Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 41 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,725 +1,743 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 59 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 60 60 65 +[[image:image-20220606162220-5.png]] 61 61 62 -(% style="color:#037691" %)**Common DC Characteristics:** 63 63 64 -* Supply Voltage: 2.1v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 66 66 67 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 68 68 69 -* - B1 @H-FDD: 2100MHz 70 -* - B3 @H-FDD: 1800MHz 71 -* - B8 @H-FDD: 900MHz 72 -* - B5 @H-FDD: 850MHz 73 -* - B20 @H-FDD: 800MHz 74 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 75 75 76 -(% style="color:#037691" %)**Battery:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 77 77 78 -* Li/SOCI2 un-chargeable battery 79 -* Capacity: 8500mAh 80 -* Self Discharge: <1% / Year @ 25°C 81 -* Max continuously current: 130mA 82 -* Max boost current: 2A, 1 second 76 +== 1.5 Firmware Change log == 83 83 84 -(% style="color:#037691" %)**Power Consumption** 85 85 86 -* STOP Mode: 10uA @ 3.3v 87 -* Max transmit power: 350mA@3.3v 79 +**LSE01 v1.0 :** Release 88 88 89 89 90 90 91 -= =1.4Applications==83 += 2. Configure LSE01 to connect to LoRaWAN network = 92 92 93 -* Smart Buildings & Home Automation 94 -* Logistics and Supply Chain Management 95 -* Smart Metering 96 -* Smart Agriculture 97 -* Smart Cities 98 -* Smart Factory 85 +== 2.1 How it works == 99 99 100 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 101 - 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 102 102 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 103 103 104 104 105 -== 1.5 Pin Definitions == 106 106 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 107 107 108 - [[image:1657328609906-564.png]]99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 109 109 110 110 102 +[[image:1654503992078-669.png]] 111 111 112 -= 2. Use NDDS75 to communicate with IoT Server = 113 113 114 - ==2.1How it==105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 115 115 116 -((( 117 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 118 -))) 119 119 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 120 120 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 149 + 150 +Uplink payload includes in total 11 bytes. 151 + 152 + 153 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 154 +|=((( 155 +**Size** 156 + 157 +**(bytes)** 158 +)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 159 +|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 121 121 ((( 122 -T hediagrambelow shows the working flow in defaultfirmwareof NDDS75:161 +Temperature 123 123 ))) 124 124 125 125 ((( 126 - 165 +(Reserve, Ignore now) 127 127 ))) 167 +)))|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|(% style="width:80px" %)[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|(% style="width:80px" %)[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(% style="width:80px" %)((( 168 +((( 169 +MOD & Digital Interrupt 170 +))) 128 128 129 -[[image:1657328659945-416.png]] 130 - 131 131 ((( 132 - 173 +(Optional) 133 133 ))) 175 +))) 134 134 177 +[[image:1654504881641-514.png]] 135 135 136 -== 2.2 Configure the NDDS75 == 137 137 138 138 139 -=== 2. 2.1Test Requirement===181 +=== 2.3.2 MOD~=1(Original value) === 140 140 183 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 184 + 185 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 186 +|=((( 187 +**Size** 188 + 189 +**(bytes)** 190 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 191 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 141 141 ((( 142 -T o useNDDS75 in your city,makesure meetbelow requirements:193 +Temperature 143 143 ))) 144 144 145 -* Your local operator has already distributed a NB-IoT Network there. 146 -* The local NB-IoT network used the band that NSE01 supports. 147 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 196 +((( 197 +(Reserve, Ignore now) 198 +))) 199 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|((( 200 +[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 201 +)))|((( 202 +((( 203 +MOD & Digital Interrupt 204 +))) 148 148 149 149 ((( 150 - Below figure shows ourtesting structure. Here we have NB-IoTnetwork coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server207 +(Optional) 151 151 ))) 209 +))) 152 152 211 +[[image:1654504907647-967.png]] 153 153 154 -[[image:1657328756309-230.png]] 155 155 156 156 215 +=== 2.3.3 Battery Info === 157 157 158 - ===2.2.2InsertSIM card===217 +Check the battery voltage for LSE01. 