Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 45 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- 1657331036973-987.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,735 +1,749 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 58 -== 1.3 61 +== 1.3 Specification == 59 59 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 61 - (% style="color:#037691" %)**CommonDC Characteristics:**65 +[[image:image-20220606162220-5.png]] 62 62 63 -* Supply Voltage: 2.1v ~~ 3.6v 64 -* Operating Temperature: -40 ~~ 85°C 65 65 66 -(% style="color:#037691" %)**NB-IoT Spec:** 67 67 68 -* - B1 @H-FDD: 2100MHz 69 -* - B3 @H-FDD: 1800MHz 70 -* - B8 @H-FDD: 900MHz 71 -* - B5 @H-FDD: 850MHz 72 -* - B20 @H-FDD: 800MHz 73 -* - B28 @H-FDD: 700MHz 69 +== 1.4 Applications == 74 74 75 - (%style="color:#037691" %)**Battery:**71 +* Smart Agriculture 76 76 77 -* Li/SOCI2 un-chargeable battery 78 -* Capacity: 8500mAh 79 -* Self Discharge: <1% / Year @ 25°C 80 -* Max continuously current: 130mA 81 -* Max boost current: 2A, 1 second 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 82 82 83 - (% style="color:#037691"%)**Power Consumption**76 +== 1.5 Firmware Change log == 84 84 85 -* STOP Mode: 10uA @ 3.3v 86 -* Max transmit power: 350mA@3.3v 87 87 79 +**LSE01 v1.0 :** Release 88 88 89 -== 1.4 Applications == 90 90 91 -* Smart Buildings & Home Automation 92 -* Logistics and Supply Chain Management 93 -* Smart Metering 94 -* Smart Agriculture 95 -* Smart Cities 96 -* Smart Factory 97 97 98 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 - 83 += 2. Configure LSE01 to connect to LoRaWAN network = 100 100 85 +== 2.1 How it works == 101 101 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 102 102 103 -== 1.5 Pin Definitions == 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 104 104 105 105 106 -[[image:1657328609906-564.png]] 107 107 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 108 108 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 109 109 110 -= 2. Use NDDS75 to communicate with IoT Server = 111 111 112 - ==2.1 How it works ==102 +[[image:1654503992078-669.png]] 113 113 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 114 114 ((( 115 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.153 +Uplink payload includes in total 11 bytes. 116 116 ))) 117 117 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 118 118 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 119 119 ((( 120 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:199 +Check the battery voltage for LSE01. 121 121 ))) 122 122 123 123 ((( 124 - 203 +Ex1: 0x0B45 = 2885mV 125 125 ))) 126 126 127 -[[image:1657328659945-416.png]] 128 - 129 129 ((( 130 - 207 +Ex2: 0x0B49 = 2889mV 131 131 ))) 132 132 133 133 134 -== 2.2 Configure the NDDS75 == 135 135 212 +=== 2.3.4 Soil Moisture === 136 136 137 -=== 2.2.1 Test Requirement === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 138 138 139 139 ((( 140 - TouseNDDS75inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 141 141 ))) 142 142 143 - * Your local operator has already distributed a NB-IoT Network there.144 - *The local NB-IoT network used the band that NSE01 supports.145 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 146 146 147 147 ((( 148 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 149 149 ))) 150 150 151 151 152 -[[image:1657328756309-230.png]] 153 153 232 +=== 2.3.5 Soil Temperature === 154 154 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 155 155 156 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 157 157 158 158 ((( 159 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 160 160 ))) 161 161 162 162 ((( 163 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 164 164 ))) 165 165 166 166 167 -[[image:1657328884227-504.png]] 168 168 252 +=== 2.3.6 Soil Conductivity (EC) === 169 169 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 170 170 171 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 172 172 173 173 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 174 174 ((( 175 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.267 + 176 176 ))) 269 + 270 +((( 271 + 177 177 ))) 178 178 179 - [[image:image-20220709092052-2.png]]274 +=== 2.3.7 MOD === 180 180 