Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 44 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- 1657330723006-866.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
- image-20220709093918-1.png
- image-20220709093918-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,725 +1,753 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 59 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 65 +[[image:image-20220606162220-5.png]] 61 61 62 -(% style="color:#037691" %)**Common DC Characteristics:** 63 63 64 -* Supply Voltage: 2.1v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 66 66 67 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 68 68 69 -* - B1 @H-FDD: 2100MHz 70 -* - B3 @H-FDD: 1800MHz 71 -* - B8 @H-FDD: 900MHz 72 -* - B5 @H-FDD: 850MHz 73 -* - B20 @H-FDD: 800MHz 74 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 75 75 76 -(% style="color:#037691" %)**Battery:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 77 77 78 -* Li/SOCI2 un-chargeable battery 79 -* Capacity: 8500mAh 80 -* Self Discharge: <1% / Year @ 25°C 81 -* Max continuously current: 130mA 82 -* Max boost current: 2A, 1 second 76 +== 1.5 Firmware Change log == 83 83 84 -(% style="color:#037691" %)**Power Consumption** 85 85 86 -* STOP Mode: 10uA @ 3.3v 87 -* Max transmit power: 350mA@3.3v 79 +**LSE01 v1.0 :** Release 88 88 89 89 90 90 91 -= =1.4Applications==83 += 2. Configure LSE01 to connect to LoRaWAN network = 92 92 93 -* Smart Buildings & Home Automation 94 -* Logistics and Supply Chain Management 95 -* Smart Metering 96 -* Smart Agriculture 97 -* Smart Cities 98 -* Smart Factory 85 +== 2.1 How it works == 99 99 100 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 - 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 102 102 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 103 103 104 104 105 -== 1.5 Pin Definitions == 106 106 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 107 107 108 - [[image:1657328609906-564.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 109 109 110 110 102 +[[image:1654503992078-669.png]] 111 111 112 -= 2. Use NDDS75 to communicate with IoT Server = 113 113 114 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 115 115 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 116 116 ((( 117 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.153 +Uplink payload includes in total 11 bytes. 118 118 ))) 119 119 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 120 120 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 170 +))) 171 + 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 121 121 ((( 122 - Thediagram below showstheworkingflow in defaultfirmwareofNDDS75:199 +Check the battery voltage for LSE01. 123 123 ))) 124 124 125 125 ((( 126 - 203 +Ex1: 0x0B45 = 2885mV 127 127 ))) 128 128 129 -[[image:1657328659945-416.png]] 130 - 131 131 ((( 132 - 207 +Ex2: 0x0B49 = 2889mV 133 133 ))) 134 134 135 135 136 -== 2.2 Configure the NDDS75 == 137 137 212 +=== 2.3.4 Soil Moisture === 138 138 139 -=== 2.2.1 Test Requirement === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 140 140 141 141 ((( 142 - TouseNDDS75inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 143 143 ))) 144 144 145 - * Your local operator has already distributed a NB-IoT Network there.146 - *The local NB-IoT network used the band that NSE01 supports.147 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 148 148 149 149 ((( 150 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 151 151 ))) 152 152 153 153 154 -[[image:1657328756309-230.png]] 155 155 232 +=== 2.3.5 Soil Temperature === 156 156 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 157 157 158 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 159 159 160 160 ((( 161 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 162 162 ))) 163 163 164 164 ((( 165 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 166 166 ))) 167 167 168 168 169 -[[image:1657328884227-504.png]] 170 170 252 +=== 2.3.6 Soil Conductivity (EC) === 171 171 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 172 172 173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 174 174 175 175 