HEX:
318 -)))
396 +867.9 - SF7BW125 to SF12BW125
319 319  
320 -(((
321 -0x72403155615900640c6c19029200 where:
322 -)))
398 +868.8 - FSK
323 323  
324 -* (((
325 -Device ID: 0x724031556159 = 724031556159
326 -)))
327 -* (((
328 -Version: 0x0064=100=1.0.0
329 -)))
330 330  
331 -* (((
332 -BAT: 0x0c6c = 3180 mV = 3.180V
333 -)))
334 -* (((
335 -Signal: 0x19 = 25
336 -)))
337 -* (((
338 -Distance: 0x0292= 658 mm
339 -)))
340 -* (((
341 -Interrupt: 0x00 = 0
342 -)))
401 +(% style="color:#037691" %)** Downlink:**
343 343  
403 +Uplink channels 1-9 (RX1)
344 344  
405 +869.525 - SF9BW125 (RX2 downlink only)
345 345  
346 346  
347 -== 2.4  Payload Explanation and Sensor Interface ==
348 348  
409 +=== 2.7.2 US902-928(US915) ===
349 349  
350 -=== 2.4.1  Device ID ===
411 +Used in USA, Canada and South America. Default use CHE=2
351 351  
352 -(((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
354 -)))
413 +(% style="color:#037691" %)**Uplink:**
355 355  
356 -(((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
358 -)))
415 +903.9 - SF7BW125 to SF10BW125
359 359  
360 -(((
361 -**Example:**
362 -)))
417 +904.1 - SF7BW125 to SF10BW125
363 363  
364 -(((
365 -AT+DEUI=A84041F15612
366 -)))
419 +904.3 - SF7BW125 to SF10BW125
367 367  
368 -(((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run **AT+FDR** won't erase Device ID.
370 -)))
421 +904.5 - SF7BW125 to SF10BW125
371 371  
423 +904.7 - SF7BW125 to SF10BW125
372 372  
425 +904.9 - SF7BW125 to SF10BW125
373 373  
374 -=== 2.4.2  Version Info ===
427 +905.1 - SF7BW125 to SF10BW125
375 375  
376 -(((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
378 -)))
429 +905.3 - SF7BW125 to SF10BW125
379 379  
380 -(((
381 -For example: 0x00 64 : this device is NDDS75 with firmware version 1.0.0.
382 -)))
383 383  
432 +(% style="color:#037691" %)**Downlink:**
384 384  
434 +923.3 - SF7BW500 to SF12BW500
385 385  
386 -=== 2.4.3  Battery Info ===
436 +923.9 - SF7BW500 to SF12BW500
387 387  
388 -(((
389 -Check the battery voltage for LSE01.
390 -)))
438 +924.5 - SF7BW500 to SF12BW500
391 391  
392 -(((
393 -Ex1: 0x0B45 = 2885mV
394 -)))
440 +925.1 - SF7BW500 to SF12BW500
395 395  
396 -(((
397 -Ex2: 0x0B49 = 2889mV
398 -)))
442 +925.7 - SF7BW500 to SF12BW500
399 399  
444 +926.3 - SF7BW500 to SF12BW500
400 400  
446 +926.9 - SF7BW500 to SF12BW500
401 401  
402 -=== 2.4.4  Signal Strength ===
448 +927.5 - SF7BW500 to SF12BW500
403 403  
404 -(((
405 -NB-IoT Network signal Strength.
406 -)))
450 +923.3 - SF12BW500(RX2 downlink only)
407 407  
408 -(((
409 -**Ex1: 0x1d = 29**
410 -)))
411 411  
412 -(((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
414 -)))
415 415  
416 -(((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
418 -)))
454 +=== 2.7.3 CN470-510 (CN470) ===
419 419  
420 -(((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 -)))
456 +Used in China, Default use CHE=1
423 423  
424 -(((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 -)))
458 +(% style="color:#037691" %)**Uplink:**
427 427  
428 -(((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 -)))
460 +486.3 - SF7BW125 to SF12BW125
431 431  
462 +486.5 - SF7BW125 to SF12BW125
432 432  
464 +486.7 - SF7BW125 to SF12BW125
433 433  
434 -=== 2.4. Soil Moisture ===
466 +486.9 - SF7BW125 to SF12BW125
435 435  
436 -Get the distance. Flat object range 280mm - 7500mm.