181 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 182 182 183 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 184 184 185 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 186 186 187 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 188 188 283 +**Downlink Command:** 189 189 190 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 191 191 192 -* Baud: (% style="color:green" %)**9600** 193 -* Data bits:** (% style="color:green" %)8(%%)** 194 -* Stop bits: (% style="color:green" %)**1** 195 -* Parity: (% style="color:green" %)**None** 196 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 197 197 198 -((( 199 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 200 -))) 201 201 202 -[[image:1657329814315-101.png]] 203 203 204 -((( 205 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 206 -))) 291 +=== 2.3.8 Decode payload in The Things Network === 207 207 293 +While using TTN network, you can add the payload format to decode the payload. 208 208 209 209 210 - ===2.2.4 Use CoAPprotocol to uplink data ===296 +[[image:1654505570700-128.png]] 211 211 212 - (%style="color:red"%)Note: if youdon't haveCoAP server,youanreferthislink tosetup one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]298 +The payload decoder function for TTN is here: 213 213 300 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 214 214 215 -**Use below commands:** 216 216 217 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 218 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 219 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 220 220 221 - Forparameterdescription,pleaserefer to AT commandset304 +== 2.4 Uplink Interval == 222 222 223 - [[image:1657330452568-615.png]]306 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 224 224 225 225 226 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 227 227 228 - [[image:1657330472797-498.png]]310 +== 2.5 Downlink Payload == 229 229 312 +By default, LSE50 prints the downlink payload to console port. 230 230 314 +[[image:image-20220606165544-8.png]] 231 231 232 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 233 233 317 +**Examples:** 234 234 235 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 236 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 237 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 238 238 239 - [[image:1657330501006-241.png]]320 +* **Set TDC** 240 240 322 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 241 241 242 - [[image:1657330533775-472.png]]324 +Payload: 01 00 00 1E TDC=30S 243 243 326 +Payload: 01 00 00 3C TDC=60S 244 244 245 245 246 - ===2.2.6 UseMQTT protocol to uplink data ===329 +* **Reset** 247 247 331 +If payload = 0x04FF, it will reset the LSE01 248 248 249 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 -* (% style="color:blue" %)**AT+PUBTOPIC=NDDS75_PUB **(%%)~/~/Set the sending topic of MQTT 255 -* (% style="color:blue" %)**AT+SUBTOPIC=NDDS75_SUB **(%%) ~/~/Set the subscription topic of MQTT 256 256 257 - [[image:1657249978444-674.png]]334 +* **CFM** 258 258 336 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 259 259 260 -[[image:1657330723006-866.png]] 261 261 262 262 263 -((( 264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 -))) 340 +== 2.6 Show Data in DataCake IoT Server == 266 266 342 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 267 267 268 268 269 - ===2.2.7UseTCPprotocoltouplinkdata===345 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 270 270 347 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 271 271 272 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 273 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 274 274 275 -[[image: image-20220709093918-1.png]]350 +[[image:1654505857935-743.png]] 276 276 277 277 278 -[[image: image-20220709093918-2.png]]353 +[[image:1654505874829-548.png]] 279 279 355 +Step 3: Create an account or log in Datacake. 280 280 357 +Step 4: Search the LSE01 and add DevEUI. 281 281 282 -=== 2.2.8 Change Update Interval === 283 283 284 - User can use below command to changethe (% style="color:green" %)**uplink interval**.360 +[[image:1654505905236-553.png]] 285 285 286 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 287 287 288 -((( 289 -(% style="color:red" %)**NOTE:** 290 -))) 363 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 291 291 292 -((( 293 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 294 -))) 365 +[[image:1654505925508-181.png]] 295 295 296 296 297 297 298 -== 2. 