159 159 160 -((( 161 -Insert the NB-IoT Card get from your provider. 162 -))) 219 +Ex1: 0x0B45 = 2885mV 163 163 164 -((( 165 -User need to take out the NB-IoT module and insert the SIM card like below: 166 -))) 221 +Ex2: 0x0B49 = 2889mV 167 167 168 168 169 -[[image:1657328884227-504.png]] 170 170 225 +=== 2.3.4 Soil Moisture === 171 171 227 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 172 172 173 - ===2.2.3ConnectUSB–TTLtoNDDS75 toconfigure it===229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 174 174 175 -((( 176 -((( 177 -User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 178 -))) 179 -))) 180 180 181 - [[image:image-20220709092052-2.png]]232 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 182 182 183 -**Connection:** 184 184 185 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 186 186 187 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD236 +=== 2.3.5 Soil Temperature === 188 188 189 - (%style="background-color:yellow"%)USBTTLRXD<~-~-~-~->UART_TXD238 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 190 190 240 +**Example**: 191 191 192 -I nthe PC, use below serialtool settings:242 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 193 193 194 -* Baud: (% style="color:green" %)**9600** 195 -* Data bits:** (% style="color:green" %)8(%%)** 196 -* Stop bits: (% style="color:green" %)**1** 197 -* Parity: (% style="color:green" %)**None** 198 -* Flow Control: (% style="color:green" %)**None** 244 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 199 199 246 + 247 + 248 +=== 2.3.6 Soil Conductivity (EC) === 249 + 200 200 ((( 201 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNDDS75.NDDS75 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.251 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 202 202 ))) 203 203 204 -[[image:1657329814315-101.png]] 254 +((( 255 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 256 +))) 205 205 206 206 ((( 207 - (% style="color:red"%)Note: thevalid ATCommandscan befoundat: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]]259 +Generally, the EC value of irrigation water is less than 800uS / cm. 208 208 ))) 209 209 262 +((( 263 + 264 +))) 210 210 266 +((( 267 + 268 +))) 211 211 212 -=== 2. 2.4Use CoAP protocol to uplink data===270 +=== 2.3.7 MOD === 213 213 214 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]272 +Firmware version at least v2.1 supports changing mode. 215 215 274 +For example, bytes[10]=90 216 216 217 - **Use below commands:**276 +mod=(bytes[10]>>7)&0x01=1. 218 218 219 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 220 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 221 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 222 222 223 - For parameter description,please refer toAT commandset279 +**Downlink Command:** 224 224 225 - [[image:1657330452568-615.png]]281 +If payload = 0x0A00, workmode=0 226 226 283 +If** **payload =** **0x0A01, workmode=1 227 227 228 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 229 229 230 -[[image:1657330472797-498.png]] 231 231 287 +=== 2.3.8 Decode payload in The Things Network === 232 232 289 +While using TTN network, you can add the payload format to decode the payload. 233 233 234 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 235 235 292 +[[image:1654505570700-128.png]] 236 236 237 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 239 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 294 +The payload decoder function for TTN is here: 240 240 296 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 241 241 242 -[[image:1657330501006-241.png]] 243 243 244 244 245 - [[image:1657330533775-472.png]]300 +== 2.4 Uplink Interval == 246 246 302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 247 247 248 248 249 -=== 2.2.6 Use MQTT protocol to uplink data === 250 250 251 - Thisfeatureis supported sincefirmware versionv110306 +== 2.5 Downlink Payload == 252 252 308 +By default, LSE50 prints the downlink payload to console port. 253 253 254 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 255 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 256 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 257 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 258 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 259 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 