468 +487.1 - SF7BW125 to SF12BW125
437 437  
438 -For example, if the data you get from the register is **__0x0B 0x05__**, the distance between the sensor and the measured object is
470 +487.3 - SF7BW125 to SF12BW125
439 439  
440 -(((
441 -(((
442 -(% style="color:#4f81bd" %)** 0B05(H) = 2821(D) = 2821mm.**
443 -)))
444 -)))
472 +487.5 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -
448 -)))
474 +487.7 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -
452 -)))
453 453  
454 -=== 2.4.6  Digital Interrupt ===
477 +(% style="color:#037691" %)**Downlink:**
455 455  
456 -(((
457 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NDDS75 will send a packet to the server.
458 -)))
479 +506.7 - SF7BW125 to SF12BW125
459 459  
460 -(((
461 -The command is:
462 -)))
481 +506.9 - SF7BW125 to SF12BW125
463 463  
464 -(((
465 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
466 -)))
483 +507.1 - SF7BW125 to SF12BW125
467 467  
485 +507.3 - SF7BW125 to SF12BW125
468 468  
469 -(((
470 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
471 -)))
487 +507.5 - SF7BW125 to SF12BW125
472 472  
489 +507.7 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -Example:
476 -)))
491 +507.9 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -0x(00): Normal uplink packet.
480 -)))
493 +508.1 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -0x(01): Interrupt Uplink Packet.
484 -)))
495 +505.3 - SF12BW125 (RX2 downlink only)
485 485  
486 486  
487 487  
488 -=== 2.4.7  ​+5V Output ===
499 +=== 2.7.4 AU915-928(AU915) ===
489 489  
490 -(((
491 -NDDS75 will enable +5V output before all sampling and disable the +5v after all sampling. 
492 -)))
501 +Default use CHE=2
493 493  
503 +(% style="color:#037691" %)**Uplink:**
494 494  
495 -(((
496 -The 5V output time can be controlled by AT Command.
497 -)))
505 +916.8 - SF7BW125 to SF12BW125
498 498  
499 -(((
500 -(% style="color:blue" %)**AT+5VT=1000**
501 -)))
507 +917.0 - SF7BW125 to SF12BW125
502 502  
503 -(((
504 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
505 -)))
509 +917.2 - SF7BW125 to SF12BW125
506 506  
511 +917.4 - SF7BW125 to SF12BW125
507 507  
513 +917.6 - SF7BW125 to SF12BW125
508 508  
509 -== 2.5  Downlink Payload ==
515 +917.8 - SF7BW125 to SF12BW125
510 510  
511 -By default, NSE01 prints the downlink payload to console port.
517 +918.0 - SF7BW125 to SF12BW125
512 512  
513 -[[image:image-20220708133731-5.png]]
519 +918.2 - SF7BW125 to SF12BW125
514 514  
515 515  
516 -(((
517 -(% style="color:blue" %)**Examples:**
518 -)))
522 +(% style="color:#037691" %)**Downlink:**
519 519  
520 -(((
521 -
522 -)))
524 +923.3 - SF7BW500 to SF12BW500
523 523  
524 -* (((
525 -(% style="color:blue" %)**Set TDC**
526 -)))
526 +923.9 - SF7BW500 to SF12BW500
527 527  
528 -(((
529 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
530 -)))
528 +924.5 - SF7BW500 to SF12BW500
531 531  
532 -(((
533 -Payload:    01 00 00 1E    TDC=30S
534 -)))
530 +925.1 - SF7BW500 to SF12BW500
535 535  
536 -(((
537 -Payload:    01 00 00 3C    TDC=60S
538 -)))
532 +925.7 - SF7BW500 to SF12BW500
539 539  
540 -(((
541 -
542 -)))
534 +926.3 - SF7BW500 to SF12BW500
543 543  
544 -* (((
545 -(% style="color:blue" %)**Reset**
546 -)))
536 +926.9 - SF7BW500 to SF12BW500
547 547  
548 -(((
549 -If payload = 0x04FF, it will reset the NSE01
550 -)))
538 +927.5 - SF7BW500 to SF12BW500
551 551  
540 +923.3 - SF12BW500(RX2 downlink only)
552 552  
553 -* (% style="color:blue" %)**INTMOD**
554 554  
555 -(((
556 -Downlink Payload: 06000003, Set AT+INTMOD=3
557 -)))
558 558  
544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
559 559  
546 +(% style="color:#037691" %)**Default Uplink channel:**
560 560  
561 -== 2. ​LED Indicator ==
548 +923.2 - SF7BW125 to SF10BW125
562 562  
563 -(((
564 -The NSE01 has an internal LED which is to show the status of different state.