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 176 176 ((( 177 - Userneed to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.267 + 178 178 ))) 269 + 270 +((( 271 + 179 179 ))) 180 180 181 - [[image:image-20220709092052-2.png]]274 +=== 2.3.7 MOD === 182 182 183 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 184 184 185 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 186 186 187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 188 188 189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 190 190 283 +**Downlink Command:** 191 191 192 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 199 199 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 200 200 ((( 201 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNDDS75. NDDS75 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 202 202 ))) 203 203 204 -[[image:1657329814315-101.png]] 205 - 206 206 ((( 207 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 208 208 ))) 209 209 210 210 211 211 212 -== =2.2.4se CoAPprotocolto uplinkdata ===308 +== 2.4 Uplink Interval == 213 213 214 - (%style="color:red"%)Note: ifyoudon'thaveCoAPserver,you canreferthis linktosetup one:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 215 215 216 216 217 -**Use below commands:** 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 +== 2.5 Downlink Payload == 222 222 223 - Forparameterdescription,pleaserefertoATcommandset316 +By default, LSE50 prints the downlink payload to console port. 224 224 225 -[[image: 1657330452568-615.png]]318 +[[image:image-20220606165544-8.png]] 226 226 227 227 228 - After configure the server address and (% style="color:green" %)**reset the device**(%%) (viaAT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.321 +**Examples:** 229 229 230 -[[image:1657330472797-498.png]] 231 231 324 +* **Set TDC** 232 232 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 233 233 234 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===328 +Payload: 01 00 00 1E TDC=30S 235 235 330 +Payload: 01 00 00 3C TDC=60S 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 240 240 333 +* **Reset** 241 241 242 - [[image:1657330501006-241.png]]335 +If payload = 0x04FF, it will reset the LSE01 243 243 244 244 245 - [[image:1657330533775-472.png]]338 +* **CFM** 246 246 340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 247 247 248 248 249 -=== 2.2.6 Use MQTT protocol to uplink data === 250 250 251 - Thisfeatureissupportedsincefirmwaresionv110344 +== 2.6 Show Data in DataCake IoT Server == 252 252 346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 253 253 254 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 255 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 256 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 257 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 258 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 259 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 260 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 261 261 262 - [[image:1657249978444-674.png]]349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 263 263 351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 264 264 265 -[[image:1657249990869-686.png]] 266 266 354 +[[image:1654505857935-743.png]] 267 267 268 -((( 269 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 270 -))) 271 271 357 +[[image:1654505874829-548.png]] 272 272 359 +Step 3: Create an account or log in Datacake. 273 273 274 - === 2.2.7 UseTCPprotocoltouplinkdata===361 +Step 4: Search the LSE01 and add DevEUI. 275 275 276 -This feature is supported since firmware version v110 277 277 364 +[[image:1654505905236-553.png]] 278 278 279 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 280 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 281 281 282 - [[image:1657250217799-140.png]]367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 283 283 369 +[[image:1654505925508-181.png]] 284 284 285 -[[image:1657250255956-604.png]] 286 286 287 287 373 +== 2.7 Frequency Plans == 288 288 289 - ===2.2.8ChangeUpdateInterval===375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 290 290 291 -User can use below command to change the (% style="color:green" %)**uplink interval**. 