3UplinkPayload==369 +== 2.7 Frequency Plans == 299 299 300 - In this mode,uplinkpayloadincludesin total14bytes371 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 301 301 302 302 303 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 304 -|=(% style="width: 60px;" %)((( 305 -**Size(bytes)** 306 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 50px;" %)**1** 307 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Distance (unit: mm)>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 374 +=== 2.7.1 EU863-870 (EU868) === 308 308 309 -((( 310 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NDDS751 uplink data. 311 -))) 376 +(% style="color:#037691" %)** Uplink:** 312 312 378 +868.1 - SF7BW125 to SF12BW125 313 313 314 - [[image:1657331036973-987.png]]380 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 315 315 316 -((( 317 -The payload is ASCII string, representative same HEX: 318 -))) 382 +868.5 - SF7BW125 to SF12BW125 319 319 320 -((( 321 -0x72403155615900640c6c19029200 where: 322 -))) 384 +867.1 - SF7BW125 to SF12BW125 323 323 324 -* ((( 325 -Device ID: 0x724031556159 = 724031556159 326 -))) 327 -* ((( 328 -Version: 0x0064=100=1.0.0 329 -))) 386 +867.3 - SF7BW125 to SF12BW125 330 330 331 -* ((( 332 -BAT: 0x0c6c = 3180 mV = 3.180V 333 -))) 334 -* ((( 335 -Signal: 0x19 = 25 336 -))) 337 -* ((( 338 -Distance: 0x0292= 658 mm 339 -))) 340 -* ((( 341 -Interrupt: 0x00 = 0 342 -))) 388 +867.5 - SF7BW125 to SF12BW125 343 343 390 +867.7 - SF7BW125 to SF12BW125 344 344 392 +867.9 - SF7BW125 to SF12BW125 345 345 394 +868.8 - FSK 346 346 347 -== 2.4 Payload Explanation and Sensor Interface == 348 348 397 +(% style="color:#037691" %)** Downlink:** 349 349 350 - === 2.4.1 DeviceID===399 +Uplink channels 1-9 (RX1) 351 351 352 -((( 353 -By default, the Device ID equal to the last 6 bytes of IMEI. 354 -))) 401 +869.525 - SF9BW125 (RX2 downlink only) 355 355 356 -((( 357 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 358 -))) 359 359 360 -((( 361 -**Example:** 362 -))) 363 363 364 -((( 365 -AT+DEUI=A84041F15612 366 -))) 405 +=== 2.7.2 US902-928(US915) === 367 367 368 -((( 369 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 370 -))) 407 +Used in USA, Canada and South America. Default use CHE=2 371 371 409 +(% style="color:#037691" %)**Uplink:** 372 372 411 +903.9 - SF7BW125 to SF10BW125 373 373 374 - === 2.4.2VersionInfo ===413 +904.1 - SF7BW125 to SF10BW125 375 375 376 -((( 377 -Specify the software version: 0x64=100, means firmware version 1.00. 378 -))) 415 +904.3 - SF7BW125 to SF10BW125 379 379 380 -((( 381 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 382 -))) 417 +904.5 - SF7BW125 to SF10BW125 383 383 419 +904.7 - SF7BW125 to SF10BW125 384 384 421 +904.9 - SF7BW125 to SF10BW125 385 385 386 - === 2.4.3BatteryInfo===423 +905.1 - SF7BW125 to SF10BW125 387 387 388 -((( 389 -Check the battery voltage for LSE01. 390 -))) 425 +905.3 - SF7BW125 to SF10BW125 391 391 392 -((( 393 -Ex1: 0x0B45 = 2885mV 394 -))) 395 395 396 -((( 397 -Ex2: 0x0B49 = 2889mV 398 -))) 428 +(% style="color:#037691" %)**Downlink:** 399 399 430 +923.3 - SF7BW500 to SF12BW500 400 400 432 +923.9 - SF7BW500 to SF12BW500 401 401 402 - ===2.4.4SignalStrength===434 +924.5 - SF7BW500 to SF12BW500 403 403 404 -((( 405 -NB-IoT Network signal Strength. 406 -))) 436 +925.1 - SF7BW500 to SF12BW500 407 407 408 -((( 409 -**Ex1: 0x1d = 29** 410 -))) 438 +925.7 - SF7BW500 to SF12BW500 411 411 412 -((( 413 -(% style="color:blue" %)**0**(%%) -113dBm or less 414 -))) 440 +926.3 - SF7BW500 to SF12BW500 415 415 416 -((( 417 -(% style="color:blue" %)**1**(%%) -111dBm 418 -))) 442 +926.9 - SF7BW500 to SF12BW500 419 419 420 -((( 421 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 422 -))) 444 +927.5 - SF7BW500 to SF12BW500 423 423 424 -((( 425 -(% style="color:blue" %)**31** (%%) -51dBm or greater 426 -))) 446 +923.3 - SF12BW500(RX2 downlink only) 427 427 428 -((( 429 -(% style="color:blue" %)**99** (%%) Not known or not