Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 86.2
edited by Xiaoling
on 2022/07/09 09:35
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,27 +35,28 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
58 58  
63 +
59 59  == 1.3  Specification ==
60 60  
61 61  
... ... @@ -64,6 +64,7 @@
64 64  * Supply Voltage: 2.1v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
72 +
67 67  (% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 69  * - B1 @H-FDD: 2100MHz
... ... @@ -73,653 +73,719 @@
73 73  * - B20 @H-FDD: 800MHz
74 74  * - B28 @H-FDD: 700MHz
75 75  
76 -(% style="color:#037691" %)**Battery:**
77 77  
78 -* Li/SOCI2 un-chargeable battery
79 -* Capacity: 8500mAh
80 -* Self Discharge: <1% / Year @ 25°C
81 -* Max continuously current: 130mA
82 -* Max boost current: 2A, 1 second
83 +(% style="color:#037691" %)**Probe Specification:**
83 83  
84 -(% style="color:#037691" %)**Power Consumption**
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
86 -* STOP Mode: 10uA @ 3.3v
87 -* Max transmit power: 350mA@3.3v
87 +[[image:image-20220708101224-1.png]]
88 88  
89 89  
90 90  
91 91  == ​1.4  Applications ==
92 92  
93 -* Smart Buildings & Home Automation
94 -* Logistics and Supply Chain Management
95 -* Smart Metering
96 96  * Smart Agriculture
97 -* Smart Cities
98 -* Smart Factory
99 99  
100 100  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
101 101  ​
102 102  
98 +== 1.5  Pin Definitions ==
103 103  
104 104  
105 -== 1.5  Pin Definitions ==
101 +[[image:1657246476176-652.png]]
106 106  
107 107  
108 -[[image:1657328609906-564.png]]
109 109  
105 += 2. Configure LSE01 to connect to LoRaWAN network =
110 110  
107 +== 2.1 How it works ==
111 111  
112 -= 2.  Use NDDS75 to communicate with IoT Server =
109 +(((
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +)))
113 113  
114 -== 2.1  How it works ==
113 +(((
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 +)))
115 115  
117 +
118 +
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 +
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 +
123 +
124 +[[image:1654503992078-669.png]]
125 +
126 +
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 +
129 +
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
116 116  (((
117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
173 +Uplink payload includes in total 11 bytes.
118 118  )))
119 119  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
120 120  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
190 +)))
191 +
192 +=== 2.3.2 MOD~=1(Original value) ===
193 +
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 +
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
199 +
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
204 +
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 +
209 +(Optional)
210 +)))
211 +
212 +=== 2.3.3 Battery Info ===
213 +
121 121  (((
122 -The diagram below shows the working flow in default firmware of NDDS75:
215 +Check the battery voltage for LSE01.
123 123  )))
124 124  
125 125  (((
126 -
219 +Ex1: 0x0B45 = 2885mV
127 127  )))
128 128  
129 -[[image:1657328659945-416.png]]
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
130 130  
226 +
227 +
228 +=== 2.3.4 Soil Moisture ===
229 +
131 131  (((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
233 +
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
237 +
238 +(((
132 132  
133 133  )))
134 134  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
135 135  
136 -== 2.2 ​ Configure the NDDS75 ==
137 137  
138 138  
139 -=== 2.2.1 Test Requirement ===
248 +=== 2.3.5 Soil Temperature ===
140 140  
141 141  (((
142 -To use NDDS75 in your city, make sure meet below requirements:
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
143 143  )))
144 144  
145 -* Your local operator has already distributed a NB-IoT Network there.
146 -* The local NB-IoT network used the band that NSE01 supports.
147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
254 +(((
255 +**Example**:
256 +)))
148 148  
149 149  (((
150 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
151 151  )))
152 152  
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
153 153  
154 -[[image:1657328756309-230.png]]
155 155  
156 156  
268 +=== 2.3.6 Soil Conductivity (EC) ===
157 157  
158 -=== 2.2.2 Insert SIM card ===
270 +(((
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
272 +)))
159 159  
160 160  (((
161 -Insert the NB-IoT Card get from your provider.
