Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 90.2
edited by Xiaoling
on 2022/07/09 09:45
Change comment: There is no comment for this version
To version 42.1
edited by Xiaoling
on 2022/07/08 09:52
Change comment: Uploaded new attachment "1657245163077-232.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,723 +13,767 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 -== 1.3  Specification ==
71 +== 1.3 Specification ==
59 59  
73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
60 60  
61 -(% style="color:#037691" %)**Common DC Characteristics:**
75 +[[image:image-20220606162220-5.png]]
62 62  
63 -* Supply Voltage: 2.1v ~~ 3.6v
64 -* Operating Temperature: -40 ~~ 85°C
65 65  
66 -(% style="color:#037691" %)**NB-IoT Spec:**
67 67  
68 -* - B1 @H-FDD: 2100MHz
69 -* - B3 @H-FDD: 1800MHz
70 -* - B8 @H-FDD: 900MHz
71 -* - B5 @H-FDD: 850MHz
72 -* - B20 @H-FDD: 800MHz
73 -* - B28 @H-FDD: 700MHz
79 +== ​1.4 Applications ==
74 74  
75 -(% style="color:#037691" %)**Battery:**
76 -
77 -* Li/SOCI2 un-chargeable battery
78 -* Capacity: 8500mAh
79 -* Self Discharge: <1% / Year @ 25°C
80 -* Max continuously current: 130mA
81 -* Max boost current: 2A, 1 second
82 -
83 -(% style="color:#037691" %)**Power Consumption**
84 -
85 -* STOP Mode: 10uA @ 3.3v
86 -* Max transmit power: 350mA@3.3v
87 -
88 -
89 -== ​1.4  Applications ==
90 -
91 -* Smart Buildings & Home Automation
92 -* Logistics and Supply Chain Management
93 -* Smart Metering
94 94  * Smart Agriculture
95 -* Smart Cities
96 -* Smart Factory
97 97  
98 98  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 99  ​
100 100  
86 +== 1.5 Firmware Change log ==
101 101  
102 102  
103 -== 1.5  Pin Definitions ==
89 +**LSE01 v1.0 :**  Release
104 104  
105 105  
106 -[[image:1657328609906-564.png]]
107 107  
93 += 2. Configure LSE01 to connect to LoRaWAN network =
108 108  
95 +== 2.1 How it works ==
109 109  
110 -= 2.  Use NDDS75 to communicate with IoT Server =
111 -
112 -== 2.1  How it works ==
113 -
114 114  (((
115 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
116 116  )))
117 117  
118 -
119 119  (((
120 -The diagram below shows the working flow in default firmware of NDDS75:
102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
121 121  )))
122 122  
123 -(((
124 -
125 -)))
126 126  
127 -[[image:1657328659945-416.png]]
128 128  
129 -(((
130 -
131 -)))
107 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
132 132  
109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
133 133  
134 -== 2.2 ​ Configure the NDDS75 ==
135 135  
112 +[[image:1654503992078-669.png]]
136 136  
137 -=== 2.2.1 Test Requirement ===
138 138  
139 -(((
140 -To use NDDS75 in your city, make sure meet below requirements:
141 -)))
115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
142 142  
143 -* Your local operator has already distributed a NB-IoT Network there.
144 -* The local NB-IoT network used the band that NSE01 supports.
145 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
146 146  
147 -(((
148 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
149 -)))
118 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
150 150  
120 +Each LSE01 is shipped with a sticker with the default device EUI as below:
151 151  
152 -[[image:1657328756309-230.png]]
122 +[[image:image-20220606163732-6.jpeg]]
153 153  
124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
154 154  
126 +**Add APP EUI in the application**
155 155  
156 -=== 2.2.2 Insert SIM card ===
157 157  
158 -(((
159 -Insert the NB-IoT Card get from your provider.
160 -)))
129 +[[image:1654504596150-405.png]]
161 161  
162 -(((
163 -User need to take out the NB-IoT module and insert the SIM card like below:
164 -)))
165 165  
166 166  
167 -[[image:1657328884227-504.png]]
133 +**Add APP KEY and DEV EUI**
168 168  
135 +[[image:1654504683289-357.png]]
169 169  
170 170  
171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
172 172  
173 -(((
174 -(((
175 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
176 -)))
177 -)))
139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
178 178  
179 -[[image:image-20220709092052-2.png]]
180 180  
181 -**Connection:**
142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
182 182  
183 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
144 +[[image:image-20220606163915-7.png]]
184 184  
185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
186 186  
187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
188 188  
149 +[[image:1654504778294-788.png]]
189 189  
190 -In the PC, use below serial tool settings:
191 191  
192 -* Baud:  (% style="color:green" %)**9600**
193 -* Data bits:** (% style="color:green" %)8(%%)**
194 -* Stop bits: (% style="color:green" %)**1**
195 -* Parity:  (% style="color:green" %)**None**
196 -* Flow Control: (% style="color:green" %)**None**
197 197  
153 +== 2.3 Uplink Payload ==
154 +
155 +
156 +=== 2.3.1 MOD~=0(Default Mode) ===
157 +
158 +LSE01 will uplink payload via LoRaWAN with below payload format: 
159 +
198 198  (((
199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
161 +Uplink payload includes in total 11 bytes.