260 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 310 +[[image:image-20220606165544-8.png]] 261 261 262 -[[image:1657249978444-674.png]] 263 263 313 +**Examples:** 264 264 265 -[[image:1657249990869-686.png]] 266 266 316 +* **Set TDC** 267 267 268 -((( 269 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 270 -))) 318 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 271 271 320 +Payload: 01 00 00 1E TDC=30S 272 272 322 +Payload: 01 00 00 3C TDC=60S 273 273 274 -=== 2.2.7 Use TCP protocol to uplink data === 275 275 276 - Thisfeature issupported since firmware version v110325 +* **Reset** 277 277 327 +If payload = 0x04FF, it will reset the LSE01 278 278 279 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 280 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 281 281 282 - [[image:1657250217799-140.png]]330 +* **CFM** 283 283 332 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 284 284 285 -[[image:1657250255956-604.png]] 286 286 287 287 336 +== 2.6 Show Data in DataCake IoT Server == 288 288 289 - === 2.2.8ChangeUpdateInterval===338 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 290 290 291 -User can use below command to change the (% style="color:green" %)**uplink interval**. 292 292 293 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s341 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 294 294 295 -((( 296 -(% style="color:red" %)**NOTE:** 297 -))) 343 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 298 298 299 -((( 300 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 301 -))) 302 302 346 +[[image:1654505857935-743.png]] 303 303 304 304 305 - ==2.3 Uplink Payload ==349 +[[image:1654505874829-548.png]] 306 306 307 - Inthis mode, uplinkpayloadincludes intal18bytes351 +Step 3: Create an account or log in Datacake. 308 308 309 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 310 -|=(% style="width: 60px;" %)((( 311 -**Size(bytes)** 312 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 313 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 353 +Step 4: Search the LSE01 and add DevEUI. 314 314 315 -((( 316 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 -))) 318 318 356 +[[image:1654505905236-553.png]] 319 319 320 -[[image:image-20220708111918-4.png]] 321 321 359 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 322 322 323 - The payloadis ASCII string, representative same HEX:361 +[[image:1654505925508-181.png]] 324 324 325 -0x72403155615900640c7817075e0a8c02f900 where: 326 326 327 -* Device ID: 0x 724031556159 = 724031556159 328 -* Version: 0x0064=100=1.0.0 329 329 330 -* BAT: 0x0c78 = 3192 mV = 3.192V 331 -* Singal: 0x17 = 23 332 -* Soil Moisture: 0x075e= 1886 = 18.86 % 333 -* Soil Temperature:0x0a8c =2700=27 °C 334 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 335 -* Interrupt: 0x00 = 0 365 +== 2.7 Frequency Plans == 336 336 337 - ==2.4PayloadExplanationandSensorInterface==367 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 338 338 339 339 340 -=== 2. 4.1DeviceID===370 +=== 2.7.1 EU863-870 (EU868) === 341 341 342 -((( 343 -By default, the Device ID equal to the last 6 bytes of IMEI. 344 -))) 372 +(% style="color:#037691" %)** Uplink:** 345 345 346 -((( 347 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 -))) 374 +868.1 - SF7BW125 to SF12BW125 349 349 350 -((( 351 -**Example:** 352 -))) 376 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 353 353 354 -((( 355 -AT+DEUI=A84041F15612 356 -))) 378 +868.5 - SF7BW125 to SF12BW125 357 357 358 -((( 359 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 -))) 380 +867.1 - SF7BW125 to SF12BW125 361 361 382 +867.3 - SF7BW125 to SF12BW125 362 362 384 +867.5 - SF7BW125 to SF12BW125 363 363 364 - ===2.4.2VersionInfo ===386 +867.7 - SF7BW125 to SF12BW125 365 365 366 -((( 367 -Specify the software version: 0x64=100, means firmware version 1.00. 368 -))) 388 +867.9 - SF7BW125 to SF12BW125 369 369 370 -((( 371 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 -))) 390 +868.8 - FSK 373 373 374 374 393 +(% style="color:#037691" %)** Downlink:** 375 375 376 - ===2.4.3 BatteryInfo===395 +Uplink channels 1-9 (RX1) 377 377 378 -((( 379 -Check the battery voltage for LSE01. 380 -))) 397 +869.525 - SF9BW125 (RX2 downlink only) 381 381 382 -((( 383 -Ex1: 0x0B45 = 2885mV 384 -))) 385 385 386 -((( 387 -Ex2: 0x0B49 = 2889mV 388 -))) 389 389 401 +=== 2.7.2 US902-928(US915) === 390 390 403 +Used in USA, Canada and South America. Default use CHE=2 391 391 392 - ===2.4.4 Signal Strength===405 +(% style="color:#037691" %)**Uplink:** 393 393 394 -((( 395 -NB-IoT Network signal Strength. 