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
162 162  )))
163 163  
164 164  (((
165 -User need to take out the NB-IoT module and insert the SIM card like below:
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
166 166  )))
167 167  
282 +(((
283 +
284 +)))
168 168  
169 -[[image:1657328884227-504.png]]
286 +(((
287 +
288 +)))
170 170  
290 +=== 2.3.7 MOD ===
171 171  
292 +Firmware version at least v2.1 supports changing mode.
172 172  
173 -=== 2.2.3 Connect USB – TTL to NDDS75 to configure it ===
294 +For example, bytes[10]=90
174 174  
296 +mod=(bytes[10]>>7)&0x01=1.
297 +
298 +
299 +**Downlink Command:**
300 +
301 +If payload = 0x0A00, workmode=0
302 +
303 +If** **payload =** **0x0A01, workmode=1
304 +
305 +
306 +
307 +=== 2.3.8 ​Decode payload in The Things Network ===
308 +
309 +While using TTN network, you can add the payload format to decode the payload.
310 +
311 +
312 +[[image:1654505570700-128.png]]
313 +
175 175  (((
315 +The payload decoder function for TTN is here:
316 +)))
317 +
176 176  (((
177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
178 178  )))
179 -)))
180 180  
181 -[[image:image-20220709092052-2.png]]
182 182  
183 -**Connection:**
323 +== 2.4 Uplink Interval ==
184 184  
185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
186 186  
187 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
188 188  
189 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
190 190  
329 +== 2.5 Downlink Payload ==
191 191  
192 -In the PC, use below serial tool settings:
331 +By default, LSE50 prints the downlink payload to console port.
193 193  
194 -* Baud:  (% style="color:green" %)**9600**
195 -* Data bits:** (% style="color:green" %)8(%%)**
196 -* Stop bits: (% style="color:green" %)**1**
197 -* Parity:  (% style="color:green" %)**None**
198 -* Flow Control: (% style="color:green" %)**None**
333 +[[image:image-20220606165544-8.png]]
199 199  
335 +
200 200  (((
201 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
337 +(% style="color:blue" %)**Examples:**
202 202  )))
203 203  
204 -[[image:1657329814315-101.png]]
340 +(((
341 +
342 +)))
205 205  
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
346 +)))
347 +
206 206  (((
207 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
208 208  )))
209 209  
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
354 +)))
210 210  
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
211 211  
212 -=== 2.2.4 Use CoAP protocol to uplink data ===
360 +(((
361 +
362 +)))
213 213  
214 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
215 215  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
216 216  
217 -**Use below commands:**
218 218  
219 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
373 +* (% style="color:blue" %)**CFM**
222 222  
223 -For parameter description, please refer to AT command set
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
224 224  
225 -[[image:1657330452568-615.png]]
226 226  
227 227  
228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server.