200 200  )))
201 201  
202 -[[image:1657329814315-101.png]]
164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
165 +|(((
166 +**Size**
203 203  
204 -(((
205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
168 +**(bytes)**
169 +)))|**2**|**2**|**2**|**2**|**2**|**1**
170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
171 +Temperature
172 +
173 +(Reserve, Ignore now)
174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
175 +MOD & Digital Interrupt
176 +
177 +(Optional)
206 206  )))
207 207  
180 +=== 2.3.2 MOD~=1(Original value) ===
208 208  
182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
209 209  
210 -=== 2.2.4 Use CoAP protocol to uplink data ===
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
211 211  
212 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
213 213  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
195 +MOD & Digital Interrupt
214 214  
215 -**Use below commands:**
197 +(Optional)
198 +)))
216 216  
217 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
200 +=== 2.3.3 Battery Info ===
220 220  
221 -For parameter description, please refer to AT command set
202 +(((
203 +Check the battery voltage for LSE01.
204 +)))
222 222  
223 -[[image:1657330452568-615.png]]
206 +(((
207 +Ex1: 0x0B45 = 2885mV
208 +)))
224 224  
210 +(((
211 +Ex2: 0x0B49 = 2889mV
212 +)))
225 225  
226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
227 227  
228 -[[image:1657330472797-498.png]]
229 229  
216 +=== 2.3.4 Soil Moisture ===
230 230  
218 +(((
219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
220 +)))
231 231  
232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
222 +(((
223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
224 +)))
233 233  
226 +(((
227 +
228 +)))
234 234  
235 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
237 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
232 +)))
238 238  
239 -[[image:1657330501006-241.png]]
240 240  
241 241  
242 -[[image:1657330533775-472.png]]
236 +=== 2.3.5 Soil Temperature ===
243 243  
238 +(((
239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
240 +)))
244 244  
242 +(((
243 +**Example**:
244 +)))
245 245  
246 -=== 2.2.6 Use MQTT protocol to uplink data ===
246 +(((
247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
248 +)))
247 247  
250 +(((
251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
252 +)))
248 248  
249 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB                 **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB          **(%%) ~/~/Set the subscription topic of MQTT
256 256  
257 -[[image:1657249978444-674.png]]
258 258  
256 +=== 2.3.6 Soil Conductivity (EC) ===
259 259  
260 -[[image:1657330723006-866.png]]
258 +(((
259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
260 +)))
261 261  
262 +(((
263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
264 +)))
262 262  
263 263  (((
264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
267 +Generally, the EC value of irrigation water is less than 800uS / cm.
265 265  )))
266 266  
270 +(((
271 +
272 +)))
267 267  
274 +(((
275 +
276 +)))
268 268  
269 -=== 2.2.7 Use TCP protocol to uplink data ===
278 +=== 2.3.7 MOD ===
270 270  
280 +Firmware version at least v2.1 supports changing mode.
271 271  
272 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
282 +For example, bytes[10]=90
274 274  
275 -[[image:image-20220709093918-1.png]]
284 +mod=(bytes[10]>>7)&0x01=1.
276 276  
277 277  
278 -[[image:image-20220709093918-2.png]]
287 +**Downlink Command:**
279 279  
289 +If payload = 0x0A00, workmode=0
280 280  
291 +If** **payload =** **0x0A01, workmode=1
281 281  
282 -=== 2.2.8 Change Update Interval ===
283 283  
284 -User can use below command to change the (% style="color:green" %)**uplink interval**.
285 285  
286 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
295 +=== 2.3.8 ​Decode payload in The Things Network ===
287 287  
297 +While using TTN network, you can add the payload format to decode the payload.
