Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 43 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,11 +1,10 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 ... ... @@ -12,23 +12,28 @@ 12 12 13 13 14 14 14 +**Table of Contents:** 15 15 16 -= 1. Introduction = 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 19 19 18 + 19 + 20 + 21 += 1. Introduction = 22 + 23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 24 + 20 20 ((( 21 21 22 22 23 -((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 30 -))) 28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 31 31 30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 + 32 32 33 33 ))) 34 34 ... ... @@ -35,701 +35,736 @@ 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:1657 327959271-447.png]]42 +[[image:1657245163077-232.png]] 39 39 40 40 41 41 42 -== 1.2 46 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm50 +* Monitor Soil Moisture 51 +* Monitor Soil Temperature 52 +* Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 57 57 58 -== 1.3 60 +== 1.3 Specification == 59 59 62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 - (% style="color:#037691" %)**CommonDC Characteristics:**64 +[[image:image-20220606162220-5.png]] 62 62 63 -* Supply Voltage: 2.1v ~~ 3.6v 64 -* Operating Temperature: -40 ~~ 85°C 65 65 66 -(% style="color:#037691" %)**NB-IoT Spec:** 67 67 68 -* - B1 @H-FDD: 2100MHz 69 -* - B3 @H-FDD: 1800MHz 70 -* - B8 @H-FDD: 900MHz 71 -* - B5 @H-FDD: 850MHz 72 -* - B20 @H-FDD: 800MHz 73 -* - B28 @H-FDD: 700MHz 68 +== 1.4 Applications == 74 74 75 -(% style="color:#037691" %)**Battery:** 76 - 77 -* Li/SOCI2 un-chargeable battery 78 -* Capacity: 8500mAh 79 -* Self Discharge: <1% / Year @ 25°C 80 -* Max continuously current: 130mA 81 -* Max boost current: 2A, 1 second 82 - 83 -(% style="color:#037691" %)**Power Consumption** 84 - 85 -* STOP Mode: 10uA @ 3.3v 86 -* Max transmit power: 350mA@3.3v 87 - 88 - 89 -== 1.4 Applications == 90 - 91 -* Smart Buildings & Home Automation 92 -* Logistics and Supply Chain Management 93 -* Smart Metering 94 94 * Smart Agriculture 95 -* Smart Cities 96 -* Smart Factory 97 97 98 98 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 99 100 100 75 +== 1.5 Firmware Change log == 101 101 102 102 103 - ==1.5Pin Definitions==78 +**LSE01 v1.0 :** Release 104 104 105 105 106 -[[image:1657328609906-564.png]] 107 107 82 += 2. Configure LSE01 to connect to LoRaWAN network = 108 108 84 +== 2.1 How it works == 109 109 110 -= 2. Use NDDS75 to communicate with IoT Server = 111 - 112 -== 2.1 How it works == 113 - 114 114 ((( 115 -The NDDS75isequippedwithaNB-IoT module,thepre-loadedfirmwareinNDDS75willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNDDS75.87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 116 116 ))) 117 117 118 - 119 119 ((( 120 - Thediagrambelowshows theworkingflowindefaultfirmwaref NDDS75:91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 121 121 ))) 122 122 123 -((( 124 - 125 -))) 126 126 127 -[[image:1657328659945-416.png]] 128 128 129 -((( 130 - 131 -))) 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 132 132 98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 133 133 134 -== 2.2 Configure the NDDS75 == 135 135 101 +[[image:1654503992078-669.png]] 136 136 137 -=== 2.2.1 Test Requirement === 138 138 139 -((( 140 -To use NDDS75 in your city, make sure meet below requirements: 141 -))) 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 142 142 143 -* Your local operator has already distributed a NB-IoT Network there. 144 -* The local NB-IoT network used the band that NSE01 supports. 145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 146 146 147 -((( 148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 149 -))) 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 150 150 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 151 151 152 -[[image:16 57328756309-230.png]]111 +[[image:image-20220606163732-6.jpeg]] 153 153 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 154 154 115 +**Add APP EUI in the application** 155 155 156 -=== 2.2.2 Insert SIM card === 157 157 158 -((( 159 -Insert the NB-IoT Card get from your provider. 