detectable 430 -))) 431 431 432 432 450 +=== 2.7.3 CN470-510 (CN470) === 433 433 434 - ===2.4.5 SoilMoisture ===452 +Used in China, Default use CHE=1 435 435 436 -((( 437 -((( 438 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 439 -))) 440 -))) 454 +(% style="color:#037691" %)**Uplink:** 441 441 442 -((( 443 -((( 444 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 445 -))) 446 -))) 456 +486.3 - SF7BW125 to SF12BW125 447 447 448 -((( 449 - 450 -))) 458 +486.5 - SF7BW125 to SF12BW125 451 451 452 -((( 453 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 454 -))) 460 +486.7 - SF7BW125 to SF12BW125 455 455 462 +486.9 - SF7BW125 to SF12BW125 456 456 464 +487.1 - SF7BW125 to SF12BW125 457 457 458 - === 2.4.6SoilTemperature===466 +487.3 - SF7BW125 to SF12BW125 459 459 460 -((( 461 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 462 -))) 468 +487.5 - SF7BW125 to SF12BW125 463 463 464 -((( 465 -**Example**: 466 -))) 470 +487.7 - SF7BW125 to SF12BW125 467 467 468 -((( 469 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 470 -))) 471 471 472 -((( 473 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 474 -))) 473 +(% style="color:#037691" %)**Downlink:** 475 475 475 +506.7 - SF7BW125 to SF12BW125 476 476 477 +506.9 - SF7BW125 to SF12BW125 477 477 478 - === 2.4.7oilConductivity(EC) ===479 +507.1 - SF7BW125 to SF12BW125 479 479 480 -((( 481 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 482 -))) 481 +507.3 - SF7BW125 to SF12BW125 483 483 484 -((( 485 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 486 -))) 483 +507.5 - SF7BW125 to SF12BW125 487 487 488 -((( 489 -Generally, the EC value of irrigation water is less than 800uS / cm. 490 -))) 485 +507.7 - SF7BW125 to SF12BW125 491 491 492 -((( 493 - 494 -))) 487 +507.9 - SF7BW125 to SF12BW125 495 495 496 -((( 497 - 498 -))) 489 +508.1 - SF7BW125 to SF12BW125 499 499 500 - ===2.4.8DigitalInterrupt===491 +505.3 - SF12BW125 (RX2 downlink only) 501 501 502 -((( 503 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 504 -))) 505 505 506 -((( 507 -The command is: 508 -))) 509 509 510 -((( 511 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 512 -))) 495 +=== 2.7.4 AU915-928(AU915) === 513 513 497 +Default use CHE=2 514 514 515 -((( 516 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 517 -))) 499 +(% style="color:#037691" %)**Uplink:** 518 518 501 +916.8 - SF7BW125 to SF12BW125 519 519 520 -((( 521 -Example: 522 -))) 503 +917.0 - SF7BW125 to SF12BW125 523 523 524 -((( 525 -0x(00): Normal uplink packet. 526 -))) 505 +917.2 - SF7BW125 to SF12BW125 527 527 528 -((( 529 -0x(01): Interrupt Uplink Packet. 530 -))) 507 +917.4 - SF7BW125 to SF12BW125 531 531 509 +917.6 - SF7BW125 to SF12BW125 532 532 511 +917.8 - SF7BW125 to SF12BW125 533 533 534 - === 2.4.9+5VOutput===513 +918.0 - SF7BW125 to SF12BW125 535 535 536 -((( 537 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 538 -))) 515 +918.2 - SF7BW125 to SF12BW125 539 539 540 540 541 -((( 542 -The 5V output time can be controlled by AT Command. 543 -))) 518 +(% style="color:#037691" %)**Downlink:** 544 544 545 -((( 546 -(% style="color:blue" %)**AT+5VT=1000** 547 -))) 520 +923.3 - SF7BW500 to SF12BW500 548 548 549 -((( 550 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 551 -))) 522 +923.9 - SF7BW500 to SF12BW500 552 552 524 +924.5 - SF7BW500 to SF12BW500 553 553 526 +925.1 - SF7BW500 to SF12BW500 554 554 555 - ==2.5DownlinkPayload ==528 +925.7 - SF7BW500 to SF12BW500 556 556 557 - Bydefault,NSE01prints the downlinkpayload to console port.530 +926.3 - SF7BW500 to SF12BW500 558 558 559 - [[image:image-20220708133731-5.png]]532 +926.9 - SF7BW500 to SF12BW500 560 560 534 +927.5 - SF7BW500 to SF12BW500 561 561 562 -((( 563 -(% style="color:blue" %)**Examples:** 564 -))) 536 +923.3 - SF12BW500(RX2 downlink only) 565 565 566 -((( 567 - 568 -))) 569 569 570 -* ((( 571 -(% style="color:blue" %)**Set TDC** 572 -))) 573 573 574 -((( 575 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 576 -))) 540 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 577 577 578 -((( 579 -Payload: 01 00 00 1E TDC=30S 580 -))) 542 +(% style="color:#037691" %)**Default Uplink channel:** 581 581 582 -((( 583 -Payload: 01 00 00 3C TDC=60S 584 -))) 544 +923.2 - SF7BW125 to SF10BW125 585 585 586 -((( 587 - 588 -))) 546 +923.4 - SF7BW125 to SF10BW125 589 589 590 -* ((( 591 -(% style="color:blue" %)**Reset** 592 -))) 593 593 594 -((( 595 -If payload = 0x04FF, it will reset the NSE01 596 -))) 549 +(% style="color:#037691" %)**Additional Uplink Channel**: 597 597 551 +(OTAA mode, channel added by JoinAccept message) 598 598 599 - *(% style="color:blue" %)**INTMOD**553 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 600 600 601 -((( 602 -Downlink Payload: 06000003, Set AT+INTMOD=3 603 -))) 555 +922.2 - SF7BW125 to SF10BW125 604 604 557 +922.4 - SF7BW125 to SF10BW125 605 605 559 +922.6 - SF7BW125 to SF10BW125 606 606 607 - ==2.6LEDIndicator==561 +922.8 - SF7BW125 to SF10BW125 608 608 609 -((( 610 -The NSE01 has an internal LED which is to show the status of different state. 563 +923.0 - SF7BW125 to SF10BW125 611 611 565 +922.0 - SF7BW125 to SF10BW125 612 612 613 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 614 -* Then the LED will be on for 1 second means device is boot normally. 615 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 616 -* For each uplink probe, LED will be on for 500ms. 617 -))) 618 618 568 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 619 619 570 +923.6 - SF7BW125 to SF10BW125 620 620 572 +923.8 - SF7BW125 to SF10BW125 621 621 622 - ==2.7InstallationinSoil ==574 +924.0 - SF7BW125 to SF10BW125 623 623 624 - __**Measurementthesoilsurface**__576 +924.2 - SF7BW125 to SF10BW125 625 625 626 -((( 627 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 628 -))) 578 +924.4 - SF7BW125 to SF10BW125 629 629 630 - [[image:1657259653666-883.png]]580 +924.6 - SF7BW125 to SF10BW125 631 631 632 632 633 -((( 634 - 583 +(% style="color:#037691" %)** Downlink:** 635 635 636 -((( 637 -Dig a hole with diameter > 20CM. 638 -))) 585 +Uplink channels 1-8 (RX1) 639 639 640 -((( 641 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 642 -))) 643 -))) 587 +923.2 - SF10BW125 (RX2) 644 644 645 -[[image:1654506665940-119.png]] 646 646 647 -((( 648 - 649 -))) 650 650 591 +=== 2.7.6 KR920-923 (KR920) === 651 651 652 - == 2.8 FirmwareChangeLog ==593 +Default channel: 653 653 595 +922.1 - SF7BW125 to SF12BW125 654 654 655 - DownloadURL&FirmwareChange log597 +922.3 - SF7BW125 to SF12BW125 656 656 657 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]599 +922.5 - SF7BW125 to SF12BW125 658 658 659 659 660 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]602 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 661 661 604 +922.1 - SF7BW125 to SF12BW125 662 662 606 +922.3 - SF7BW125 to SF12BW125 663 663 664 - ==2.9BatteryAnalysis ==608 +922.5 - SF7BW125 to SF12BW125 665 665 666 - ===2.9.1BatteryType ===610 +922.7 - SF7BW125 to SF12BW125 667 667 612 +922.9 - SF7BW125 to SF12BW125 668 668 614 +923.1 - SF7BW125 to SF12BW125 615 + 616 +923.3 - SF7BW125 to SF12BW125 617 + 618 + 619 +(% style="color:#037691" %)**Downlink:** 620 + 621 +Uplink channels 1-7(RX1) 622 + 623 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 624 + 625 + 626 + 627 +=== 2.7.7 IN865-867 (IN865) === 628 + 629 +(% style="color:#037691" %)** Uplink:** 630 + 631 +865.0625 - SF7BW125 to SF12BW125 632 + 633 +865.4025 - SF7BW125 to SF12BW125 634 + 635 +865.9850 - SF7BW125 to SF12BW125 636 + 637 + 638 +(% style="color:#037691" %) **Downlink:** 639 + 640 +Uplink channels 1-3 (RX1) 641 + 642 +866.550 - SF10BW125 (RX2) 643 + 644 + 645 + 646 + 647 +== 2.8 LED Indicator == 648 + 649 +The LSE01 has an internal LED which is to show the status of different state. 650 + 651 +* Blink once when device power on. 652 +* Solid ON for 5 seconds once device successful Join the network. 653 +* Blink once when device transmit a packet. 