298 +
299 +
300 +[[image:1654505570700-128.png]]
301 +
288 288  (((
289 -(% style="color:red" %)**NOTE:**
303 +The payload decoder function for TTN is here:
290 290  )))
291 291  
292 292  (((
293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
294 294  )))
295 295  
296 296  
311 +== 2.4 Uplink Interval ==
297 297  
298 -== 2. Uplink Payload ==
313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
299 299  
300 -In this mode, uplink payload includes in total 14 bytes
301 301  
302 302  
303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
304 -|=(% style="width: 60px;" %)(((
305 -**Size(bytes)**
306 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1**
307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
317 +== 2.5 Downlink Payload ==
308 308  
309 -(((
310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data.
311 -)))
319 +By default, LSE50 prints the downlink payload to console port.
312 312  
321 +[[image:image-20220606165544-8.png]]
313 313  
314 -[[image:1657331036973-987.png]]
315 315  
316 316  (((
317 -The payload is ASCII string, representative same HEX:
325 +(% style="color:blue" %)**Examples:**
318 318  )))
319 319  
320 320  (((
321 -0x72403155615900640c6c19029200 where:
329 +
322 322  )))
323 323  
324 324  * (((
325 -Device ID: 0x724031556159 = 724031556159
333 +(% style="color:blue" %)**Set TDC**
326 326  )))
327 -* (((
328 -Version: 0x0064=100=1.0.0
335 +
336 +(((
337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
329 329  )))
330 330  
331 -* (((
332 -BAT: 0x0c6c = 3180 mV = 3.180V
340 +(((
341 +Payload:    01 00 00 1E    TDC=30S
333 333  )))
334 -* (((
335 -Signal: 0x19 = 25
343 +
344 +(((
345 +Payload:    01 00 00 3C    TDC=60S
336 336  )))
337 -* (((
338 -Distance: 0x0292= 658 mm
347 +
348 +(((
349 +
339 339  )))
351 +
340 340  * (((
341 -Interrupt: 0x00 = 0
353 +(% style="color:blue" %)**Reset**
342 342  )))
343 343  
356 +(((
357 +If payload = 0x04FF, it will reset the LSE01
358 +)))
344 344  
345 345  
361 +* (% style="color:blue" %)**CFM**
346 346  
347 -== 2.4  Payload Explanation and Sensor Interface ==
363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
348 348  
349 349  
350 -=== 2.4.1  Device ID ===
351 351  
352 -(((
353 -By default, the Device ID equal to the last 6 bytes of IMEI.
354 -)))
367 +== 2.6 ​Show Data in DataCake IoT Server ==
355 355  
356 356  (((
357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
358 358  )))
359 359  
360 360  (((
361 -**Example:**
374 +
362 362  )))
363 363  
364 364  (((
365 -AT+DEUI=A84041F15612
378 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
366 366  )))
367 367  
368 368  (((
369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
382 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
370 370  )))
371 371  
372 372  
386 +[[image:1654505857935-743.png]]
373 373  
374 -=== 2.4.2  Version Info ===
375 375  
376 -(((
377 -Specify the software version: 0x64=100, means firmware version 1.00.
378 -)))
389 +[[image:1654505874829-548.png]]
379 379  
380 -(((
381 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
382 -)))
383 383  
392 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
384 384  
394 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
385 385  
386 -=== 2.4.3  Battery Info ===
387 387  
388 -(((
389 -Check the battery voltage for LSE01.
390 -)))
397 +[[image:1654505905236-553.png]]
391 391  
392 -(((
393 -Ex1: 0x0B45 = 2885mV
394 -)))
395 395  
396 -(((
397 -Ex2: 0x0B49 = 2889mV
398 -)))
400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
399 399  
402 +[[image:1654505925508-181.png]]
400 400  
401 401  
402 -=== 2.4.4  Signal Strength ===
403 403  
404 -(((
405 -NB-IoT Network signal Strength.