379 +== 2.6 ​Show Data in DataCake IoT Server ==
229 229  
230 -[[image:1657330472797-498.png]]
381 +(((
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
383 +)))
231 231  
385 +(((
386 +
387 +)))
232 232  
389 +(((
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
391 +)))
233 233  
234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
235 235  
236 236  
237 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
239 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
398 +[[image:1654505857935-743.png]]
240 240  
241 241  
242 -[[image:1657330501006-241.png]]
401 +[[image:1654505874829-548.png]]
243 243  
244 244  
245 -[[image:1657330533775-472.png]]
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
246 246  
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
247 247  
248 248  
249 -=== 2.2.6 Use MQTT protocol to uplink data ===
409 +[[image:1654505905236-553.png]]
250 250  
251 -This feature is supported since firmware version v110
252 252  
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
253 253  
254 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
255 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
256 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
257 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
258 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
259 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
260 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
414 +[[image:1654505925508-181.png]]
261 261  
262 -[[image:1657249978444-674.png]]
263 263  
264 264  
265 -[[image:1657249990869-686.png]]
418 +== 2.7 Frequency Plans ==
266 266  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
267 267  
268 -(((
269 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
270 -)))
271 271  
423 +=== 2.7.1 EU863-870 (EU868) ===
272 272  
425 +(% style="color:#037691" %)** Uplink:**
273 273  
274 -=== 2.2.7 Use TCP protocol to uplink data ===
427 +868.1 - SF7BW125 to SF12BW125
275 275  
276 -This feature is supported since firmware version v110
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
277 277  
431 +868.5 - SF7BW125 to SF12BW125
278 278  
279 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
280 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
433 +867.1 - SF7BW125 to SF12BW125
281 281  
282 -[[image:1657250217799-140.png]]
435 +867.3 - SF7BW125 to SF12BW125
283 283  
437 +867.5 - SF7BW125 to SF12BW125
284 284  
285 -[[image:1657250255956-604.png]]
439 +867.7 - SF7BW125 to SF12BW125
286 286  
441 +867.9 - SF7BW125 to SF12BW125
287 287  
443 +868.8 - FSK
288 288  
289 -=== 2.2.8 Change Update Interval ===
290 290  
291 -User can use below command to change the (% style="color:green" %)**uplink interval**.
446 +(% style="color:#037691" %)** Downlink:**
292 292  
293 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
448 +Uplink channels 1-9 (RX1)
294 294  
295 -(((
296 -(% style="color:red" %)**NOTE:**
297 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
298 298  
299 -(((
300 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
301 -)))
302 302  
303 303  
454 +=== 2.7.2 US902-928(US915) ===
304 304  
305 -== 2.3  Uplink Payload ==
456 +Used in USA, Canada and South America. Default use CHE=2
306 306  
307 -In this mode, uplink payload includes in total 18 bytes
458 +(% style="color:#037691" %)**Uplink:**
308 308  
309 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
310 -|=(% style="width: 60px;" %)(((
311 -**Size(bytes)**
312 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
313 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
460 +903.9 - SF7BW125 to SF10BW125
314 314  
315 -(((
316 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
317 -)))
462 +904.1 - SF7BW125 to SF10BW125
318 318  
464 +904.3 - SF7BW125 to SF10BW125
319 319  
320 -[[image:image-20220708111918-4.png]]
466 +904.5 - SF7BW125 to SF10BW125
321 321  
468 +904.7 - SF7BW125 to SF10BW125
322 322  
323 -The payload is ASCII string, representative same HEX:
470 +904.9 - SF7BW125 to SF10BW125
324 324  
325 -0x72403155615900640c7817075e0a8c02f900 where:
472 +905.1 - SF7BW125 to SF10BW125
326 326  
327 -* Device ID: 0x 724031556159 = 724031556159
328 -* Version: 0x0064=100=1.0.0
474 +905.3 - SF7BW125 to SF10BW125
329 329  
330 -* BAT: 0x0c78 = 3192 mV = 3.192V
331 -* Singal: 0x17 = 23
332 -* Soil Moisture: 0x075e= 1886 = 18.86  %
333 -* Soil Temperature:0x0a8c =2700=27 °C
334 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
335 -* Interrupt: 0x00 = 0
336 336  
337 -== 2.4  Payload Explanation and Sensor Interface ==
477 +(% style="color:#037691" %)**Downlink:**
338 338  
479 +923.3 - SF7BW500 to SF12BW500
339 339  
340 -=== 2.4.1  Device ID ===
481 +923.9 - SF7BW500 to SF12BW500
341 341  
342 -(((
343 -By default, the Device ID equal to the last 6 bytes of IMEI.
344 -)))
483 +924.5 - SF7BW500 to SF12BW500
345 345  
346 -(((
347 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
348 -)))
485 +925.1 - SF7BW500 to SF12BW500
349 349  
350 -(((
351 -**Example:**
352 -)))
487 +925.7 - SF7BW500 to SF12BW500
353 353  
354 -(((
355 -AT+DEUI=A84041F15612
356 -)))
489 +926.3 - SF7BW500 to SF12BW500
357 357  
358 -(((
359 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
360 -)))
491 +926.9 - SF7BW500 to SF12BW500
361 361  
493 +927.5 - SF7BW500 to SF12BW500
362 362  
495 +923.3 - SF12BW500(RX2 downlink only)
363 363  
364 -=== 2.4.2  Version Info ===
365 365  
366 -(((
367 -Specify the software version: 0x64=100, means firmware version 1.00.