550 +923.4 - SF7BW125 to SF10BW125
565 565  
566 566  
567 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
568 -* Then the LED will be on for 1 second means device is boot normally.
569 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
570 -* For each uplink probe, LED will be on for 500ms.
571 -)))
553 +(% style="color:#037691" %)**Additional Uplink Channel**:
572 572  
555 +(OTAA mode, channel added by JoinAccept message)
573 573  
557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
574 574  
559 +922.2 - SF7BW125 to SF10BW125
575 575  
576 -== 2.7  Installation in Soil ==
561 +922.4 - SF7BW125 to SF10BW125
577 577  
578 -__**Measurement the soil surface**__
563 +922.6 - SF7BW125 to SF10BW125
579 579  
580 -(((
581 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
582 -)))
565 +922.8 - SF7BW125 to SF10BW125
583 583  
584 -[[image:1657259653666-883.png]]
567 +923.0 - SF7BW125 to SF10BW125
585 585  
569 +922.0 - SF7BW125 to SF10BW125
586 586  
587 -(((
588 -
589 589  
590 -(((
591 -Dig a hole with diameter > 20CM.
592 -)))
572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
593 593  
594 -(((
595 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
596 -)))
597 -)))
574 +923.6 - SF7BW125 to SF10BW125
598 598  
599 -[[image:1654506665940-119.png]]
576 +923.8 - SF7BW125 to SF10BW125
600 600  
601 -(((
602 -
603 -)))
578 +924.0 - SF7BW125 to SF10BW125
604 604  
580 +924.2 - SF7BW125 to SF10BW125
605 605  
606 -== 2. Firmware Change Log ==
582 +924.4 - SF7BW125 to SF10BW125
607 607  
584 +924.6 - SF7BW125 to SF10BW125
608 608  
609 -Download URL & Firmware Change log
610 610  
611 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
587 +(% style="color:#037691" %)** Downlink:**
612 612  
589 +Uplink channels 1-8 (RX1)
613 613  
614 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
591 +923.2 - SF10BW125 (RX2)
615 615  
616 616  
617 617  
618 -== 2.9  ​Battery Analysis ==
595 +=== 2.7.6 KR920-923 (KR920) ===
619 619  
620 -=== 2.9.1  ​Battery Type ===
597 +Default channel:
621 621  
599 +922.1 - SF7BW125 to SF12BW125
622 622  
601 +922.3 - SF7BW125 to SF12BW125
602 +
603 +922.5 - SF7BW125 to SF12BW125
604 +
605 +
606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
607 +
608 +922.1 - SF7BW125 to SF12BW125
609 +
610 +922.3 - SF7BW125 to SF12BW125
611 +
612 +922.5 - SF7BW125 to SF12BW125
613 +
614 +922.7 - SF7BW125 to SF12BW125
615 +
616 +922.9 - SF7BW125 to SF12BW125
617 +
618 +923.1 - SF7BW125 to SF12BW125
619 +
620 +923.3 - SF7BW125 to SF12BW125
621 +
622 +
623 +(% style="color:#037691" %)**Downlink:**
624 +
625 +Uplink channels 1-7(RX1)
626 +
627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
628 +
629 +
630 +
631 +=== 2.7.7 IN865-867 (IN865) ===
632 +
633 +(% style="color:#037691" %)** Uplink:**
634 +
635 +865.0625 - SF7BW125 to SF12BW125
636 +
637 +865.4025 - SF7BW125 to SF12BW125
638 +
639 +865.9850 - SF7BW125 to SF12BW125
640 +
641 +
642 +(% style="color:#037691" %) **Downlink:**
643 +
644 +Uplink channels 1-3 (RX1)
645 +
646 +866.550 - SF10BW125 (RX2)
647 +
648 +
649 +
650 +
651 +== 2.8 LED Indicator ==
652 +
653 +The LSE01 has an internal LED which is to show the status of different state.