654 + 655 + 656 + 657 +== 2.9 Installation in Soil == 658 + 659 +**Measurement the soil surface** 660 + 661 + 662 +[[image:1654506634463-199.png]] 663 + 669 669 ((( 670 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 665 +((( 666 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 671 671 ))) 668 +))) 672 672 673 673 671 +[[image:1654506665940-119.png]] 672 + 674 674 ((( 675 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.674 +Dig a hole with diameter > 20CM. 676 676 ))) 677 677 677 +((( 678 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 679 +))) 678 678 681 + 682 +== 2.10 Firmware Change Log == 683 + 679 679 ((( 680 - The battery relateddocumentsasbelow:685 +**Firmware download link:** 681 681 ))) 682 682 683 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]684 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]685 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]688 +((( 689 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 690 +))) 686 686 687 687 ((( 688 - [[image:image-20220708140453-6.png]]693 + 689 689 ))) 690 690 696 +((( 697 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 698 +))) 691 691 700 +((( 701 + 702 +))) 692 692 693 -=== 2.9.2 Power consumption Analyze === 704 +((( 705 +**V1.0.** 706 +))) 694 694 695 695 ((( 696 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.709 +Release 697 697 ))) 698 698 699 699 713 +== 2.11 Battery Analysis == 714 + 715 +=== 2.11.1 Battery Type === 716 + 700 700 ((( 701 - Instruction touse as below:718 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 702 702 ))) 703 703 704 704 ((( 705 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]722 +The battery is designed to last for more than 5 years for the LSN50. 706 706 ))) 707 707 708 - 709 709 ((( 710 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 726 +((( 727 +The battery-related documents are as below: 711 711 ))) 729 +))) 712 712 713 713 * ((( 714 - ProductModel732 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 715 715 ))) 716 716 * ((( 717 - UplinkInterval735 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 718 718 ))) 719 719 * ((( 720 - WorkingMode738 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 721 721 ))) 722 722 723 -((( 724 -And the Life expectation in difference case will be shown on the right. 725 -))) 741 + [[image:image-20220606171726-9.png]] 726 726 727 -[[image:image-20220708141352-7.jpeg]] 728 728 729 729 745 +=== 2.11.2 Battery Note === 730 730 731 -=== 2.9.3 Battery Note === 732 - 733 733 ((( 734 734 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 735 735 ))) ... ... @@ -736,176 +736,303 @@ 736 736 737 737 738 738 739 -=== 2. 9.4Replace the battery ===753 +=== 2.11.3 Replace the battery === 740 740 741 741 ((( 742 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).756 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 743 743 ))) 744 744 745 - 746 - 747 -= 3. Access NB-IoT Module = 748 - 749 749 ((( 750 - Userscan directly accesstheATcommand set of theNB-IoTmodule.760 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 751 751 ))) 752 752 753 753 ((( 754 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]764 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 755 755 ))) 756 756 757 -[[image:1657261278785-153.png]] 758 758 759 759 769 += 3. Using the AT Commands = 760 760 761 -= 4.UsingtheAT Commands =771 +== 3.1 Access AT Commands == 762 762 763 -== 4.1 Access AT Commands == 764 764 765 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]774 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 766 766 776 +[[image:1654501986557-872.png||height="391" width="800"]] 767 767 768 -AT+<CMD>? : Help on <CMD> 769 769 770 - AT+<CMD>: Run<CMD>779 +Or if you have below board, use below connection: 771 771 772 -AT+<CMD>=<value> : Set the value 773 773 774 - AT+<CMD>=?:Get the value782 +[[image:1654502005655-729.png||height="503" width="801"]] 775 775 776 776 785 + 786 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 787 + 788 + 789 + [[image:1654502050864-459.png||height="564" width="806"]] 790 + 791 + 792 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 793 + 794 + 795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 796 + 797 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 802 + 803 + 777 777 (% style="color:#037691" %)**General Commands**(%%) 778 778 779 -AT 806 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 780 780 781 -AT? 808 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 782 782 783 -ATZ 810 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 784 784 785 -AT+TDC 812 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 786 786 787 -AT+CFG : Print all configurations 788 788 789 - AT+CFGMOD: Workingmode