406 -)))
406 +== 2.7 Frequency Plans ==
407 407  
408 -(((
409 -**Ex1: 0x1d = 29**
410 -)))
408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
411 411  
412 -(((
413 -(% style="color:blue" %)**0**(%%)  -113dBm or less
414 -)))
415 415  
416 -(((
417 -(% style="color:blue" %)**1**(%%)  -111dBm
418 -)))
411 +=== 2.7.1 EU863-870 (EU868) ===
419 419  
420 -(((
421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
422 -)))
413 +(% style="color:#037691" %)** Uplink:**
423 423  
424 -(((
425 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
426 -)))
415 +868.1 - SF7BW125 to SF12BW125
427 427  
428 -(((
429 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
430 -)))
417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
431 431  
419 +868.5 - SF7BW125 to SF12BW125
432 432  
421 +867.1 - SF7BW125 to SF12BW125
433 433  
434 -=== 2.4.5  Soil Moisture ===
423 +867.3 - SF7BW125 to SF12BW125
435 435  
436 -(((
437 -(((
438 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
439 -)))
440 -)))
425 +867.5 - SF7BW125 to SF12BW125
441 441  
442 -(((
443 -(((
444 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
445 -)))
446 -)))
427 +867.7 - SF7BW125 to SF12BW125
447 447  
448 -(((
449 -
450 -)))
429 +867.9 - SF7BW125 to SF12BW125
451 451  
452 -(((
453 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
454 -)))
431 +868.8 - FSK
455 455  
456 456  
434 +(% style="color:#037691" %)** Downlink:**
457 457  
458 -=== 2.4.6  Soil Temperature ===
436 +Uplink channels 1-9 (RX1)
459 459  
460 -(((
461 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
462 -)))
438 +869.525 - SF9BW125 (RX2 downlink only)
463 463  
464 -(((
465 -**Example**:
466 -)))
467 467  
468 -(((
469 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
470 -)))
471 471  
472 -(((
473 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
474 -)))
442 +=== 2.7.2 US902-928(US915) ===
475 475  
444 +Used in USA, Canada and South America. Default use CHE=2
476 476  
446 +(% style="color:#037691" %)**Uplink:**
477 477  
478 -=== 2.4.7  Soil Conductivity (EC) ===
448 +903.9 - SF7BW125 to SF10BW125
479 479  
480 -(((
481 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
482 -)))
450 +904.1 - SF7BW125 to SF10BW125
483 483  
484 -(((
485 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
486 -)))
452 +904.3 - SF7BW125 to SF10BW125
487 487  
488 -(((
489 -Generally, the EC value of irrigation water is less than 800uS / cm.
490 -)))
454 +904.5 - SF7BW125 to SF10BW125
491 491  
492 -(((
493 -
494 -)))
456 +904.7 - SF7BW125 to SF10BW125
495 495  
496 -(((
497 -
498 -)))
458 +904.9 - SF7BW125 to SF10BW125
499 499  
500 -=== 2.4.8  Digital Interrupt ===
460 +905.1 - SF7BW125 to SF10BW125
501 501  
502 -(((
503 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
504 -)))
462 +905.3 - SF7BW125 to SF10BW125
505 505  
506 -(((
507 -The command is:
508 -)))
509 509  
510 -(((
511 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
512 -)))
465 +(% style="color:#037691" %)**Downlink:**
513 513  
467 +923.3 - SF7BW500 to SF12BW500
514 514  
515 -(((
516 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
517 -)))
469 +923.9 - SF7BW500 to SF12BW500
518 518  
471 +924.5 - SF7BW500 to SF12BW500
519 519  
520 -(((
521 -Example:
522 -)))
473 +925.1 - SF7BW500 to SF12BW500
523 523  
524 -(((
525 -0x(00): Normal uplink packet.
526 -)))
475 +925.7 - SF7BW500 to SF12BW500
527 527  
528 -(((
529 -0x(01): Interrupt Uplink Packet.
530 -)))
477 +926.3 - SF7BW500 to SF12BW500
531 531  
479 +926.9 - SF7BW500 to SF12BW500
532 532  
481 +927.5 - SF7BW500 to SF12BW500
533 533  
534 -=== 2.4.9  ​+5V Output ===
483 +923.3 - SF12BW500(RX2 downlink only)
535 535  
536 -(((
537 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
538 -)))
539 539  
540 540  
541 -(((
542 -The 5V output time can be controlled by AT Command.
543 -)))
487 +=== 2.7.3 CN470-510 (CN470) ===
544 544  
545 -(((
546 -(% style="color:blue" %)**AT+5VT=1000**
547 -)))
489 +Used in China, Default use CHE=1
548 548  
549 -(((
550 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
551 -)))
491 +(% style="color:#037691" %)**Uplink:**
552 552  
493 +486.3 - SF7BW125 to SF12BW125
553 553  
495 +486.5 - SF7BW125 to SF12BW125
554 554  
555 -== 2.5  Downlink Payload ==
497 +486.7 - SF7BW125 to SF12BW125
556 556  
557 -By default, NSE01 prints the downlink payload to console port.