160 -))) 118 +[[image:1654504596150-405.png]] 161 161 162 -((( 163 -User need to take out the NB-IoT module and insert the SIM card like below: 164 -))) 165 165 166 166 167 - [[image:1657328884227-504.png]]122 +**Add APP KEY and DEV EUI** 168 168 124 +[[image:1654504683289-357.png]] 169 169 170 170 171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 172 172 173 -((( 174 -((( 175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 176 -))) 177 -))) 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 178 178 179 -[[image:image-20220709092052-2.png]] 180 180 181 - **Connection:**131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 182 182 183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND133 +[[image:image-20220606163915-7.png]] 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 186 186 187 - background-color:yellow" %)USBTTLRXD<~-~-~-~->UART_TXD136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 188 188 138 +[[image:1654504778294-788.png]] 189 189 190 -In the PC, use below serial tool settings: 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 197 197 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 198 198 ((( 199 - Make sure the switch is in FLASHposition,thenpower ondeviceby connecting the jumper on NDDS75. NDDS75 will output systeminfoonce power onas below,we can enter the (% style="color:green" %)**password:12345678**(%%)to access AT Command input.150 +Uplink payload includes in total 11 bytes. 200 200 ))) 201 201 202 -[[image:1657329814315-101.png]] 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 203 203 204 -((( 205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 206 206 ))) 207 207 169 +=== 2.3.2 MOD~=1(Original value) === 208 208 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 209 209 210 -=== 2.2.4 Use CoAP protocol to uplink data === 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 211 211 212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 213 213 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 214 214 215 -**Use below commands:** 186 +(Optional) 187 +))) 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 189 +=== 2.3.3 Battery Info === 220 220 221 -For parameter description, please refer to AT command set 191 +((( 192 +Check the battery voltage for LSE01. 193 +))) 222 222 223 -[[image:1657330452568-615.png]] 195 +((( 196 +Ex1: 0x0B45 = 2885mV 197 +))) 224 224 199 +((( 200 +Ex2: 0x0B49 = 2889mV 201 +))) 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 227 227 228 -[[image:1657330472797-498.png]] 229 229 205 +=== 2.3.4 Soil Moisture === 230 230 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 211 +((( 212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 213 +))) 233 233 215 +((( 216 + 217 +))) 234 234 235 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink236 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 **(%%)~/~/toset UDP server address and port237 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary219 +((( 220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 221 +))) 238 238 239 -[[image:1657330501006-241.png]] 240 240 241 241 242 - [[image:1657330533775-472.png]]225 +=== 2.3.5 Soil Temperature === 243 243 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 244 244 231 +((( 232 +**Example**: 233 +))) 245 245 246 -=== 2.2.6 Use MQTT protocol to uplink data === 235 +((( 236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 237 +))) 247 247 239 +((( 240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 +))) 248 248 249 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 256 256 257 -[[image:1657249978444-674.png]] 258 258 245 +=== 2.3.6 Soil Conductivity (EC) === 259 259 260 -[[image:1657330723006-866.png]] 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 261 261 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 262 262 263 263 ((( 264 - MQTT protocol has a much higher power consumption comparevs UDP / CoAP protocol. Pleasecheckthepoweranalyzedocumentandadjusttheuplinkperiodtoasuitableinterval.256 +Generally, the EC value of irrigation water is less than 800uS / cm. 265 265 ))) 266 266 259 +((( 260 + 261 +))) 267 267 263 +((( 264 + 265 +))) 268 268 269 -=== 2. 2.7Use TCP protocol to uplink data===267 +=== 2.3.7 MOD === 270 270 269 +Firmware version at least v2.1 supports changing mode. 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 271 +For example, bytes[10]=90 274 274 275 - [[image:image-20220709093918-1.png]]273 +mod=(bytes[10]>>7)&0x01=1. 