292 292 293 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/ SetUpdate Interval to600s378 +=== 2.7.1 EU863-870 (EU868) === 294 294 295 -((( 296 -(% style="color:red" %)**NOTE:** 297 -))) 380 +(% style="color:#037691" %)** Uplink:** 298 298 299 -((( 300 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 301 -))) 382 +868.1 - SF7BW125 to SF12BW125 302 302 384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 303 303 386 +868.5 - SF7BW125 to SF12BW125 304 304 305 - == 2.3UplinkPayload==388 +867.1 - SF7BW125 to SF12BW125 306 306 307 - Inthismode,uplink payload includes intotal18 bytes390 +867.3 - SF7BW125 to SF12BW125 308 308 309 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 310 -|=(% style="width: 60px;" %)((( 311 -**Size(bytes)** 312 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 313 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 392 +867.5 - SF7BW125 to SF12BW125 314 314 315 -((( 316 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 -))) 394 +867.7 - SF7BW125 to SF12BW125 318 318 396 +867.9 - SF7BW125 to SF12BW125 319 319 320 - [[image:image-20220708111918-4.png]]398 +868.8 - FSK 321 321 322 322 323 - ThepayloadisASCII string, representative same HEX:401 +(% style="color:#037691" %)** Downlink:** 324 324 325 - 0x72403155615900640c7817075e0a8c02f900where:403 +Uplink channels 1-9 (RX1) 326 326 327 -* Device ID: 0x 724031556159 = 724031556159 328 -* Version: 0x0064=100=1.0.0 405 +869.525 - SF9BW125 (RX2 downlink only) 329 329 330 -* BAT: 0x0c78 = 3192 mV = 3.192V 331 -* Singal: 0x17 = 23 332 -* Soil Moisture: 0x075e= 1886 = 18.86 % 333 -* Soil Temperature:0x0a8c =2700=27 °C 334 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 335 -* Interrupt: 0x00 = 0 336 336 337 -== 2.4 Payload Explanation and Sensor Interface == 338 338 409 +=== 2.7.2 US902-928(US915) === 339 339 340 - ===2.4.1 DeviceID ===411 +Used in USA, Canada and South America. Default use CHE=2 341 341 342 -((( 343 -By default, the Device ID equal to the last 6 bytes of IMEI. 344 -))) 413 +(% style="color:#037691" %)**Uplink:** 345 345 346 -((( 347 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 -))) 415 +903.9 - SF7BW125 to SF10BW125 349 349 350 -((( 351 -**Example:** 352 -))) 417 +904.1 - SF7BW125 to SF10BW125 353 353 354 -((( 355 -AT+DEUI=A84041F15612 356 -))) 419 +904.3 - SF7BW125 to SF10BW125 357 357 358 -((( 359 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 -))) 421 +904.5 - SF7BW125 to SF10BW125 361 361 423 +904.7 - SF7BW125 to SF10BW125 362 362 425 +904.9 - SF7BW125 to SF10BW125 363 363 364 - ===2.4.2VersionInfo ===427 +905.1 - SF7BW125 to SF10BW125 365 365 366 -((( 367 -Specify the software version: 0x64=100, means firmware version 1.00. 368 -))) 429 +905.3 - SF7BW125 to SF10BW125 369 369 370 -((( 371 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 -))) 373 373 432 +(% style="color:#037691" %)**Downlink:** 374 374 434 +923.3 - SF7BW500 to SF12BW500 375 375 376 - ===2.4.3atteryInfo===436 +923.9 - SF7BW500 to SF12BW500 377 377 378 -((( 379 -Check the battery voltage for LSE01. 380 -))) 438 +924.5 - SF7BW500 to SF12BW500 381 381 382 -((( 383 -Ex1: 0x0B45 = 2885mV 384 -))) 440 +925.1 - SF7BW500 to SF12BW500 385 385 386 -((( 387 -Ex2: 0x0B49 = 2889mV 388 -))) 442 +925.7 - SF7BW500 to SF12BW500 389 389 444 +926.3 - SF7BW500 to SF12BW500 390 390 446 +926.9 - SF7BW500 to SF12BW500 391 391 392 - ===2.4.4SignalStrength===448 +927.5 - SF7BW500 to SF12BW500 393 393 394 -((( 395 -NB-IoT Network signal Strength. 