499 +486.9 - SF7BW125 to SF12BW125
558 558  
559 -[[image:image-20220708133731-5.png]]
501 +487.1 - SF7BW125 to SF12BW125
560 560  
503 +487.3 - SF7BW125 to SF12BW125
561 561  
562 -(((
563 -(% style="color:blue" %)**Examples:**
564 -)))
505 +487.5 - SF7BW125 to SF12BW125
565 565  
566 -(((
567 -
568 -)))
507 +487.7 - SF7BW125 to SF12BW125
569 569  
570 -* (((
571 -(% style="color:blue" %)**Set TDC**
572 -)))
573 573  
574 -(((
575 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
576 -)))
510 +(% style="color:#037691" %)**Downlink:**
577 577  
578 -(((
579 -Payload:    01 00 00 1E    TDC=30S
580 -)))
512 +506.7 - SF7BW125 to SF12BW125
581 581  
582 -(((
583 -Payload:    01 00 00 3C    TDC=60S
584 -)))
514 +506.9 - SF7BW125 to SF12BW125
585 585  
586 -(((
587 -
588 -)))
516 +507.1 - SF7BW125 to SF12BW125
589 589  
590 -* (((
591 -(% style="color:blue" %)**Reset**
592 -)))
518 +507.3 - SF7BW125 to SF12BW125
593 593  
594 -(((
595 -If payload = 0x04FF, it will reset the NSE01
596 -)))
520 +507.5 - SF7BW125 to SF12BW125
597 597  
522 +507.7 - SF7BW125 to SF12BW125
598 598  
599 -* (% style="color:blue" %)**INTMOD**
524 +507.9 - SF7BW125 to SF12BW125
600 600  
601 -(((
602 -Downlink Payload: 06000003, Set AT+INTMOD=3
603 -)))
526 +508.1 - SF7BW125 to SF12BW125
604 604  
528 +505.3 - SF12BW125 (RX2 downlink only)
605 605  
606 606  
607 -== 2.6  ​LED Indicator ==
608 608  
609 -(((
610 -The NSE01 has an internal LED which is to show the status of different state.
532 +=== 2.7.4 AU915-928(AU915) ===
611 611  
534 +Default use CHE=2
612 612  
613 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
614 -* Then the LED will be on for 1 second means device is boot normally.
615 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
616 -* For each uplink probe, LED will be on for 500ms.
617 -)))
536 +(% style="color:#037691" %)**Uplink:**
618 618  
538 +916.8 - SF7BW125 to SF12BW125
619 619  
540 +917.0 - SF7BW125 to SF12BW125
620 620  
542 +917.2 - SF7BW125 to SF12BW125
621 621  
622 -== 2.7  Installation in Soil ==
544 +917.4 - SF7BW125 to SF12BW125
623 623  
624 -__**Measurement the soil surface**__
546 +917.6 - SF7BW125 to SF12BW125
625 625  
626 -(((
627 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
628 -)))
548 +917.8 - SF7BW125 to SF12BW125
629 629  
630 -[[image:1657259653666-883.png]]
550 +918.0 - SF7BW125 to SF12BW125
631 631  
552 +918.2 - SF7BW125 to SF12BW125
632 632  
633 -(((
634 -
635 635  
636 -(((
637 -Dig a hole with diameter > 20CM.
638 -)))
555 +(% style="color:#037691" %)**Downlink:**
639 639  
640 -(((
641 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
642 -)))
643 -)))
557 +923.3 - SF7BW500 to SF12BW500
644 644  
645 -[[image:1654506665940-119.png]]
559 +923.9 - SF7BW500 to SF12BW500
646 646  
647 -(((
648 -
649 -)))
561 +924.5 - SF7BW500 to SF12BW500
650 650  
563 +925.1 - SF7BW500 to SF12BW500
651 651  
652 -== 2. Firmware Change Log ==
565 +925.7 - SF7BW500 to SF12BW500
653 653  
567 +926.3 - SF7BW500 to SF12BW500
654 654  
655 -Download URL & Firmware Change log
569 +926.9 - SF7BW500 to SF12BW500
656 656  
657 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
571 +927.5 - SF7BW500 to SF12BW500
658 658  
573 +923.3 - SF12BW500(RX2 downlink only)
659 659  
660 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
661 661  
662 662  
577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
663 663  
664 -== 2.9  ​Battery Analysis ==
579 +(% style="color:#037691" %)**Default Uplink channel:**
665 665  
666 -=== 2.9.1  Battery Type ===
581 +923.2 - SF7BW125 to SF10BW125
667 667  
583 +923.4 - SF7BW125 to SF10BW125
668 668  
585 +
586 +(% style="color:#037691" %)**Additional Uplink Channel**:
587 +
588 +(OTAA mode, channel added by JoinAccept message)
589 +
590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
591 +
592 +922.2 - SF7BW125 to SF10BW125
593 +