368 -)))
369 369  
370 -(((
371 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
372 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
373 373  
501 +Used in China, Default use CHE=1
374 374  
503 +(% style="color:#037691" %)**Uplink:**
375 375  
376 -=== 2.4.3  Battery Info ===
505 +486.3 - SF7BW125 to SF12BW125
377 377  
378 -(((
379 -Check the battery voltage for LSE01.
380 -)))
507 +486.5 - SF7BW125 to SF12BW125
381 381  
382 -(((
383 -Ex1: 0x0B45 = 2885mV
384 -)))
509 +486.7 - SF7BW125 to SF12BW125
385 385  
386 -(((
387 -Ex2: 0x0B49 = 2889mV
388 -)))
511 +486.9 - SF7BW125 to SF12BW125
389 389  
513 +487.1 - SF7BW125 to SF12BW125
390 390  
515 +487.3 - SF7BW125 to SF12BW125
391 391  
392 -=== 2.4. Signal Strength ===
517 +487.5 - SF7BW125 to SF12BW125
393 393  
394 -(((
395 -NB-IoT Network signal Strength.
396 -)))
519 +487.7 - SF7BW125 to SF12BW125
397 397  
398 -(((
399 -**Ex1: 0x1d = 29**
400 -)))
401 401  
402 -(((
403 -(% style="color:blue" %)**0**(%%)  -113dBm or less
404 -)))
522 +(% style="color:#037691" %)**Downlink:**
405 405  
406 -(((
407 -(% style="color:blue" %)**1**(%%)  -111dBm
408 -)))
524 +506.7 - SF7BW125 to SF12BW125
409 409  
410 -(((
411 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
412 -)))
526 +506.9 - SF7BW125 to SF12BW125
413 413  
414 -(((
415 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
416 -)))
528 +507.1 - SF7BW125 to SF12BW125
417 417  
418 -(((
419 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
420 -)))
530 +507.3 - SF7BW125 to SF12BW125
421 421  
532 +507.5 - SF7BW125 to SF12BW125
422 422  
534 +507.7 - SF7BW125 to SF12BW125
423 423  
424 -=== 2.4.5  Soil Moisture ===
536 +507.9 - SF7BW125 to SF12BW125
425 425  
426 -(((
427 -(((
428 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
429 -)))
430 -)))
538 +508.1 - SF7BW125 to SF12BW125
431 431  
432 -(((
433 -(((
434 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
435 -)))
436 -)))
540 +505.3 - SF12BW125 (RX2 downlink only)
437 437  
438 -(((
439 -
440 -)))
441 441  
442 -(((
443 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
444 -)))
445 445  
544 +=== 2.7.4 AU915-928(AU915) ===
446 446  
546 +Default use CHE=2
447 447  
448 -=== 2.4.6  Soil Temperature ===
548 +(% style="color:#037691" %)**Uplink:**
449 449  
450 -(((
451 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
452 -)))
550 +916.8 - SF7BW125 to SF12BW125
453 453  
454 -(((
455 -**Example**:
456 -)))
552 +917.0 - SF7BW125 to SF12BW125
457 457  
458 -(((
459 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
460 -)))
554 +917.2 - SF7BW125 to SF12BW125
461 461  
462 -(((
463 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
464 -)))
556 +917.4 - SF7BW125 to SF12BW125
465 465  
558 +917.6 - SF7BW125 to SF12BW125
466 466  
560 +917.8 - SF7BW125 to SF12BW125
467 467  
468 -=== 2.4.7  Soil Conductivity (EC) ===
562 +918.0 - SF7BW125 to SF12BW125
469 469  
470 -(((
471 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
472 -)))
564 +918.2 - SF7BW125 to SF12BW125
473 473  
474 -(((
475 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
476 -)))
477 477  
478 -(((
479 -Generally, the EC value of irrigation water is less than 800uS / cm.