396 -))) 407 +903.9 - SF7BW125 to SF10BW125 397 397 398 -((( 399 -**Ex1: 0x1d = 29** 400 -))) 409 +904.1 - SF7BW125 to SF10BW125 401 401 402 -((( 403 -(% style="color:blue" %)**0**(%%) -113dBm or less 404 -))) 411 +904.3 - SF7BW125 to SF10BW125 405 405 406 -((( 407 -(% style="color:blue" %)**1**(%%) -111dBm 408 -))) 413 +904.5 - SF7BW125 to SF10BW125 409 409 410 -((( 411 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 -))) 415 +904.7 - SF7BW125 to SF10BW125 413 413 414 -((( 415 -(% style="color:blue" %)**31** (%%) -51dBm or greater 416 -))) 417 +904.9 - SF7BW125 to SF10BW125 417 417 418 -((( 419 -(% style="color:blue" %)**99** (%%) Not known or not detectable 420 -))) 419 +905.1 - SF7BW125 to SF10BW125 421 421 421 +905.3 - SF7BW125 to SF10BW125 422 422 423 423 424 - ===2.4.5 SoilMoisture===424 +(% style="color:#037691" %)**Downlink:** 425 425 426 -((( 427 -((( 428 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 429 -))) 430 -))) 426 +923.3 - SF7BW500 to SF12BW500 431 431 432 -((( 433 -((( 434 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 435 -))) 436 -))) 428 +923.9 - SF7BW500 to SF12BW500 437 437 438 -((( 439 - 440 -))) 430 +924.5 - SF7BW500 to SF12BW500 441 441 442 -((( 443 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 444 -))) 432 +925.1 - SF7BW500 to SF12BW500 445 445 434 +925.7 - SF7BW500 to SF12BW500 446 446 436 +926.3 - SF7BW500 to SF12BW500 447 447 448 - ===2.4.6oilTemperature===438 +926.9 - SF7BW500 to SF12BW500 449 449 450 -((( 451 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 452 -))) 440 +927.5 - SF7BW500 to SF12BW500 453 453 454 -((( 455 -**Example**: 456 -))) 442 +923.3 - SF12BW500(RX2 downlink only) 457 457 458 -((( 459 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 460 -))) 461 461 462 -((( 463 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 464 -))) 465 465 446 +=== 2.7.3 CN470-510 (CN470) === 466 466 448 +Used in China, Default use CHE=1 467 467 468 - ===2.4.7 SoilConductivity(EC)===450 +(% style="color:#037691" %)**Uplink:** 469 469 470 -((( 471 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 472 -))) 452 +486.3 - SF7BW125 to SF12BW125 473 473 474 -((( 475 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 476 -))) 454 +486.5 - SF7BW125 to SF12BW125 477 477 478 -((( 479 -Generally, the EC value of irrigation water is less than 800uS / cm. 480 -))) 456 +486.7 - SF7BW125 to SF12BW125 481 481 482 -((( 483 - 484 -))) 458 +486.9 - SF7BW125 to SF12BW125 485 485 486 -((( 487 - 488 -))) 460 +487.1 - SF7BW125 to SF12BW125 489 489 490 - === 2.4.8DigitalInterrupt===462 +487.3 - SF7BW125 to SF12BW125 491 491 492 -((( 493 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 -))) 464 +487.5 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -The command is: 498 -))) 466 +487.7 - SF7BW125 to SF12BW125 499 499 500 -((( 501 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 -))) 503 503 469 +(% style="color:#037691" %)**Downlink:** 504 504 505 -((( 506 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 -))) 471 +506.7 - SF7BW125 to SF12BW125 508 508 473 +506.9 - SF7BW125 to SF12BW125 509 509 510 -((( 511 -Example: 512 -))) 475 +507.1 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -0x(00): Normal uplink packet. 516 -))) 477 +507.3 - SF7BW125 to SF12BW125 517 517 518 -((( 519 -0x(01): Interrupt Uplink Packet. 520 -))) 479 +507.5 - SF7BW125 to SF12BW125 521 521 481 +507.7 - SF7BW125 to SF12BW125 522 522 483 +507.9 - SF7BW125 to SF12BW125 523 523 524 - === 2.4.9+5VOutput===485 +508.1 - SF7BW125 to SF12BW125 525 525 526 -((( 527 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 -))) 487 +505.3 - SF12BW125 (RX2 downlink only) 529 529 530 530 531 -((( 532 -The 5V output time can be controlled by AT Command. 