276 276 277 277 278 - [[image:image-20220709093918-2.png]]276 +**Downlink Command:** 279 279 278 +If payload = 0x0A00, workmode=0 280 280 280 +If** **payload =** **0x0A01, workmode=1 281 281 282 -=== 2.2.8 Change Update Interval === 283 283 284 -User can use below command to change the (% style="color:green" %)**uplink interval**. 285 285 286 - *(%style="color:blue"%)**AT+TDC=600 ** (%%)~/~/ Set UpdateIntervalto600s284 +=== 2.3.8 Decode payload in The Things Network === 287 287 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 288 288 ((( 289 - (%style="color:red"%)**NOTE:**292 +The payload decoder function for TTN is here: 290 290 ))) 291 291 292 292 ((( 293 - (%style="color:red"%)1. By default,thedevicewillsendan uplinkmessage every 1 hour.296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 294 294 ))) 295 295 296 296 300 +== 2.4 Uplink Interval == 297 297 298 - ==2.3UplinkPayload ==302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 299 299 300 -In this mode, uplink payload includes in total 14 bytes 301 301 302 302 303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 -|=(% style="width: 60px;" %)((( 305 -**Size(bytes)** 306 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 306 +== 2.5 Downlink Payload == 308 308 309 -((( 310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 -))) 308 +By default, LSE50 prints the downlink payload to console port. 312 312 310 +[[image:image-20220606165544-8.png]] 313 313 314 -[[image:1657331036973-987.png]] 315 315 316 316 ((( 317 - Thepayload is ASCII string, representativesameHEX:314 +(% style="color:blue" %)**Examples:** 318 318 ))) 319 319 320 320 ((( 321 - 0x72403155615900640c6c19029200where:318 + 322 322 ))) 323 323 324 324 * ((( 325 - DeviceID:0x724031556159 = 724031556159322 +(% style="color:blue" %)**Set TDC** 326 326 ))) 327 -* ((( 328 -Version: 0x0064=100=1.0.0 324 + 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 329 329 ))) 330 330 331 - *(((332 - BAT: 0x0c6c=3180mV=.180V329 +((( 330 +Payload: 01 00 00 1E TDC=30S 333 333 ))) 334 -* ((( 335 -Signal: 0x19 = 25 332 + 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 336 336 ))) 337 -* ((( 338 -Distance: 0x0292= 658 mm 336 + 337 +((( 338 + 339 339 ))) 340 + 340 340 * ((( 341 - Interrupt:0x00 = 0342 +(% style="color:blue" %)**Reset** 342 342 ))) 343 343 345 +((( 346 +If payload = 0x04FF, it will reset the LSE01 347 +))) 344 344 345 345 350 +* (% style="color:blue" %)**CFM** 346 346 347 - ==2.4PayloadExplanationandSensorInterface==352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 348 348 349 349 350 -=== 2.4.1 Device ID === 351 351 352 -((( 353 -By default, the Device ID equal to the last 6 bytes of IMEI. 354 -))) 356 +== 2.6 Show Data in DataCake IoT Server == 355 355 356 356 ((( 357 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 358 358 ))) 359 359 360 360 ((( 361 - **Example:**363 + 362 362 ))) 363 363 364 364 ((( 365 - AT+DEUI=A84041F15612367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 366 366 ))) 367 367 368 368 ((( 369 - TheDeviceID is storedinanone-erasearea,UpgradethefirmwareorrunAT+FDRwon't erase DeviceID.371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 370 370 ))) 371 371 372 372 375 +[[image:1654505857935-743.png]] 373 373 374 -=== 2.4.2 Version Info === 375 375 376 -((( 377 -Specify the software version: 0x64=100, means firmware version 1.00. 378 -))) 378 +[[image:1654505874829-548.png]] 379 379 380 -((( 381 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 382 -))) 383 383 381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 384 384 383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 385 385 386 -=== 2.4.3 Battery Info === 387 387 388 -((( 389 -Check the battery voltage for LSE01. 390 -))) 386 +[[image:1654505905236-553.png]] 391 391 392 -((( 393 -Ex1: 0x0B45 = 2885mV 394 -))) 395 395 396 -((( 397 -Ex2: 0x0B49 = 2889mV 398 -))) 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 399 399 391 +[[image:1654505925508-181.png]] 400 400 401 401 402 -=== 2.4.4 Signal Strength === 403 403 404 -((( 405 -NB-IoT Network signal Strength. 