480 -)))
567 +(% style="color:#037691" %)**Downlink:**
481 481  
482 -(((
483 -
484 -)))
569 +923.3 - SF7BW500 to SF12BW500
485 485  
486 -(((
487 -
488 -)))
571 +923.9 - SF7BW500 to SF12BW500
489 489  
490 -=== 2.4. Digital Interrupt ===
573 +924.5 - SF7BW500 to SF12BW500
491 491  
492 -(((
493 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
494 -)))
575 +925.1 - SF7BW500 to SF12BW500
495 495  
496 -(((
497 -The command is:
498 -)))
577 +925.7 - SF7BW500 to SF12BW500
499 499  
500 -(((
501 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
502 -)))
579 +926.3 - SF7BW500 to SF12BW500
503 503  
581 +926.9 - SF7BW500 to SF12BW500
504 504  
505 -(((
506 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
507 -)))
583 +927.5 - SF7BW500 to SF12BW500
508 508  
585 +923.3 - SF12BW500(RX2 downlink only)
509 509  
510 -(((
511 -Example:
512 -)))
513 513  
514 -(((
515 -0x(00): Normal uplink packet.
516 -)))
517 517  
518 -(((
519 -0x(01): Interrupt Uplink Packet.
520 -)))
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
521 521  
591 +(% style="color:#037691" %)**Default Uplink channel:**
522 522  
593 +923.2 - SF7BW125 to SF10BW125
523 523  
524 -=== 2.4.9  ​+5V Output ===
595 +923.4 - SF7BW125 to SF10BW125
525 525  
526 -(((
527 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
528 -)))
529 529  
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
530 530  
531 -(((
532 -The 5V output time can be controlled by AT Command.
533 -)))
600 +(OTAA mode, channel added by JoinAccept message)
534 534  
535 -(((
536 -(% style="color:blue" %)**AT+5VT=1000**
537 -)))
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
538 538  
539 -(((
540 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
541 -)))
604 +922.2 - SF7BW125 to SF10BW125
542 542  
606 +922.4 - SF7BW125 to SF10BW125
543 543  
608 +922.6 - SF7BW125 to SF10BW125
544 544  
545 -== 2.5  Downlink Payload ==
610 +922.8 - SF7BW125 to SF10BW125
546 546  
547 -By default, NSE01 prints the downlink payload to console port.
612 +923.0 - SF7BW125 to SF10BW125
548 548  
549 -[[image:image-20220708133731-5.png]]
614 +922.0 - SF7BW125 to SF10BW125
550 550  
551 551  
552 -(((
553 -(% style="color:blue" %)**Examples:**
554 -)))
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
555 555  
556 -(((
557 -
558 -)))
619 +923.6 - SF7BW125 to SF10BW125
559 559  
560 -* (((
561 -(% style="color:blue" %)**Set TDC**
562 -)))
621 +923.8 - SF7BW125 to SF10BW125
563 563  
564 -(((
565 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
566 -)))
623 +924.0 - SF7BW125 to SF10BW125
567 567  
568 -(((
569 -Payload:    01 00 00 1E    TDC=30S
570 -)))
625 +924.2 - SF7BW125 to SF10BW125
571 571  
572 -(((
573 -Payload:    01 00 00 3C    TDC=60S
574 -)))
627 +924.4 - SF7BW125 to SF10BW125
575 575  
576 -(((
577 -
578 -)))
629 +924.6 - SF7BW125 to SF10BW125
579 579  
580 -* (((
581 -(% style="color:blue" %)**Reset**
582 -)))
583 583  
584 -(((
585 -If payload = 0x04FF, it will reset the NSE01
586 -)))
632 +(% style="color:#037691" %)** Downlink:**
587 587  
634 +Uplink channels 1-8 (RX1)
588 588  
589 -* (% style="color:blue" %)**INTMOD**
636 +923.2 - SF10BW125 (RX2)
590 590  
591 -(((
592 -Downlink Payload: 06000003, Set AT+INTMOD=3
593 -)))
594 594  
595 595  
640 +=== 2.7.6 KR920-923 (KR920) ===
596 596  
597 -== 2.6  ​LED Indicator ==
642 +Default channel:
598 598  
599 -(((
600 -The NSE01 has an internal LED which is to show the status of different state.