396 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 397 397 398 -((( 399 -**Ex1: 0x1d = 29** 400 -))) 401 401 402 -((( 403 -(% style="color:blue" %)**0**(%%) -113dBm or less 404 -))) 405 405 406 -((( 407 -(% style="color:blue" %)**1**(%%) -111dBm 408 -))) 454 +=== 2.7.3 CN470-510 (CN470) === 409 409 410 -((( 411 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 -))) 456 +Used in China, Default use CHE=1 413 413 414 -((( 415 -(% style="color:blue" %)**31** (%%) -51dBm or greater 416 -))) 458 +(% style="color:#037691" %)**Uplink:** 417 417 418 -((( 419 -(% style="color:blue" %)**99** (%%) Not known or not detectable 420 -))) 460 +486.3 - SF7BW125 to SF12BW125 421 421 462 +486.5 - SF7BW125 to SF12BW125 422 422 464 +486.7 - SF7BW125 to SF12BW125 423 423 424 - === 2.4.5SoilMoisture===466 +486.9 - SF7BW125 to SF12BW125 425 425 426 -((( 427 -((( 428 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 429 -))) 430 -))) 468 +487.1 - SF7BW125 to SF12BW125 431 431 432 -((( 433 -((( 434 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 435 -))) 436 -))) 470 +487.3 - SF7BW125 to SF12BW125 437 437 438 -((( 439 - 440 -))) 472 +487.5 - SF7BW125 to SF12BW125 441 441 442 -((( 443 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 444 -))) 474 +487.7 - SF7BW125 to SF12BW125 445 445 446 446 477 +(% style="color:#037691" %)**Downlink:** 447 447 448 - === 2.4.6oilTemperature===479 +506.7 - SF7BW125 to SF12BW125 449 449 450 -((( 451 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 452 -))) 481 +506.9 - SF7BW125 to SF12BW125 453 453 454 -((( 455 -**Example**: 456 -))) 483 +507.1 - SF7BW125 to SF12BW125 457 457 458 -((( 459 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 460 -))) 485 +507.3 - SF7BW125 to SF12BW125 461 461 462 -((( 463 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 464 -))) 487 +507.5 - SF7BW125 to SF12BW125 465 465 489 +507.7 - SF7BW125 to SF12BW125 466 466 491 +507.9 - SF7BW125 to SF12BW125 467 467 468 - === 2.4.7SoilConductivity(EC) ===493 +508.1 - SF7BW125 to SF12BW125 469 469 470 -((( 471 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 472 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 473 473 474 -((( 475 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 476 -))) 477 477 478 -((( 479 -Generally, the EC value of irrigation water is less than 800uS / cm. 480 -))) 481 481 482 -((( 483 - 484 -))) 499 +=== 2.7.4 AU915-928(AU915) === 485 485 486 -((( 487 - 488 -))) 501 +Default use CHE=2 489 489 490 - ===2.4.8 DigitalInterrupt===503 +(% style="color:#037691" %)**Uplink:** 491 491 492 -((( 493 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 -))) 505 +916.8 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -The command is: 498 -))) 507 +917.0 - SF7BW125 to SF12BW125 499 499 500 -((( 501 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 -))) 509 +917.2 - SF7BW125 to SF12BW125 503 503 511 +917.4 - SF7BW125 to SF12BW125 504 504 505 -((( 506 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 -))) 513 +917.6 - SF7BW125 to SF12BW125 508 508 515 +917.8 - SF7BW125 to SF12BW125 509 509 510 -((( 511 -Example: 512 -))) 517 +918.0 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -0x(00): Normal uplink packet. 516 -))) 519 +918.2 - SF7BW125 to SF12BW125 517 517 518 -((( 519 -0x(01): Interrupt Uplink Packet. 520 -))) 521 521 522 +(% style="color:#037691" %)**Downlink:** 522 522 524 +923.3 - SF7BW500 to SF12BW500 523 523 524 - ===2.4.9+5VOutput===526 +923.9 - SF7BW500 to SF12BW500 525 525 526 -((( 527 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 -))) 528 +924.5 - SF7BW500 to SF12BW500 529 529 530 +925.1 - SF7BW500 to SF12BW500 530 530 531 -((( 532 -The 5V output time can be controlled by AT Command. 533 -))) 532 +925.7 - SF7BW500 to SF12BW500 534 534 535 -((( 536 -(% style="color:blue" %)**AT+5VT=1000** 537 -))) 534 +926.3 - SF7BW500 to SF12BW500 538 538 539 -((( 540 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 -))) 536 +926.9 - SF7BW500 to SF12BW500 542 542 538 +927.5 - SF7BW500 to SF12BW500 543 543 540 +923.3 - SF12BW500(RX2 downlink only) 544 544 545 -== 2.5 Downlink Payload == 546 546 547 -By default, NSE01 prints the downlink payload to console port. 548 548 549 - [[image:image-20220708133731-5.png]]544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 550 550 546 +(% style="color:#037691" %)**Default Uplink channel:** 551 551 552 -((( 553 -(% style="color:blue" %)**Examples:** 554 -))) 548 +923.2 - SF7BW125 to SF10BW125 555 555 556 -((( 557 - 558 -))) 550 +923.4 - SF7BW125 to SF10BW125 559 559 560 -* ((( 561 -(% style="color:blue" %)**Set TDC** 562 -))) 563 563 564 -((( 565 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 566 -))) 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 567 567 568 -((( 569 -Payload: 01 00 00 1E TDC=30S 570 -))) 555 +(OTAA mode, channel added by JoinAccept message) 571 571 572 -((( 573 -Payload: 01 00 00 3C TDC=60S 574 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 575 575 576 -((( 577 - 578 -))) 559 +922.2 - SF7BW125 to SF10BW125 579 579 580 -* ((( 581 -(% style="color:blue" %)**Reset** 582 -))) 561 +922.4 - SF7BW125 to SF10BW125 583 583 584 -((( 585 -If payload = 0x04FF, it will reset the NSE01 586 -))) 563 +922.6 - SF7BW125 to SF10BW125 587 587 565 +922.8 - SF7BW125 to SF10BW125 588 588 589 - *(%style="color:blue"%)**INTMOD**567 +923.0 - SF7BW125 to SF10BW125 590 590 591 -((( 592 -Downlink Payload: 06000003, Set AT+INTMOD=3 593 -))) 569 +922.0 - SF7BW125 to SF10BW125 594 594 595 595 572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 596 596 597 - ==2.6LEDIndicator==574 +923.6 - SF7BW125 to SF10BW125 598 598 599 -((( 600 -The NSE01 has an internal LED which is to show the status of different state. 576 +923.8 - SF7BW125 to SF10BW125 601 601 578 +924.0 - SF7BW125 to SF10BW125 602 602 603 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 604 -* Then the LED will be on for 1 second means device is boot normally. 605 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 606 -* For each uplink probe, LED will be on for 500ms. 607 -))) 580 +924.2 - SF7BW125 to SF10BW125 608 608 582 +924.4 - SF7BW125 to SF10BW125 609 609 584 +924.6 - SF7BW125 to SF10BW125 610 610 611 611 612 - ==2.7 InstallationinSoil==587 +(% style="color:#037691" %)** Downlink:** 613 613 614 - __**Measurementthesoilurface**__589 +Uplink channels 1-8 (RX1) 615 615 616 -((( 617 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 -))) 591 +923.2 - SF10BW125 (RX2) 619 619 620 -[[image:1657259653666-883.png]] 621 621 622 622 623 -((( 624 - 595 +=== 2.7.6 KR920-923 (KR920) === 625 625 626 -((( 627 -Dig a hole with diameter > 20CM. 628 -))) 597 +Default channel: 629 629 630 -((( 631 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 632 -))) 633 -))) 599 +922.1 - SF7BW125 to SF12BW125 634 634 635 - [[image:1654506665940-119.png]]601 +922.3 - SF7BW125 to SF12BW125 636 636 637 -((( 638 - 639 -))) 603 +922.5 - SF7BW125 to SF12BW125 640 640 641 641 642 -= =2.8 FirmwareChangeLog==606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 643 643 608 +922.1 - SF7BW125 to SF12BW125 644 644 645 - DownloadURL&FirmwareChange log610 +922.3 - SF7BW125 to SF12BW125 646 646 647 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]612 +922.5 - SF7BW125 to SF12BW125 648 648 614 +922.7 - SF7BW125 to SF12BW125 649 649 650 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]616 +922.9 - SF7BW125 to SF12BW125 651 651 618 +923.1 - SF7BW125 to SF12BW125 652 652 620 +923.3 - SF7BW125 to SF12BW125 653 653 654 -== 2.9 Battery Analysis == 655 655 656 - ===2.9.1 BatteryType==623 +(% style="color:#037691" %)**Downlink:** 657 657 625 +Uplink channels 1-7(RX1) 658 658 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 + 629 + 630 + 631 +=== 2.7.7 IN865-867 (IN865) === 632 + 633 +(% style="color:#037691" %)** Uplink:** 634 + 635 +865.0625 - SF7BW125 to SF12BW125 636 + 637 +865.4025 - SF7BW125 to SF12BW125 638 + 639 +865.9850 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %) **Downlink:** 643 + 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 659 659 ((( 660 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 661 661 ))) 672 +))) 662 662 663 663 675 +[[image:1654506665940-119.png]] 676 + 664 664 ((( 665 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.678 +Dig a hole with diameter > 20CM. 666 666 ))) 667 667 681 +((( 682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 +))) 668 668 685 + 686 +== 2.10 Firmware Change Log == 687 + 669 669 ((( 670 - The battery relateddocumentsasbelow:689 +**Firmware download link:** 671 671 ))) 672 672 673 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]674 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]675 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]692 +((( 693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 +))) 676 676 677 677 ((( 678 - [[image:image-20220708140453-6.png]]697 + 679 679 ))) 680 680 700 +((( 701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 +))) 681 681 704 +((( 705 + 706 +))) 682 682 683 -=== 2.9.2 Power consumption Analyze === 708 +((( 709 +**V1.0.