selection815 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 790 790 791 -AT+I NTMOD:Setthe trigger interruptmode817 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 792 792 793 -AT+ 5VTSetextend the timeof5V power819 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 794 794 795 -AT+P ROChooseagreement821 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 796 796 797 -AT+ WEIGREGet weightorsetweight to 0823 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 798 798 799 -AT+ WEIGAPGet or SettheGapValue of weight825 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 800 800 801 -AT+ RXDL: Extendthe sendingandreceivingtime827 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 802 802 803 -AT+ CNTFACGettcountingparameters829 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 804 804 805 -AT+ SERVADDR:ServerAddress831 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 806 806 833 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 807 807 808 -(% style="color:# 037691" %)**COAPManagement**835 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 809 809 810 -AT+ URIsourceparameters837 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 811 811 839 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 812 812 813 -(% style="color:# 037691" %)**UDPManagement**841 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 814 814 815 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)843 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 816 816 845 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 817 817 818 -(% style="color:# 037691" %)**MQTTManagement**847 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 819 819 820 -AT+CLIENT : Get or Set MQTT client 821 821 822 - AT+UNAMEGetSetMQTT Username850 +(% style="color:#037691" %)**LoRa Network Management** 823 823 824 -AT+ PWDGetor SetMQTT password852 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 825 825 826 -AT+ PUBTOPICGetorSetMQTTpublishtopic854 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 827 827 828 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic856 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 829 829 858 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 830 830 831 -(% style="color:# 037691" %)**Information**860 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 832 832 833 -AT+F DRctoryDataReset862 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 834 834 835 -AT+ PWORDSerialAccessPassword864 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 836 836 866 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 837 837 868 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 838 838 839 -= 5.FAQ=870 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 840 840 841 -= =5.1HowtoUpgradeFirmware==872 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 842 842 874 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 843 843 876 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 877 + 878 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 879 + 880 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 881 + 882 + 883 +(% style="color:#037691" %)**Information** 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 896 + 897 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 898 + 899 + 900 += 4. FAQ = 901 + 902 +== 4.1 How to change the LoRa Frequency Bands/Region? == 903 + 844 844 ((( 845 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 905 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 906 +When downloading the images, choose the required image file for download. 846 846 ))) 847 847 848 848 ((( 849 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]910 + 850 850 ))) 851 851 852 852 ((( 853 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.914 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 854 854 ))) 855 855 917 +((( 918 + 919 +))) 856 856 921 +((( 922 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 923 +))) 857 857 858 -== 5.2 Can I calibrate NSE01 to different soil types? == 925 +((( 926 + 927 +))) 859 859 860 860 ((( 861 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].930 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 862 862 ))) 863 863 933 +[[image:image-20220606154726-3.png]] 864 864 865 -= 6. Trouble Shooting = 866 866 867 - ==6.1 Connection problemwhenuploadingfirmware==936 +When you use the TTN network, the US915 frequency bands use are: 868 868 938 +* 903.9 - SF7BW125 to SF10BW125 939 +* 904.1 - SF7BW125 to SF10BW125 940 +* 904.3 - SF7BW125 to SF10BW125 941 +* 904.5 - SF7BW125 to SF10BW125 942 +* 904.7 - SF7BW125 to SF10BW125 943 +* 904.9 - SF7BW125 to SF10BW125 944 +* 905.1 - SF7BW125 to SF10BW125 945 +* 905.3 - SF7BW125 to SF10BW125 946 +* 904.6 - SF8BW500 869 869 870 870 ((( 871 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]949 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 872 872 ))) 873 873 874 -(% class=" wikigeneratedid" %)952 +(% class="box infomessage" %) 875 875 ((( 954 +**AT+CHE=2** 955 +))) 956 + 957 +(% class="box infomessage" %) 958 +((( 959 +**ATZ** 960 +))) 961 + 962 +((( 963 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 964 +))) 965 + 966 +((( 876 876 877 877 ))) 878 878 970 +((( 971 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 972 +))) 879 879 880 - == 6.2 AT Commandinput doesn't work ==974 +[[image:image-20220606154825-4.png]] 881 881 976 + 977 + 978 += 5. Trouble Shooting = 979 + 980 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 981 + 982 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 983 + 984 + 985 +== 5.2 AT Command input doesn’t work == 986 + 882 882 ((( 883 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 988 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 989 +))) 884 884 885 - 991 + 992 +== 5.3 Device rejoin in at the second uplink packet == 993 + 994 +(% style="color:#4f81bd" %)**Issue describe as below:** 995 + 996 +[[image:1654500909990-784.png]] 997 + 998 + 999 +(% style="color:#4f81bd" %)**Cause for this issue:** 1000 + 1001 +((( 1002 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 886 886 ))) 887 887 888 888 889 - =7. OrderInfo=1006 +(% style="color:#4f81bd" %)**Solution: ** 890 890 1008 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 891 891 892 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1010 +[[image:1654500929571-736.png||height="458" width="832"]] 893 893 894 894 1013 += 6. Order Info = 1014 + 1015 + 1016 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1017 + 1018 + 1019 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1020 + 1021 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1022 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1023 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1024 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1025 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1026 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1027 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1028 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1029 + 1030 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1031 + 1032 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1033 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1034 + 895 895 (% class="wikigeneratedid" %) 896 896 ((( 897 897 898 898 ))) 899 899 900 -= 8.1040 += 7. Packing Info = 901 901 902 902 ((( 903 903 904 904 905 905 (% style="color:#037691" %)**Package Includes**: 1046 +))) 906 906 907 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1908 - *Externalantennax 11048 +* ((( 1049 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 909 909 ))) 910 910 911 911 ((( ... ... @@ -912,19 +912,30 @@ 912 912 913 913 914 914 (% style="color:#037691" %)**Dimension and weight**: 1056 +))) 915 915 916 -* Size: 195 x 125 x 55 mm917 - * Weight:420g1058 +* ((( 1059 +Device Size: cm 918 918 ))) 1061 +* ((( 1062 +Device Weight: g 1063 +))) 1064 +* ((( 1065 +Package Size / pcs : cm 1066 +))) 1067 +* ((( 1068 +Weight / pcs : g 919 919 920 -((( 921 - 922 922 923 - 924 924 925 925 ))) 926 926 927 -= 9.1074 += 8. Support = 928 928 929 929 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 930 930 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1078 + 1079 + 1080 +~)~)~) 1081 +~)~)~) 1082 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- 1657331036973-987.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -83.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content