406 -))) 395 +== 2.7 Frequency Plans == 407 407 408 -((( 409 -**Ex1: 0x1d = 29** 410 -))) 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 411 411 412 -((( 413 -(% style="color:blue" %)**0**(%%) -113dBm or less 414 -))) 415 415 416 -((( 417 -(% style="color:blue" %)**1**(%%) -111dBm 418 -))) 400 +=== 2.7.1 EU863-870 (EU868) === 419 419 420 -((( 421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 -))) 402 +(% style="color:#037691" %)** Uplink:** 423 423 424 -((( 425 -(% style="color:blue" %)**31** (%%) -51dBm or greater 426 -))) 404 +868.1 - SF7BW125 to SF12BW125 427 427 428 -((( 429 -(% style="color:blue" %)**99** (%%) Not known or not detectable 430 -))) 406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 431 431 408 +868.5 - SF7BW125 to SF12BW125 432 432 410 +867.1 - SF7BW125 to SF12BW125 433 433 434 - ===2.4.5SoilMoisture ===412 +867.3 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -((( 438 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 439 -))) 440 -))) 414 +867.5 - SF7BW125 to SF12BW125 441 441 442 -((( 443 -((( 444 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 445 -))) 446 -))) 416 +867.7 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 418 +867.9 - SF7BW125 to SF12BW125 451 451 452 -((( 453 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 454 -))) 420 +868.8 - FSK 455 455 456 456 423 +(% style="color:#037691" %)** Downlink:** 457 457 458 - === 2.4.6 SoilTemperature===425 +Uplink channels 1-9 (RX1) 459 459 460 -((( 461 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 462 -))) 427 +869.525 - SF9BW125 (RX2 downlink only) 463 463 464 -((( 465 -**Example**: 466 -))) 467 467 468 -((( 469 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 470 -))) 471 471 472 -((( 473 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 474 -))) 431 +=== 2.7.2 US902-928(US915) === 475 475 433 +Used in USA, Canada and South America. Default use CHE=2 476 476 435 +(% style="color:#037691" %)**Uplink:** 477 477 478 - === 2.4.7SoilConductivity(EC) ===437 +903.9 - SF7BW125 to SF10BW125 479 479 480 -((( 481 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 482 -))) 439 +904.1 - SF7BW125 to SF10BW125 483 483 484 -((( 485 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 486 -))) 441 +904.3 - SF7BW125 to SF10BW125 487 487 488 -((( 489 -Generally, the EC value of irrigation water is less than 800uS / cm. 490 -))) 443 +904.5 - SF7BW125 to SF10BW125 491 491 492 -((( 493 - 494 -))) 445 +904.7 - SF7BW125 to SF10BW125 495 495 496 -((( 497 - 498 -))) 447 +904.9 - SF7BW125 to SF10BW125 499 499 500 - ===2.4.8DigitalInterrupt ===449 +905.1 - SF7BW125 to SF10BW125 501 501 502 -((( 503 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 504 -))) 451 +905.3 - SF7BW125 to SF10BW125 505 505 506 -((( 507 -The command is: 508 -))) 509 509 510 -((( 511 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 -))) 454 +(% style="color:#037691" %)**Downlink:** 513 513 456 +923.3 - SF7BW500 to SF12BW500 514 514 515 -((( 516 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 517 -))) 458 +923.9 - SF7BW500 to SF12BW500 518 518 460 +924.5 - SF7BW500 to SF12BW500 519 519 520 -((( 521 -Example: 522 -))) 462 +925.1 - SF7BW500 to SF12BW500 523 523 524 -((( 525 -0x(00): Normal uplink packet. 526 -))) 464 +925.7 - SF7BW500 to SF12BW500 527 527 528 -((( 529 -0x(01): Interrupt Uplink Packet. 530 -))) 466 +926.3 - SF7BW500 to SF12BW500 531 531 468 +926.9 - SF7BW500 to SF12BW500 532 532 470 +927.5 - SF7BW500 to SF12BW500 533 533 534 - ===2.4.9+5VOutput===472 +923.3 - SF12BW500(RX2 downlink only) 535 535 536 -((( 537 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 538 -))) 539 539 540 540 541 -((( 542 -The 5V output time can be controlled by AT Command. 543 -))) 476 +=== 2.7.3 CN470-510 (CN470) === 544 544 545 -((( 546 -(% style="color:blue" %)**AT+5VT=1000** 547 -))) 478 +Used in China, Default use CHE=1 548 548 549 -((( 550 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 551 -))) 480 +(% style="color:#037691" %)**Uplink:** 552 552 482 +486.3 - SF7BW125 to SF12BW125 553 553 484 +486.5 - SF7BW125 to SF12BW125 554 554 555 - ==2.5DownlinkPayload ==486 +486.7 - SF7BW125 to SF12BW125 556 556 557 - Bydefault,NSE01prints the downlinkpayload to console port.488 +486.9 - SF7BW125 to SF12BW125 558 558 559 - [[image:image-20220708133731-5.png]]490 +487.1 - SF7BW125 to SF12BW125 560 560 492 +487.3 - SF7BW125 to SF12BW125 561 561 562 -((( 563 -(% style="color:blue" %)**Examples:** 564 -))) 494 +487.5 - SF7BW125 to SF12BW125 565 565 566 -((( 567 - 568 -))) 496 +487.7 - SF7BW125 to SF12BW125 569 569 570 -* ((( 571 -(% style="color:blue" %)**Set TDC** 572 -))) 573 573 574 -((( 575 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 576 -))) 499 +(% style="color:#037691" %)**Downlink:** 577 577 578 -((( 579 -Payload: 01 