** 710 +))) 684 684 685 685 ((( 686 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.713 +Release 687 687 ))) 688 688 689 689 717 +== 2.11 Battery Analysis == 718 + 719 +=== 2.11.1 Battery Type === 720 + 690 690 ((( 691 - Instruction touse as below:722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 692 ))) 693 693 694 694 ((( 695 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]726 +The battery is designed to last for more than 5 years for the LSN50. 696 696 ))) 697 697 698 - 699 699 ((( 700 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 730 +((( 731 +The battery-related documents are as below: 701 701 ))) 733 +))) 702 702 703 703 * ((( 704 - ProductModel736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 705 705 ))) 706 706 * ((( 707 - UplinkInterval739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 708 708 ))) 709 709 * ((( 710 - WorkingMode742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 711 711 ))) 712 712 713 -((( 714 -And the Life expectation in difference case will be shown on the right. 715 -))) 745 + [[image:image-20220606171726-9.png]] 716 716 717 -[[image:image-20220708141352-7.jpeg]] 718 718 719 719 749 +=== 2.11.2 Battery Note === 720 720 721 -=== 2.9.3 Battery Note === 722 - 723 723 ((( 724 724 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 725 725 ))) ... ... @@ -726,176 +726,303 @@ 726 726 727 727 728 728 729 -=== 2. 9.4Replace the battery ===757 +=== 2.11.3 Replace the battery === 730 730 731 731 ((( 732 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 733 733 ))) 734 734 735 - 736 - 737 -= 3. Access NB-IoT Module = 738 - 739 739 ((( 740 - Userscan directly accesstheATcommand set of theNB-IoTmodule.764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 741 741 ))) 742 742 743 743 ((( 744 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 745 745 ))) 746 746 747 -[[image:1657261278785-153.png]] 748 748 749 749 773 += 3. Using the AT Commands = 750 750 751 -= 4.UsingtheAT Commands =775 +== 3.1 Access AT Commands == 752 752 753 -== 4.1 Access AT Commands == 754 754 755 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 756 756 780 +[[image:1654501986557-872.png||height="391" width="800"]] 757 757 758 -AT+<CMD>? : Help on <CMD> 759 759 760 - AT+<CMD>: Run<CMD>783 +Or if you have below board, use below connection: 761 761 762 -AT+<CMD>=<value> : Set the value 763 763 764 - AT+<CMD>=?:Get the value786 +[[image:1654502005655-729.png||height="503" width="801"]] 765 765 766 766 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 767 767 (% style="color:#037691" %)**General Commands**(%%) 768 768 769 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 770 770 771 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 772 772 773 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 774 774 775 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 776 776 777 -AT+CFG : Print all configurations 778 778 779 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 780 780 781 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 782 782 783 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 784 784 785 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 786 786 787 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 788 788 789 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 790 790 791 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 792 792 793 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 794 794 795 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 796 796 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 797 797 798 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 799 799 800 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 801 801 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 802 802 803 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 804 804 805 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 806 806 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 807 807 808 