654 +
655 +* Blink once when device power on.
656 +* Solid ON for 5 seconds once device successful Join the network.
657 +* Blink once when device transmit a packet.
658 +
659 +
660 +
661 +== 2.9 Installation in Soil ==
662 +
663 +**Measurement the soil surface**
664 +
665 +
666 +[[image:1654506634463-199.png]] ​
667 +
623 623  (((
624 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
669 +(((
670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
625 625  )))
672 +)))
626 626  
627 627  
675 +[[image:1654506665940-119.png]]
676 +
628 628  (((
629 -The battery is designed to last for several years depends on the actually use environment and update interval. 
678 +Dig a hole with diameter > 20CM.
630 630  )))
631 631  
681 +(((
682 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
683 +)))
632 632  
685 +
686 +== 2.10 ​Firmware Change Log ==
687 +
633 633  (((
634 -The battery related documents as below:
689 +**Firmware download link:**
635 635  )))
636 636  
637 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
638 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
639 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
692 +(((
693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
694 +)))
640 640  
641 641  (((
642 -[[image:image-20220708140453-6.png]]
697 +
643 643  )))
644 644  
700 +(((
701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
702 +)))
645 645  
704 +(((
705 +
706 +)))
646 646  
647 -=== 2.9.2  Power consumption Analyze ===
708 +(((
709 +**V1.0.**
710 +)))
648 648  
649 649  (((
650 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
713 +Release
651 651  )))
652 652  
653 653  
717 +== 2.11 ​Battery Analysis ==
718 +
719 +=== 2.11.1 ​Battery Type ===
720 +
654 654  (((
655 -Instruction to use as below:
722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
656 656  )))
657 657  
658 658  (((
659 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
726 +The battery is designed to last for more than 5 years for the LSN50.
660 660  )))
661 661  
662 -
663 663  (((
664 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
730 +(((
731 +The battery-related documents are as below:
665 665  )))
733 +)))
666 666  
667 667  * (((
668 -Product Model
736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
669 669  )))
670 670  * (((
671 -Uplink Interval
739 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
672 672  )))
673 673  * (((
674 -Working Mode
742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
675 675  )))
676 676  
677 -(((
678 -And the Life expectation in difference case will be shown on the right.
679 -)))
745 + [[image:image-20220606171726-9.png]]
680 680  
681 -[[image:image-20220708141352-7.jpeg]]
682 682  
683 683  
749 +=== 2.11.2 ​Battery Note ===
684 684  
685 -=== 2.9.3  ​Battery Note ===
686 -
687 687  (((
688 688  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
689 689  )))
... ... @@ -690,176 +690,303 @@
690 690  
691 691  
692 692  
693 -=== 2.9. Replace the battery ===
757 +=== 2.11.3 Replace the battery ===
694 694  
695 695  (((
696 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
760 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
697 697  )))
698 698  
699 -
700 -
701 -= 3. ​ Access NB-IoT Module =
702 -
703 703  (((
704 -Users can directly access the AT command set of the NB-IoT module.