00 00 1E TDC=30S 580 -))) 501 +506.7 - SF7BW125 to SF12BW125 581 581 582 -((( 583 -Payload: 01 00 00 3C TDC=60S 584 -))) 503 +506.9 - SF7BW125 to SF12BW125 585 585 586 -((( 587 - 588 -))) 505 +507.1 - SF7BW125 to SF12BW125 589 589 590 -* ((( 591 -(% style="color:blue" %)**Reset** 592 -))) 507 +507.3 - SF7BW125 to SF12BW125 593 593 594 -((( 595 -If payload = 0x04FF, it will reset the NSE01 596 -))) 509 +507.5 - SF7BW125 to SF12BW125 597 597 511 +507.7 - SF7BW125 to SF12BW125 598 598 599 - *(%style="color:blue"%)**INTMOD**513 +507.9 - SF7BW125 to SF12BW125 600 600 601 -((( 602 -Downlink Payload: 06000003, Set AT+INTMOD=3 603 -))) 515 +508.1 - SF7BW125 to SF12BW125 604 604 517 +505.3 - SF12BW125 (RX2 downlink only) 605 605 606 606 607 -== 2.6 LED Indicator == 608 608 609 -((( 610 -The NSE01 has an internal LED which is to show the status of different state. 521 +=== 2.7.4 AU915-928(AU915) === 611 611 523 +Default use CHE=2 612 612 613 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 614 -* Then the LED will be on for 1 second means device is boot normally. 615 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 616 -* For each uplink probe, LED will be on for 500ms. 617 -))) 525 +(% style="color:#037691" %)**Uplink:** 618 618 527 +916.8 - SF7BW125 to SF12BW125 619 619 529 +917.0 - SF7BW125 to SF12BW125 620 620 531 +917.2 - SF7BW125 to SF12BW125 621 621 622 - == 2.7InstallationinSoil ==533 +917.4 - SF7BW125 to SF12BW125 623 623 624 - __**Measurementthesoilsurface**__535 +917.6 - SF7BW125 to SF12BW125 625 625 626 -((( 627 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 628 -))) 537 +917.8 - SF7BW125 to SF12BW125 629 629 630 - [[image:1657259653666-883.png]]539 +918.0 - SF7BW125 to SF12BW125 631 631 541 +918.2 - SF7BW125 to SF12BW125 632 632 633 -((( 634 - 635 635 636 -((( 637 -Dig a hole with diameter > 20CM. 638 -))) 544 +(% style="color:#037691" %)**Downlink:** 639 639 640 -((( 641 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 642 -))) 643 -))) 546 +923.3 - SF7BW500 to SF12BW500 644 644 645 - [[image:1654506665940-119.png]]548 +923.9 - SF7BW500 to SF12BW500 646 646 647 -((( 648 - 649 -))) 550 +924.5 - SF7BW500 to SF12BW500 650 650 552 +925.1 - SF7BW500 to SF12BW500 651 651 652 - ==2.8FirmwareChange Log==554 +925.7 - SF7BW500 to SF12BW500 653 653 556 +926.3 - SF7BW500 to SF12BW500 654 654 655 - DownloadURL&FirmwareChange log558 +926.9 - SF7BW500 to SF12BW500 656 656 657 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]560 +927.5 - SF7BW500 to SF12BW500 658 658 562 +923.3 - SF12BW500(RX2 downlink only) 659 659 660 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 661 661 662 662 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 663 663 664 - ==2.9 BatteryAnalysis==568 +(% style="color:#037691" %)**Default Uplink channel:** 665 665 666 - ===2.9.1BatteryType ===570 +923.2 - SF7BW125 to SF10BW125 667 667 572 +923.4 - SF7BW125 to SF10BW125 668 668 574 + 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 576 + 577 +(OTAA mode, channel added by JoinAccept message) 578 + 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 580 + 581 +922.2 - SF7BW125 to SF10BW125 582 + 583 +922.4 - SF7BW125 to SF10BW125 584 + 585 +922.6 - SF7BW125 to SF10BW125 586 + 587 +922.8 - SF7BW125 to SF10BW125 588 + 589 +923.0 - SF7BW125 to SF10BW125 590 + 591 +922.0 - SF7BW125 to SF10BW125 592 + 593 + 594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 595 + 596 +923.6 - SF7BW125 to SF10BW125 597 + 598 +923.8 - SF7BW125 to SF10BW125 599 + 600 +924.0 - SF7BW125 to SF10BW125 601 + 602 +924.2 - SF7BW125 to SF10BW125 603 + 604 +924.4 - SF7BW125 to SF10BW125 605 + 606 +924.6 - SF7BW125 to SF10BW125 607 + 608 + 609 +(% style="color:#037691" %)** Downlink:** 610 + 611 +Uplink channels 1-8 (RX1) 612 + 613 +923.2 - SF10BW125 (RX2) 614 + 615 + 616 + 617 +=== 2.7.6 KR920-923 (KR920) === 618 + 619 +Default channel: 620 + 621 +922.1 - SF7BW125 to SF12BW125 622 + 623 +922.3 - SF7BW125 to SF12BW125 624 + 625 +922.5 - SF7BW125 to SF12BW125 626 + 627 + 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 629 + 630 +922.1 - SF7BW125 to SF12BW125 631 + 632 +922.3 - SF7BW125 to SF12BW125 633 + 634 +922.5 - SF7BW125 to SF12BW125 635 + 636 +922.7 - SF7BW125 to SF12BW125 637 + 638 +922.9 - SF7BW125 to SF12BW125 639 + 640 +923.1 - SF7BW125 to SF12BW125 641 + 642 +923.3 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Downlink:** 