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 809 809 810 -AT+CLIENT : Get or Set MQTT client 811 811 812 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 813 813 814 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 815 815 816 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 817 817 818 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 819 819 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 820 820 821 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 822 822 823 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 824 824 825 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 826 826 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 827 827 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 828 828 829 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 830 830 831 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 832 832 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 833 833 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 834 834 ((( 835 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 836 836 ))) 837 837 838 838 ((( 839 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 840 840 ))) 841 841 842 842 ((( 843 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 844 844 ))) 845 845 921 +((( 922 + 923 +))) 846 846 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 847 847 848 -== 5.2 Can I calibrate NSE01 to different soil types? == 929 +((( 930 + 931 +))) 849 849 850 850 ((( 851 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 852 852 ))) 853 853 937 +[[image:image-20220606154726-3.png]] 854 854 855 -= 6. Trouble Shooting = 856 856 857 - ==6.1 Connection problemwhenuploadingfirmware==940 +When you use the TTN network, the US915 frequency bands use are: 858 858 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 859 859 860 860 ((( 861 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 862 862 ))) 863 863 864 -(% class=" wikigeneratedid" %)956 +(% class="box infomessage" %) 865 865 ((( 958 +**AT+CHE=2** 959 +))) 960 + 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 965 + 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 969 + 970 +((( 866 866 867 867 ))) 868 868 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 869 869 870 - == 6.2 AT Commandinput doesn't work ==978 +[[image:image-20220606154825-4.png]] 871 871 980 + 981 + 982 += 5. Trouble Shooting = 983 + 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 + 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 872 872 ((( 873 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 874 874 875 - 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 876 876 ))) 877 877 878 878 879 - =7. OrderInfo=1010 +(% style="color:#4f81bd" %)**Solution: ** 880 880 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 881 881 882 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1014 +[[image:1654500929571-736.png||height="458" width="832"]] 883 883 884 884 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 885 885 (% class="wikigeneratedid" %) 886 886 ((( 887 887 888 888 ))) 889 889 890 -= 8.1044 += 7. Packing Info = 891 891 892 892 ((( 893 893 894 894 895 895 (% style="color:#037691" %)**Package Includes**: 1050 +))) 896 896 897 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1898 - *Externalantennax 11052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 899 899 ))) 900 900 901 901 ((( ... ... @@ -902,19 +902,30 @@ 902 902 903 903 904 904 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 905 905 906 -* Size: 195 x 125 x 55 mm907 - * Weight:420g1062 +* ((( 1063 +Device Size: cm 908 908 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 909 909 910 -((( 911 - 912 912 913 - 914 914 915 915 ))) 916 916 917 -= 9.1078 += 8. Support = 918 918 919 919 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 920 920 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- 1657330723006-866.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content
- image-20220709093918-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -42.2 KB - Content
- image-20220709093918-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -61.9 KB - Content