533 -))) 534 534 535 -((( 536 -(% style="color:blue" %)**AT+5VT=1000** 537 -))) 491 +=== 2.7.4 AU915-928(AU915) === 538 538 539 -((( 540 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 -))) 493 +Default use CHE=2 542 542 495 +(% style="color:#037691" %)**Uplink:** 543 543 497 +916.8 - SF7BW125 to SF12BW125 544 544 545 - ==2.5DownlinkPayload ==499 +917.0 - SF7BW125 to SF12BW125 546 546 547 - Bydefault,NSE01prints the downlinkpayload to console port.501 +917.2 - SF7BW125 to SF12BW125 548 548 549 - [[image:image-20220708133731-5.png]]503 +917.4 - SF7BW125 to SF12BW125 550 550 505 +917.6 - SF7BW125 to SF12BW125 551 551 552 -((( 553 -(% style="color:blue" %)**Examples:** 554 -))) 507 +917.8 - SF7BW125 to SF12BW125 555 555 556 -((( 557 - 558 -))) 509 +918.0 - SF7BW125 to SF12BW125 559 559 560 -* ((( 561 -(% style="color:blue" %)**Set TDC** 562 -))) 511 +918.2 - SF7BW125 to SF12BW125 563 563 564 -((( 565 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 566 -))) 567 567 568 -((( 569 -Payload: 01 00 00 1E TDC=30S 570 -))) 514 +(% style="color:#037691" %)**Downlink:** 571 571 572 -((( 573 -Payload: 01 00 00 3C TDC=60S 574 -))) 516 +923.3 - SF7BW500 to SF12BW500 575 575 576 -((( 577 - 578 -))) 518 +923.9 - SF7BW500 to SF12BW500 579 579 580 -* ((( 581 -(% style="color:blue" %)**Reset** 582 -))) 520 +924.5 - SF7BW500 to SF12BW500 583 583 584 -((( 585 -If payload = 0x04FF, it will reset the NSE01 586 -))) 522 +925.1 - SF7BW500 to SF12BW500 587 587 524 +925.7 - SF7BW500 to SF12BW500 588 588 589 - *(%style="color:blue"%)**INTMOD**526 +926.3 - SF7BW500 to SF12BW500 590 590 591 -((( 592 -Downlink Payload: 06000003, Set AT+INTMOD=3 593 -))) 528 +926.9 - SF7BW500 to SF12BW500 594 594 530 +927.5 - SF7BW500 to SF12BW500 595 595 532 +923.3 - SF12BW500(RX2 downlink only) 596 596 597 -== 2.6 LED Indicator == 598 598 599 -((( 600 -The NSE01 has an internal LED which is to show the status of different state. 601 601 536 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 602 602 603 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 604 -* Then the LED will be on for 1 second means device is boot normally. 605 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 606 -* For each uplink probe, LED will be on for 500ms. 607 -))) 538 +(% style="color:#037691" %)**Default Uplink channel:** 608 608 540 +923.2 - SF7BW125 to SF10BW125 609 609 542 +923.4 - SF7BW125 to SF10BW125 610 610 611 611 612 - ==2.7 Installation inSoil==545 +(% style="color:#037691" %)**Additional Uplink Channel**: 613 613 614 - __**Measurementthesoilsurface**__547 +(OTAA mode, channel added by JoinAccept message) 615 615 616 -((( 617 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 -))) 549 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 619 619 620 - [[image:1657259653666-883.png]]551 +922.2 - SF7BW125 to SF10BW125 621 621 553 +922.4 - SF7BW125 to SF10BW125 622 622 623 -((( 624 - 555 +922.6 - SF7BW125 to SF10BW125 625 625 626 -((( 627 -Dig a hole with diameter > 20CM. 628 -))) 557 +922.8 - SF7BW125 to SF10BW125 629 629 630 -((( 631 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 632 -))) 633 -))) 559 +923.0 - SF7BW125 to SF10BW125 634 634 635 - [[image:1654506665940-119.png]]561 +922.0 - SF7BW125 to SF10BW125 636 636 637 -((( 638 - 639 -))) 640 640 564 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 641 641 642 - ==2.8FirmwareChange Log==566 +923.6 - SF7BW125 to SF10BW125 643 643 568 +923.8 - SF7BW125 to SF10BW125 644 644 645 - DownloadURL&FirmwareChange log570 +924.0 - SF7BW125 to SF10BW125 646 646 647 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]572 +924.2 - SF7BW125 to SF10BW125 648 648 574 +924.4 - SF7BW125 to SF10BW125 649 649 650 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]576 +924.6 - SF7BW125 to SF10BW125 651 651 652 652 579 +(% style="color:#037691" %)** Downlink:** 653 653 654 - ==2.9 Battery Analysis==581 +Uplink channels 1-8 (RX1) 655 655 656 - ===2.9.1BatteryType ===583 +923.2 - SF10BW125 (RX2) 657 657 658 658 586 + 587 +=== 2.7.6 KR920-923 (KR920) === 588 + 589 +Default channel: 590 + 591 +922.1 - SF7BW125 to SF12BW125 592 + 593 +922.3 - SF7BW125 to SF12BW125 594 + 595 +922.5 - SF7BW125 to SF12BW125 596 + 597 + 598 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 599 + 600 +922.1 - SF7BW125 to SF12BW125 601 + 602 +922.3 - SF7BW125 to SF12BW125 603 + 604 +922.5 - SF7BW125 to SF12BW125 605 + 606 +922.7 - SF7BW125 to SF12BW125 607 + 608 +922.9 - SF7BW125 to SF12BW125 609 + 610 +923.1 - SF7BW125 to SF12BW125 611 + 612 +923.3 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %)**Downlink:** 616 + 617 +Uplink channels 1-7(RX1) 618 + 619 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 620 + 621 + 622 + 623 +=== 2.7.7 IN865-867 (IN865) === 624 + 625 +(% style="color:#037691" %)** Uplink:** 626 + 627 +865.0625 - SF7BW125 to SF12BW125 628 + 629 +865.4025 - SF7BW125 to SF12BW125 630 + 631 +865.9850 - SF7BW125 to SF12BW125 632 + 633 + 634 +(% style="color:#037691" %) **Downlink:** 635 + 636 +Uplink channels 1-3 (RX1) 637 + 638 +866.550 - SF10BW125 (RX2) 639 + 640 + 641 + 642 + 643 +== 2.8 LED Indicator == 644 + 645 +The LSE01 has an internal LED which is to show the status of different state. 