644 +922.1 - SF7BW125 to SF12BW125
601 601  
646 +922.3 - SF7BW125 to SF12BW125
602 602  
603 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
604 -* Then the LED will be on for 1 second means device is boot normally.
605 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
606 -* For each uplink probe, LED will be on for 500ms.
607 -)))
648 +922.5 - SF7BW125 to SF12BW125
608 608  
609 609  
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
610 610  
653 +922.1 - SF7BW125 to SF12BW125
611 611  
612 -== 2.7  Installation in Soil ==
655 +922.3 - SF7BW125 to SF12BW125
613 613  
614 -__**Measurement the soil surface**__
657 +922.5 - SF7BW125 to SF12BW125
615 615  
616 -(((
617 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
618 -)))
659 +922.7 - SF7BW125 to SF12BW125
619 619  
620 -[[image:1657259653666-883.png]]
661 +922.9 - SF7BW125 to SF12BW125
621 621  
663 +923.1 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -
665 +923.3 - SF7BW125 to SF12BW125
625 625  
626 -(((
627 -Dig a hole with diameter > 20CM.
628 -)))
629 629  
630 -(((
631 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
632 -)))
633 -)))
668 +(% style="color:#037691" %)**Downlink:**
634 634  
635 -[[image:1654506665940-119.png]]
670 +Uplink channels 1-7(RX1)
636 636  
637 -(((
638 -
639 -)))
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
640 640  
641 641  
642 -== 2.8  ​Firmware Change Log ==
643 643  
676 +=== 2.7.7 IN865-867 (IN865) ===
644 644  
645 -Download URL & Firmware Change log
678 +(% style="color:#037691" %)** Uplink:**
646 646  
647 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
680 +865.0625 - SF7BW125 to SF12BW125
648 648  
682 +865.4025 - SF7BW125 to SF12BW125
649 649  
650 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
684 +865.9850 - SF7BW125 to SF12BW125
651 651  
652 652  
687 +(% style="color:#037691" %) **Downlink:**
653 653  
654 -== 2.9  ​Battery Analysis ==
689 +Uplink channels 1-3 (RX1)
655 655  
656 -=== 2.9.1  Battery Type ===
691 +866.550 - SF10BW125 (RX2)
657 657  
658 658  
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
659 659  (((
660 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
661 661  )))
715 +)))
662 662  
663 663  
718 +
719 +[[image:1654506665940-119.png]]
720 +
664 664  (((
665 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
666 666  )))
667 667  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
668 668  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
669 669  (((
670 -The battery related documents as below:
733 +**Firmware download link:**
671 671  )))
672 672  
673 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
674 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
675 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
676 676  
677 677  (((
678 -[[image:image-20220708140453-6.png]]
741 +
679 679  )))
680 680  
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
681 681  
748 +(((
749 +
750 +)))
682 682  
683 -=== 2.9.2  Power consumption Analyze ===
752 +(((
753 +**V1.0.**
754 +)))
684 684  
685 685  (((
686 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
687 687  )))
688 688  
689 689  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
690 690  (((
691 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
692 692  )))
693 693  
694 694  (((
695 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
696 696  )))
697 697  
698 -
699 699  (((
700 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
701 701  )))
777 +)))
702 702  
703 703  * (((
704 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
705 705  )))
706 706  * (((
707 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
708 708  )))
709 709  * (((
710 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
711 711  )))
712 712  
713 -(((
714 -And the Life expectation in difference case will be shown on the right.