764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
705 705  )))
706 706  
707 707  (((
708 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
709 709  )))
710 710  
711 -[[image:1657261278785-153.png]]
712 712  
713 713  
773 += 3. ​Using the AT Commands =
714 714  
715 -= 4.  Using the AT Commands =
775 +== 3.1 Access AT Commands ==
716 716  
717 -== 4.1  Access AT Commands ==
718 718  
719 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
720 720  
780 +[[image:1654501986557-872.png||height="391" width="800"]]
721 721  
722 -AT+<CMD>?  : Help on <CMD>
723 723  
724 -AT+<CMD>         : Run <CMD>
783 +Or if you have below board, use below connection:
725 725  
726 -AT+<CMD>=<value> : Set the value
727 727  
728 -AT+<CMD>=?  : Get the value
786 +[[image:1654502005655-729.png||height="503" width="801"]]
729 729  
730 730  
789 +
790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
791 +
792 +
793 + [[image:1654502050864-459.png||height="564" width="806"]]
794 +
795 +
796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
797 +
798 +
799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
800 +
801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
802 +
803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
804 +
805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
806 +
807 +
731 731  (% style="color:#037691" %)**General Commands**(%%)      
732 732  
733 -AT  : Attention       
810 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
734 734  
735 -AT?  : Short Help     
812 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
736 736  
737 -ATZ  : MCU Reset    
814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
738 738  
739 -AT+TDC  : Application Data Transmission Interval
816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
740 740  
741 -AT+CFG  : Print all configurations
742 742  
743 -AT+CFGMOD           : Working mode selection
819 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
744 744  
745 -AT+INTMOD            : Set the trigger interrupt mode
821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
746 746  
747 -AT+5VT  : Set extend the time of 5V power  
823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
748 748  
749 -AT+PRO  : Choose agreement
825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
750 750  
751 -AT+WEIGRE  : Get weight or set weight to 0
827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
752 752  
753 -AT+WEIGAP  : Get or Set the GapValue of weight
829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
754 754  
755 -AT+RXDL  : Extend the sending and receiving time
831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
756 756  
757 -AT+CNTFAC  : Get or set counting parameters
833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
758 758  
759 -AT+SERVADDR  : Server Address
835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
760 760  
837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
761 761  
762 -(% style="color:#037691" %)**COAP Management**      
839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
763 763  
764 -AT+URI            : Resource parameters
841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
765 765  
843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
766 766  
767 -(% style="color:#037691" %)**UDP Management**
845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
768 768  
769 -AT+CFM          : Upload confirmation mode (only valid for UDP)
847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
770 770  
849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
771 771  
772 -(% style="color:#037691" %)**MQTT Management**
851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
773 773  
774 -AT+CLIENT               : Get or Set MQTT client
775 775  
776 -AT+UNAME  : Get or Set MQTT Username
854 +(% style="color:#037691" %)**LoRa Network Management**
777 777  
778 -AT+PWD                  : Get or Set MQTT password
856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
779 779  
780 -AT+PUBTOPI : Get or Set MQTT publish topic
858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
781 781  
782 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
783 783  
862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
784 784  
785 -(% style="color:#037691" %)**Information**          
864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
786 786  
787 -AT+FDR  : Factory Data Reset
866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
788 788  
789 -AT+PWOR : Serial Access Password
868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
790 790  
870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
791 791  
872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
792 792  
793 -= ​5.  FAQ =
874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
794 794  
795 -== 5.1 How to Upgrade Firmware ==
876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
796 796  
878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
797 797  
880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
881 +