646 + 647 +Uplink channels 1-7(RX1) 648 + 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 650 + 651 + 652 + 653 +=== 2.7.7 IN865-867 (IN865) === 654 + 655 +(% style="color:#037691" %)** Uplink:** 656 + 657 +865.0625 - SF7BW125 to SF12BW125 658 + 659 +865.4025 - SF7BW125 to SF12BW125 660 + 661 +865.9850 - SF7BW125 to SF12BW125 662 + 663 + 664 +(% style="color:#037691" %) **Downlink:** 665 + 666 +Uplink channels 1-3 (RX1) 667 + 668 +866.550 - SF10BW125 (RX2) 669 + 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 669 669 ((( 670 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 671 671 ))) 692 +))) 672 672 673 673 695 + 696 +[[image:1654506665940-119.png]] 697 + 674 674 ((( 675 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 676 676 ))) 677 677 702 +((( 703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 +))) 678 678 706 + 707 +== 2.10 Firmware Change Log == 708 + 679 679 ((( 680 - The battery relateddocumentsasbelow:710 +**Firmware download link:** 681 681 ))) 682 682 683 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]684 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]685 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 686 686 687 687 ((( 688 - [[image:image-20220708140453-6.png]]718 + 689 689 ))) 690 690 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 691 691 725 +((( 726 + 727 +))) 692 692 693 -=== 2.9.2 Power consumption Analyze === 729 +((( 730 +**V1.0.** 731 +))) 694 694 695 695 ((( 696 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.734 +Release 697 697 ))) 698 698 699 699 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 700 700 ((( 701 - Instruction touse as below:743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 702 702 ))) 703 703 704 704 ((( 705 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]747 +The battery is designed to last for more than 5 years for the LSN50. 706 706 ))) 707 707 708 - 709 709 ((( 710 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 711 711 ))) 754 +))) 712 712 713 713 * ((( 714 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 715 715 ))) 716 716 * ((( 717 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 718 718 ))) 719 719 * ((( 720 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 721 721 ))) 722 722 723 -((( 724 -And the Life expectation in difference case will be shown on the right. 725 -))) 766 + [[image:image-20220610172436-1.png]] 726 726 727 -[[image:image-20220708141352-7.jpeg]] 728 728 729 729 770 +=== 2.11.2 Battery Note === 730 730 731 -=== 2.9.3 Battery Note === 732 - 733 733 ((( 734 734 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 735 735 ))) ... ... @@ -736,176 +736,302 @@ 736 736 737 737 738 738 739 -=== 2. 9.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 740 740 741 741 ((( 742 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 743 743 ))) 744 744 745 - 746 - 747 -= 3. Access NB-IoT Module = 748 - 749 749 ((( 750 - Userscan directly accesstheATcommand set of theNB-IoTmodule.785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 751 751 ))) 752 752 753 753 ((( 754 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 755 755 ))) 756 756 757 -[[image:1657261278785-153.png]] 758 758 759 759 794 += 3. Using the AT Commands = 760 760 761 -= 4.UsingtheAT Commands =796 +== 3.1 Access AT Commands == 762 762 763 -== 4.1 Access AT Commands == 764 764 765 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 766 766 801 +[[image:1654501986557-872.png||height="391" width="800"]] 767 767 768 -AT+<CMD>? : Help on <CMD> 769 769 770 - AT+<CMD>: Run<CMD>804 +Or if you have below board, use below connection: 771 771 772 -AT+<CMD>=<value> : Set the value 773 773 774 - AT+<CMD>=?:Get the value807 +[[image:1654502005655-729.png||height="503" width="801"]] 775 775 776 776 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 777 777 (% style="color:#037691" %)**General Commands**(%%) 778 778 779 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 780 780 781 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 782 782 783 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 784 784 785 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 786 786 787 -AT+CFG : Print all configurations 788 788 789 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 790 790 791 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 792 792 793 