646 + 647 +* Blink once when device power on. 648 +* Solid ON for 5 seconds once device successful Join the network. 649 +* Blink once when device transmit a packet. 650 + 651 +== 2.9 Installation in Soil == 652 + 653 +**Measurement the soil surface** 654 + 655 + 656 +[[image:1654506634463-199.png]] 657 + 659 659 ((( 660 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 659 +((( 660 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 661 661 ))) 662 +))) 662 662 663 663 665 +[[image:1654506665940-119.png]] 666 + 664 664 ((( 665 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.668 +Dig a hole with diameter > 20CM. 666 666 ))) 667 667 671 +((( 672 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 673 +))) 668 668 675 + 676 +== 2.10 Firmware Change Log == 677 + 669 669 ((( 670 - The battery relateddocumentsasbelow:679 +**Firmware download link:** 671 671 ))) 672 672 673 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]674 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]675 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]682 +((( 683 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 684 +))) 676 676 677 677 ((( 678 - [[image:image-20220708140453-6.png]]687 + 679 679 ))) 680 680 690 +((( 691 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 692 +))) 681 681 694 +((( 695 + 696 +))) 682 682 683 -=== 2.9.2 Power consumption Analyze === 698 +((( 699 +**V1.0.** 700 +))) 684 684 685 685 ((( 686 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.703 +Release 687 687 ))) 688 688 689 689 707 +== 2.11 Battery Analysis == 708 + 709 +=== 2.11.1 Battery Type === 710 + 690 690 ((( 691 - Instruction touse as below:712 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 692 692 ))) 693 693 694 694 ((( 695 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]716 +The battery is designed to last for more than 5 years for the LSN50. 696 696 ))) 697 697 698 - 699 699 ((( 700 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 720 +((( 721 +The battery-related documents are as below: 701 701 ))) 723 +))) 702 702 703 703 * ((( 704 - ProductModel726 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 705 705 ))) 706 706 * ((( 707 - UplinkInterval729 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 708 708 ))) 709 709 * ((( 710 - WorkingMode732 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 711 711 ))) 712 712 713 -((( 714 -And the Life expectation in difference case will be shown on the right. 715 -))) 735 + [[image:image-20220606171726-9.png]] 716 716 717 -[[image:image-20220708141352-7.jpeg]] 718 718 719 719 739 +=== 2.11.2 Battery Note === 720 720 721 -=== 2.9.3 Battery Note === 722 - 723 723 ((( 724 724 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 725 725 ))) ... ... @@ -726,176 +726,303 @@ 726 726 727 727 728 728 729 -=== 2. 9.4Replace the battery ===747 +=== 2.11.3 Replace the battery === 730 730 731 731 ((( 732 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).750 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 733 733 ))) 734 734 735 - 736 - 737 -= 3. Access NB-IoT Module = 738 - 739 739 ((( 740 - Userscan directly accesstheATcommand set of theNB-IoTmodule.754 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 741 741 ))) 742 742 743 743 ((( 744 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]758 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 745 745 ))) 746 746 747 -[[image:1657261278785-153.png]] 748 748 749 749 763 += 3. Using the AT Commands = 750 750 751 -= 4.UsingtheAT Commands =765 +== 3.1 Access AT Commands == 752 752 753 -== 4.1 Access AT Commands == 754 754 755 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]768 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 756 756 770 +[[image:1654501986557-872.png||height="391" width="800"]] 757 757 758 -AT+<CMD>? : Help on <CMD> 759 759 760 - AT+<CMD>: Run<CMD>773 +Or if you have below board, use below connection: 761 761 762 -AT+<CMD>=<value> : Set the value 763 763 764 - AT+<CMD>=?:Get the value776 +[[image:1654502005655-729.png||height="503" width="801"]] 765 765 766 766 779 + 780 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 781 + 782 + 783 + [[image:1654502050864-459.png||height="564" width="806"]] 784 + 785 + 786 