594 +922.4 - SF7BW125 to SF10BW125
595 +
596 +922.6 - SF7BW125 to SF10BW125
597 +
598 +922.8 - SF7BW125 to SF10BW125
599 +
600 +923.0 - SF7BW125 to SF10BW125
601 +
602 +922.0 - SF7BW125 to SF10BW125
603 +
604 +
605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
606 +
607 +923.6 - SF7BW125 to SF10BW125
608 +
609 +923.8 - SF7BW125 to SF10BW125
610 +
611 +924.0 - SF7BW125 to SF10BW125
612 +
613 +924.2 - SF7BW125 to SF10BW125
614 +
615 +924.4 - SF7BW125 to SF10BW125
616 +
617 +924.6 - SF7BW125 to SF10BW125
618 +
619 +
620 +(% style="color:#037691" %)** Downlink:**
621 +
622 +Uplink channels 1-8 (RX1)
623 +
624 +923.2 - SF10BW125 (RX2)
625 +
626 +
627 +
628 +=== 2.7.6 KR920-923 (KR920) ===
629 +
630 +Default channel:
631 +
632 +922.1 - SF7BW125 to SF12BW125
633 +
634 +922.3 - SF7BW125 to SF12BW125
635 +
636 +922.5 - SF7BW125 to SF12BW125
637 +
638 +
639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
640 +
641 +922.1 - SF7BW125 to SF12BW125
642 +
643 +922.3 - SF7BW125 to SF12BW125
644 +
645 +922.5 - SF7BW125 to SF12BW125
646 +
647 +922.7 - SF7BW125 to SF12BW125
648 +
649 +922.9 - SF7BW125 to SF12BW125
650 +
651 +923.1 - SF7BW125 to SF12BW125
652 +
653 +923.3 - SF7BW125 to SF12BW125
654 +
655 +
656 +(% style="color:#037691" %)**Downlink:**
657 +
658 +Uplink channels 1-7(RX1)
659 +
660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
661 +
662 +
663 +
664 +=== 2.7.7 IN865-867 (IN865) ===
665 +
666 +(% style="color:#037691" %)** Uplink:**
667 +
668 +865.0625 - SF7BW125 to SF12BW125
669 +
670 +865.4025 - SF7BW125 to SF12BW125
671 +
672 +865.9850 - SF7BW125 to SF12BW125
673 +
674 +
675 +(% style="color:#037691" %) **Downlink:**
676 +
677 +Uplink channels 1-3 (RX1)
678 +
679 +866.550 - SF10BW125 (RX2)
680 +
681 +
682 +
683 +
684 +== 2.8 LED Indicator ==
685 +
686 +The LSE01 has an internal LED which is to show the status of different state.
687 +
688 +* Blink once when device power on.
689 +* Solid ON for 5 seconds once device successful Join the network.
690 +* Blink once when device transmit a packet.
691 +
692 +
693 +== 2.9 Installation in Soil ==
694 +
695 +**Measurement the soil surface**
696 +
697 +
698 +[[image:1654506634463-199.png]] ​
699 +
669 669  (((
670 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +(((
702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
671 671  )))
704 +)))
672 672  
673 673  
707 +
708 +[[image:1654506665940-119.png]]
709 +
674 674  (((
675 -The battery is designed to last for several years depends on the actually use environment and update interval. 
711 +Dig a hole with diameter > 20CM.
676 676  )))
677 677  
714 +(((
715 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
716 +)))
678 678  
718 +
719 +== 2.10 ​Firmware Change Log ==
720 +
679 679  (((
680 -The battery related documents as below:
722 +**Firmware download link:**
681 681  )))
682 682  
683 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
684 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
685 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
725 +(((
726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
727 +)))
686 686  
687 687  (((
688 -[[image:image-20220708140453-6.png]]
730 +
689 689  )))
690 690  
733 +(((
734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
735 +)))
691 691  
737 +(((
738 +
739 +)))
692 692  
693 -=== 2.9.2  Power consumption Analyze ===
741 +(((
742 +**V1.0.**
743 +)))
694 694  
695 695  (((
696 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
746 +Release
697 697  )))
698 698  
699 699  
750 +== 2.11 ​Battery Analysis ==
751 +
752 +=== 2.11.1 ​Battery Type ===
753 +
700 700  (((
701 -Instruction to use as below:
755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
702 702  )))
703 703  
704 704  (((
705 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
759 +The battery is designed to last for more than 5 years for the LSN50.