715 -)))
789 + [[image:image-20220610172436-1.png]]
716 716  
717 -[[image:image-20220708141352-7.jpeg]]
718 718  
719 719  
793 +=== 2.11.2 ​Battery Note ===
720 720  
721 -=== 2.9.3  ​Battery Note ===
722 -
723 723  (((
724 724  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
725 725  )))
... ... @@ -726,176 +726,302 @@
726 726  
727 727  
728 728  
729 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
730 730  
731 731  (((
732 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
733 733  )))
734 734  
735 -
736 -
737 -= 3. ​ Access NB-IoT Module =
738 -
739 739  (((
740 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
741 741  )))
742 742  
743 743  (((
744 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
745 745  )))
746 746  
747 -[[image:1657261278785-153.png]]
748 748  
749 749  
817 += 3. ​Using the AT Commands =
750 750  
751 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
752 752  
753 -== 4.1  Access AT Commands ==
754 754  
755 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
756 756  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
757 757  
758 -AT+<CMD>?  : Help on <CMD>
759 759  
760 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
761 761  
762 -AT+<CMD>=<value> : Set the value
763 763  
764 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
765 765  
766 766  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
767 767  (% style="color:#037691" %)**General Commands**(%%)      
768 768  
769 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
770 770  
771 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
772 772  
773 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
774 774  
775 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
776 776  
777 -AT+CFG  : Print all configurations
778 778  
779 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
780 780  
781 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
782 782  
783 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
784 784  
785 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
786 786  
787 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
788 788  
789 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
790 790  
791 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
792 792  
793 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
794 794  
795 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
796 796  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
797 797  
798 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
799 799  
800 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
801 801  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
802 802  
803 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
804 804  
805 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
806 806  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
807 807  
808 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
809 809  
810 -AT+CLIENT               : Get or Set MQTT client
811 811  
812 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
813 813  
814 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
815 815  
816 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
817 817  
818 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
819 819  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
820 820  
821 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
822 822  
823 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
824 824  
825 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
826 826  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
827 827  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
828 828  
829 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
830 830  
831 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
832 832  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
833 833  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
834 834  (((
835 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
836 836  )))
837 837  
838 838  (((
839 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
840 840  )))
841 841  
842 842  (((
843 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
844 844  )))
845 845  
965 +(((
966 +
967 +)))
846 846  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
847 847  
848 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
849 849  
850 850  (((
851 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
852 852  )))
853 853  
981 +[[image:image-20220606154726-3.png]]
854 854  
855 -= 6.  Trouble Shooting =
856 856  
857 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
858 858  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
859 859  
860 860  (((
861 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
862 862  )))
863 863  
864 -(% class="wikigeneratedid" %)
865 865  (((
866 866  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
867 867  )))
868 868  
1009 +(((
1010 +
1011 +)))
869 869  
870 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
871 871  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
872 872  (((
873 873  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
874 874  
875 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
876 876  )))
877 877  
878 878  
879 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
880 880  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
881 881  
882 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
883 883  
884 884  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
885 885  (% class="wikigeneratedid" %)
886 886  (((
887 887  
888 888  )))
889 889  
890 -= 8.  Packing Info =
1087 += 7. Packing Info =
891 891  
892 892  (((
893 893  
894 894  
895 895  (% style="color:#037691" %)**Package Includes**:
1093 +)))
896 896  
897 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
898 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
899 899  )))
900 900  
901 901  (((
... ... @@ -902,19 +902,24 @@
902 902  
903 903  
904 904  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
905 905  
906 -* Size: 195 x 125 x 55 mm
907 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
908 908  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
909 909  
910 -(((
911 911  
912 -
913 -
914 -
915 915  )))
916 916  
917 -= 9.  Support =
1120 += 8. Support =
918 918  
919 919  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
920 920  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
1657328756309-230.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.5 KB
Content
1657328884227-504.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657329814315-101.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.3 KB
Content
1657330452568-615.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.3 KB
Content
1657330472797-498.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -68.9 KB
Content
1657330501006-241.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -119.2 KB
Content
1657330533775-472.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -74.9 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content
image-20220709092052-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -247.3 KB
Content