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 794 794 795 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 796 796 797 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 798 798 799 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 800 800 801 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 802 802 803 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 804 804 805 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 806 806 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 807 807 808 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 809 809 810 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 811 811 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 812 812 813 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 814 814 815 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 816 816 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 817 817 818 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 819 819 820 -AT+CLIENT : Get or Set MQTT client 821 821 822 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 823 823 824 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 825 825 826 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 827 827 828 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 829 829 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 830 830 831 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 832 832 833 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 834 834 835 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 836 836 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 837 837 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 838 838 839 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 840 840 841 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 842 842 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 843 843 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 844 844 ((( 845 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 846 846 ))) 847 847 848 848 ((( 849 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 850 850 ))) 851 851 852 852 ((( 853 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 854 854 ))) 855 855 942 +((( 943 + 944 +))) 856 856 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 857 857 858 -== 5.2 Can I calibrate NSE01 to different soil types? == 950 +((( 951 + 952 +))) 859 859 860 860 ((( 861 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 862 862 ))) 863 863 958 +[[image:image-20220606154726-3.png]] 864 864 865 -= 6. Trouble Shooting = 866 866 867 - ==6.1 Connection problemwhenuploadingfirmware==961 +When you use the TTN network, the US915 frequency bands use are: 868 868 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 869 869 870 870 ((( 871 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 872 872 ))) 873 873 874 -(% class="wikigeneratedid" %) 875 875 ((( 876 876 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 877 877 ))) 878 878 986 +((( 987 + 988 +))) 879 879 880 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 881 881 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 882 882 ((( 883 883 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 884 884 885 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 886 886 ))) 887 887 888 888 889 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 890 890 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 891 891 892 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 893 893 894 894 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 895 895 (% class="wikigeneratedid" %) 896 896 ((( 897 897 898 898 ))) 899 899 900 -= 8.1064 += 7. Packing Info = 901 901 902 902 ((( 903 903 904 904 905 905 (% style="color:#037691" %)**Package Includes**: 1070 +))) 906 906 907 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1908 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 909 909 ))) 910 910 911 911 ((( ... ... @@ -912,19 +912,24 @@ 912 912 913 913 914 914 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 915 915 916 -* Size: 195 x 125 x 55 mm917 - * Weight:420g1082 +* ((( 1083 +Device Size: cm 918 918 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 919 919 920 -((( 921 921 922 - 923 - 924 - 925 925 ))) 926 926 927 -= 9.1097 += 8. Support = 928 928 929 929 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 930 930 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content