706 706  )))
707 707  
708 -
709 709  (((
710 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
763 +(((
764 +The battery-related documents are as below:
711 711  )))
766 +)))
712 712  
713 713  * (((
714 -Product Model
769 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
715 715  )))
716 716  * (((
717 -Uplink Interval
772 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
718 718  )))
719 719  * (((
720 -Working Mode
775 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
721 721  )))
722 722  
723 -(((
724 -And the Life expectation in difference case will be shown on the right.
725 -)))
778 + [[image:image-20220610172436-1.png]]
726 726  
727 -[[image:image-20220708141352-7.jpeg]]
728 728  
729 729  
782 +=== 2.11.2 ​Battery Note ===
730 730  
731 -=== 2.9.3  ​Battery Note ===
732 -
733 733  (((
734 734  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
735 735  )))
... ... @@ -736,176 +736,302 @@
736 736  
737 737  
738 738  
739 -=== 2.9. Replace the battery ===
790 +=== 2.11.3 Replace the battery ===
740 740  
741 741  (((
742 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
793 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
743 743  )))
744 744  
745 -
746 -
747 -= 3. ​ Access NB-IoT Module =
748 -
749 749  (((
750 -Users can directly access the AT command set of the NB-IoT module.
797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
751 751  )))
752 752  
753 753  (((
754 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
755 755  )))
756 756  
757 -[[image:1657261278785-153.png]]
758 758  
759 759  
806 += 3. ​Using the AT Commands =
760 760  
761 -= 4.  Using the AT Commands =
808 +== 3.1 Access AT Commands ==
762 762  
763 -== 4.1  Access AT Commands ==
764 764  
765 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
766 766  
813 +[[image:1654501986557-872.png||height="391" width="800"]]
767 767  
768 -AT+<CMD>?  : Help on <CMD>
769 769  
770 -AT+<CMD>         : Run <CMD>
816 +Or if you have below board, use below connection:
771 771  
772 -AT+<CMD>=<value> : Set the value
773 773  
774 -AT+<CMD>=?  : Get the value
819 +[[image:1654502005655-729.png||height="503" width="801"]]
775 775  
776 776  
822 +
823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
824 +
825 +
826 + [[image:1654502050864-459.png||height="564" width="806"]]
827 +
828 +
829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
830 +
831 +
832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
835 +
836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
837 +
838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
839 +
840 +
777 777  (% style="color:#037691" %)**General Commands**(%%)      
778 778  
779 -AT  : Attention       
843 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
780 780  
781 -AT?  : Short Help     
845 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
782 782  
783 -ATZ  : MCU Reset    
847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
784 784  
785 -AT+TDC  : Application Data Transmission Interval
849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
786 786  
787 -AT+CFG  : Print all configurations
788 788  
789 -AT+CFGMOD           : Working mode selection
852 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
790 790  
791 -AT+INTMOD            : Set the trigger interrupt mode
854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
792 792  
793 -AT+5VT  : Set extend the time of 5V power  
856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
794 794  
795 -AT+PRO  : Choose agreement
858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
796 796  
797 -AT+WEIGRE  : Get weight or set weight to 0
860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
798 798  
799 -AT+WEIGAP  : Get or Set the GapValue of weight
862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
800 800  
801 -AT+RXDL  : Extend the sending and receiving time
864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
802 802  
803 -AT+CNTFAC  : Get or set counting parameters
866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
804 804  
805 -AT+SERVADDR  : Server Address
868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
806 806  
870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
807 807  
808 -(% style="color:#037691" %)**COAP Management**      
872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
809 809  
810 -AT+URI            : Resource parameters
874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
811 811  
876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
812 812  
813 -(% style="color:#037691" %)**UDP Management**
878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
814 814  
815 -AT+CFM          : Upload confirmation mode (only valid for UDP)
880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
816 816  
882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
817 817  
818 -(% style="color:#037691" %)**MQTT Management**
884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
819 819  
820 -AT+CLIENT               : Get or Set MQTT client
821 821  
822 -AT+UNAME  : Get or Set MQTT Username
887 +(% style="color:#037691" %)**LoRa Network Management**
823 823  
824 -AT+PWD                  : Get or Set MQTT password
889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
825 825  
826 -AT+PUBTOPI : Get or Set MQTT publish topic
891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
827 827  
828 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
829 829  
895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
830 830  
831 -(% style="color:#037691" %)**Information**          
897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
832 832  
833 -AT+FDR  : Factory Data Reset