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 787 + 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 794 + 795 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 796 + 797 + 767 767 (% style="color:#037691" %)**General Commands**(%%) 768 768 769 -AT 800 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 770 770 771 -AT? 802 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 772 772 773 -ATZ 804 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 774 774 775 -AT+TDC 806 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 776 776 777 -AT+CFG : Print all configurations 778 778 779 - AT+CFGMOD: Workingmode selection809 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 780 780 781 -AT+I NTMOD:Setthe trigger interruptmode811 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 782 782 783 -AT+ 5VTSetextend the timeof5V power813 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 784 784 785 -AT+P ROChooseagreement815 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 786 786 787 -AT+ WEIGREGet weightorsetweight to 0817 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 788 788 789 -AT+ WEIGAPGet or SettheGapValue of weight819 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 790 790 791 -AT+ RXDL: Extendthe sendingandreceivingtime821 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 792 792 793 -AT+ CNTFACGettcountingparameters823 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 794 794 795 -AT+ SERVADDR:ServerAddress825 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 796 796 827 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 797 797 798 -(% style="color:# 037691" %)**COAPManagement**829 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 799 799 800 -AT+ URIsourceparameters831 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 801 801 833 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 802 802 803 -(% style="color:# 037691" %)**UDPManagement**835 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 804 804 805 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)837 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 806 806 839 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 807 807 808 -(% style="color:# 037691" %)**MQTTManagement**841 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 809 809 810 -AT+CLIENT : Get or Set MQTT client 811 811 812 - AT+UNAMEGetSetMQTT Username844 +(% style="color:#037691" %)**LoRa Network Management** 813 813 814 -AT+ PWDGetor SetMQTT password846 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 815 815 816 -AT+ PUBTOPICGetorSetMQTTpublishtopic848 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 817 817 818 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic850 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 819 819 852 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 820 820 821 -(% style="color:# 037691" %)**Information**854 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 822 822 823 -AT+F DRctoryDataReset856 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 824 824 825 -AT+ PWORDSerialAccessPassword858 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 826 826 860 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 827 827 862 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 828 828 829 -= 5.FAQ=864 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 830 830 831 -= =5.1HowtoUpgradeFirmware==866 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 832 832 868 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 833 833 870 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 873 + 874 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 875 + 876 + 877 +(% style="color:#037691" %)**Information** 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 890 + 891 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 892 + 893 + 894 += 4. FAQ = 895 + 896 +== 4.1 How to change the LoRa Frequency Bands/Region? == 897 + 834 834 ((( 835 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 899 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 900 +When downloading the images, choose the required image file for download. 