882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
883 +
884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
885 +
886 +
887 +(% style="color:#037691" %)**Information** 
888 +
889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
890 +
891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
892 +
893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
894 +
895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
896 +
897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
898 +
899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
900 +
901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
902 +
903 +
904 += ​4. FAQ =
905 +
906 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
907 +
798 798  (((
799 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
910 +When downloading the images, choose the required image file for download. ​
800 800  )))
801 801  
802 802  (((
803 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
914 +
804 804  )))
805 805  
806 806  (((
807 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
808 808  )))
809 809  
921 +(((
922 +
923 +)))
810 810  
925 +(((
926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
927 +)))
811 811  
812 -== 5.2  Can I calibrate NSE01 to different soil types? ==
929 +(((
930 +
931 +)))
813 813  
814 814  (((
815 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
816 816  )))
817 817  
937 +[[image:image-20220606154726-3.png]]
818 818  
819 -= 6.  Trouble Shooting =
820 820  
821 -== 6.1  ​Connection problem when uploading firmware ==
940 +When you use the TTN network, the US915 frequency bands use are:
822 822  
942 +* 903.9 - SF7BW125 to SF10BW125
943 +* 904.1 - SF7BW125 to SF10BW125
944 +* 904.3 - SF7BW125 to SF10BW125
945 +* 904.5 - SF7BW125 to SF10BW125
946 +* 904.7 - SF7BW125 to SF10BW125
947 +* 904.9 - SF7BW125 to SF10BW125
948 +* 905.1 - SF7BW125 to SF10BW125
949 +* 905.3 - SF7BW125 to SF10BW125
950 +* 904.6 - SF8BW500
823 823  
824 824  (((
825 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
826 826  )))
827 827  
828 -(% class="wikigeneratedid" %)
956 +(% class="box infomessage" %)
829 829  (((
958 +**AT+CHE=2**
959 +)))
960 +
961 +(% class="box infomessage" %)
962 +(((
963 +**ATZ**
964 +)))
965 +
966 +(((
967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
968 +)))
969 +
970 +(((
830 830  
831 831  )))
832 832  
974 +(((
975 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
976 +)))
833 833  
834 -== 6.2  AT Command input doesn't work ==
978 +[[image:image-20220606154825-4.png]]
835 835  
980 +
981 +
982 += 5. Trouble Shooting =
983 +
984 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
985 +
986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
987 +
988 +
989 +== 5.2 AT Command input doesn’t work ==
990 +
836 836  (((
837 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
993 +)))
838 838  
839 -
995 +
996 +== 5.3 Device rejoin in at the second uplink packet ==
997 +
998 +(% style="color:#4f81bd" %)**Issue describe as below:**
999 +
1000 +[[image:1654500909990-784.png]]
1001 +
1002 +
1003 +(% style="color:#4f81bd" %)**Cause for this issue:**
1004 +
1005 +(((
1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
840 840  )))
841 841  
842 842  
843 -= 7. ​ Order Info =
1010 +(% style="color:#4f81bd" %)**Solution: **
844 844  
1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
845 845  
846 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1014 +[[image:1654500929571-736.png||height="458" width="832"]]
847 847  
848 848  
1017 += 6. ​Order Info =
1018 +
1019 +
1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1024 +
1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1031 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1033 +
1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1035 +
1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1038 +
849 849  (% class="wikigeneratedid" %)
850 850  (((
851 851  
852 852  )))
853 853  
854 -= 8.  Packing Info =
1044 += 7. Packing Info =
855 855  
856 856  (((
857 857  
858 858  
859 859  (% style="color:#037691" %)**Package Includes**:
1050 +)))
860 860  
861 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
862 -* External antenna x 1
1052 +* (((
1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
863 863  )))
864 864  
865 865  (((
... ... @@ -866,19 +866,30 @@
866 866  
867 867  
868 868  (% style="color:#037691" %)**Dimension and weight**:
1060 +)))
869 869  
870 -* Size: 195 x 125 x 55 mm
871 -* Weight:   420g
1062 +* (((
1063 +Device Size: cm
872 872  )))
1065 +* (((
1066 +Device Weight: g
1067 +)))
1068 +* (((
1069 +Package Size / pcs : cm
1070 +)))
1071 +* (((
1072 +Weight / pcs : g
873 873  
874 -(((
875 -
876 876  
877 -
878 878  
879 879  )))
880 880  
881 -= 9.  Support =
1078 += 8. Support =
882 882  
883 883  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
884 884  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1082 +
1083 +
1084 +~)~)~)
1085 +~)~)~)
1086 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content