899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
834 834  
835 -AT+PWOR : Serial Access Password
901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
836 836  
903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
837 837  
905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
838 838  
839 -= ​5.  FAQ =
907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
840 840  
841 -== 5.1 How to Upgrade Firmware ==
909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
842 842  
911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
843 843  
913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
914 +
915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
918 +
919 +
920 +(% style="color:#037691" %)**Information** 
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
933 +
934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
935 +
936 +
937 += ​4. FAQ =
938 +
939 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
940 +
844 844  (((
845 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
943 +When downloading the images, choose the required image file for download. ​
846 846  )))
847 847  
848 848  (((
849 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
947 +
850 850  )))
851 851  
852 852  (((
853 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
854 854  )))
855 855  
954 +(((
955 +
956 +)))
856 856  
958 +(((
959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
960 +)))
857 857  
858 -== 5.2  Can I calibrate NSE01 to different soil types? ==
962 +(((
963 +
964 +)))
859 859  
860 860  (((
861 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
862 862  )))
863 863  
970 +[[image:image-20220606154726-3.png]]
864 864  
865 -= 6.  Trouble Shooting =
866 866  
867 -== 6.1  ​Connection problem when uploading firmware ==
973 +When you use the TTN network, the US915 frequency bands use are:
868 868  
975 +* 903.9 - SF7BW125 to SF10BW125
976 +* 904.1 - SF7BW125 to SF10BW125
977 +* 904.3 - SF7BW125 to SF10BW125
978 +* 904.5 - SF7BW125 to SF10BW125
979 +* 904.7 - SF7BW125 to SF10BW125
980 +* 904.9 - SF7BW125 to SF10BW125
981 +* 905.1 - SF7BW125 to SF10BW125
982 +* 905.3 - SF7BW125 to SF10BW125
983 +* 904.6 - SF8BW500
869 869  
870 870  (((
871 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
987 +
988 +* (% style="color:#037691" %)**AT+CHE=2**
989 +* (% style="color:#037691" %)**ATZ**
872 872  )))
873 873  
874 -(% class="wikigeneratedid" %)
875 875  (((
876 876  
994 +
995 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
877 877  )))
878 878  
998 +(((
999 +
1000 +)))
879 879  
880 -== 6.2  AT Command input doesn't work ==
1002 +(((
1003 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1004 +)))
881 881  
1006 +[[image:image-20220606154825-4.png]]
1007 +
1008 +
1009 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1010 +
1011 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1012 +
1013 +
1014 += 5. Trouble Shooting =
1015 +
1016 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1017 +
1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1019 +
1020 +
1021 +== 5.2 AT Command input doesn't work ==
1022 +
882 882  (((
883 883  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 +)))
884 884  
885 -
1027 +
1028 +== 5.3 Device rejoin in at the second uplink packet ==
1029 +
1030 +(% style="color:#4f81bd" %)**Issue describe as below:**
1031 +
1032 +[[image:1654500909990-784.png]]
1033 +
1034 +
1035 +(% style="color:#4f81bd" %)**Cause for this issue:**
1036 +
1037 +(((
1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
886 886  )))
887 887  
888 888  
889 -= 7. ​ Order Info =
1042 +(% style="color:#4f81bd" %)**Solution: **
890 890  
1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
891 891  
892 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1046 +[[image:1654500929571-736.png||height="458" width="832"]]
893 893  
894 894  
1049 += 6. ​Order Info =
1050 +
1051 +
1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 +
1054 +
1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 +
1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 +
1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 +
1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 +
895 895  (% class="wikigeneratedid" %)
896 896  (((
897 897  
898 898  )))
899 899  
900 -= 8.  Packing Info =
1076 += 7. Packing Info =
901 901  
902 902  (((
903 903  
904 904  
905 905  (% style="color:#037691" %)**Package Includes**:
1082 +)))
906 906  
907 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
908 -* External antenna x 1
1084 +* (((
1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
909 909  )))
910 910  
911 911  (((
... ... @@ -912,19 +912,24 @@
912 912  
913 913  
914 914  (% style="color:#037691" %)**Dimension and weight**:
1092 +)))
915 915  
916 -* Size: 195 x 125 x 55 mm
917 -* Weight:   420g
1094 +* (((
1095 +Device Size: cm
918 918  )))
1097 +* (((
1098 +Device Weight: g
1099 +)))
1100 +* (((
1101 +Package Size / pcs : cm
1102 +)))
1103 +* (((
1104 +Weight / pcs : g
919 919  
920 -(((
921 921  
922 -
923 -
924 -
925 925  )))
926 926  
927 -= 9.  Support =
1109 += 8. Support =
928 928  
929 929  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
930 930  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
1657330723006-866.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.1 KB
Content
1657331036973-987.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -83.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content
image-20220709093918-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -42.2 KB
Content
image-20220709093918-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -61.9 KB
Content