836 836 ))) 837 837 838 838 ((( 839 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]904 + 840 840 ))) 841 841 842 842 ((( 843 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.908 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 844 844 ))) 845 845 911 +((( 912 + 913 +))) 846 846 915 +((( 916 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 917 +))) 847 847 848 -== 5.2 Can I calibrate NSE01 to different soil types? == 919 +((( 920 + 921 +))) 849 849 850 850 ((( 851 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].924 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 852 852 ))) 853 853 927 +[[image:image-20220606154726-3.png]] 854 854 855 -= 6. Trouble Shooting = 856 856 857 - ==6.1 Connection problemwhenuploadingfirmware==930 +When you use the TTN network, the US915 frequency bands use are: 858 858 932 +* 903.9 - SF7BW125 to SF10BW125 933 +* 904.1 - SF7BW125 to SF10BW125 934 +* 904.3 - SF7BW125 to SF10BW125 935 +* 904.5 - SF7BW125 to SF10BW125 936 +* 904.7 - SF7BW125 to SF10BW125 937 +* 904.9 - SF7BW125 to SF10BW125 938 +* 905.1 - SF7BW125 to SF10BW125 939 +* 905.3 - SF7BW125 to SF10BW125 940 +* 904.6 - SF8BW500 859 859 860 860 ((( 861 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]943 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 862 862 ))) 863 863 864 -(% class=" wikigeneratedid" %)946 +(% class="box infomessage" %) 865 865 ((( 948 +**AT+CHE=2** 949 +))) 950 + 951 +(% class="box infomessage" %) 952 +((( 953 +**ATZ** 954 +))) 955 + 956 +((( 957 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 958 +))) 959 + 960 +((( 866 866 867 867 ))) 868 868 964 +((( 965 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 966 +))) 869 869 870 - == 6.2 AT Commandinput doesn't work ==968 +[[image:image-20220606154825-4.png]] 871 871 970 + 971 + 972 += 5. Trouble Shooting = 973 + 974 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 975 + 976 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 977 + 978 + 979 +== 5.2 AT Command input doesn’t work == 980 + 872 872 ((( 873 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 982 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 983 +))) 874 874 875 - 985 + 986 +== 5.3 Device rejoin in at the second uplink packet == 987 + 988 +(% style="color:#4f81bd" %)**Issue describe as below:** 989 + 990 +[[image:1654500909990-784.png]] 991 + 992 + 993 +(% style="color:#4f81bd" %)**Cause for this issue:** 994 + 995 +((( 996 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 876 876 ))) 877 877 878 878 879 - =7. OrderInfo=1000 +(% style="color:#4f81bd" %)**Solution: ** 880 880 1002 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 881 881 882 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1004 +[[image:1654500929571-736.png||height="458" width="832"]] 883 883 884 884 1007 += 6. Order Info = 1008 + 1009 + 1010 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1011 + 1012 + 1013 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1014 + 1015 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1016 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1017 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1018 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1019 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1020 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1021 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1022 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1023 + 1024 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1025 + 1026 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1027 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1028 + 885 885 (% class="wikigeneratedid" %) 886 886 ((( 887 887 888 888 ))) 889 889 890 -= 8.1034 += 7. Packing Info = 891 891 892 892 ((( 893 893 894 894 895 895 (% style="color:#037691" %)**Package Includes**: 1040 +))) 896 896 897 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1898 - *Externalantennax 11042 +* ((( 1043 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 899 899 ))) 900 900 901 901 ((( ... ... @@ -902,19 +902,27 @@ 902 902 903 903 904 904 (% style="color:#037691" %)**Dimension and weight**: 1050 +))) 905 905 906 -* Size: 195 x 125 x 55 mm907 - * Weight:420g1052 +* ((( 1053 +Device Size: cm 908 908 ))) 1055 +* ((( 1056 +Device Weight: g 1057 +))) 1058 +* ((( 1059 +Package Size / pcs : cm 1060 +))) 1061 +* ((( 1062 +Weight / pcs : g 909 909 910 -((( 911 - 912 912 913 - 914 914 915 915 ))) 916 916 917 -= 9.1068 += 8. Support = 918 918 919 919 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 920 920 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1072 + 1073 +
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -74.9 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -247.3 KB - Content