Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 35 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,731 +1,741 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==102 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657328609906-564.png]]105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 115 115 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 116 116 117 - = 2. Use NSE01 to communicatewith IoT Server =112 +[[image:image-20220606163732-6.jpeg]] 118 118 119 - ==2.1Howitworks==114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 121 -((( 122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 123 -))) 116 +**Add APP EUI in the application** 124 124 125 125 126 -((( 127 -The diagram below shows the working flow in default firmware of NDDS75: 128 -))) 119 +[[image:1654504596150-405.png]] 129 129 130 -((( 131 - 132 -))) 133 133 134 -[[image:1657328659945-416.png]] 135 135 136 -((( 137 - 138 -))) 123 +**Add APP KEY and DEV EUI** 139 139 125 +[[image:1654504683289-357.png]] 140 140 141 -== 2.2 Configure the NSE01 == 142 142 143 143 144 - ===2.2.1Test Requirement===129 +**Step 2**: Power on LSE01 145 145 146 146 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 147 147 ((( 148 - To useNSE01inyour city, makesuremeetbelow requirements:153 +Uplink payload includes in total 11 bytes. 149 149 ))) 150 150 151 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.152 - * The local NB-IoT network used the band that NSE01 supports.153 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 154 154 155 -((( 156 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 157 157 ))) 158 158 159 159 160 -[[image:1657249419225-449.png]] 161 161 174 +=== 2.3.2 MOD~=1(Original value) === 162 162 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 163 163 164 -=== 2.2.2 Insert SIM card === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 165 165 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 166 166 ((( 167 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 168 168 ))) 169 169 170 170 ((( 171 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 172 172 ))) 173 173 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 174 174 175 -[[image:1657249468462-536.png]] 176 176 177 177 212 +=== 2.3.4 Soil Moisture === 178 178 179 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 180 180 181 181 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 182 182 ((( 183 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.223 + 184 184 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 185 185 ))) 186 186 187 187 188 -**Connection:** 189 189 190 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 191 191 192 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 193 193 194 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD236 +**Example**: 195 195 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 196 196 197 -I nthe PC, use below serialtool settings:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 198 198 199 -* Baud: (% style="color:green" %)**9600** 200 -* Data bits:** (% style="color:green" %)8(%%)** 201 -* Stop bits: (% style="color:green" %)**1** 202 -* Parity: (% style="color:green" %)**None** 203 -* Flow Control: (% style="color:green" %)**None** 204 204 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 205 205 ((( 206 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 207 207 ))) 208 208 209 -[[image:image-20220708110657-3.png]] 250 +((( 251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 +))) 210 210 211 211 ((( 212 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]255 +Generally, the EC value of irrigation water is less than 800uS / cm. 213 213 ))) 214 214 258 +((( 259 + 260 +))) 215 215 262 +((( 263 + 264 +))) 216 216 217 -=== 2. 2.4Use CoAP protocol to uplink data===266 +=== 2.3.7 MOD === 218 218 219 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]268 +Firmware version at least v2.1 supports changing mode. 220 220 270 +For example, bytes[10]=90 221 221 222 - **Use below commands:**272 +mod=(bytes[10]>>7)&0x01=1. 223 223 224 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 226 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 227 227 228 - For parameter description,please refer toAT commandset275 +**Downlink Command:** 229 229 230 - [[image:1657249793983-486.png]]277 +If payload = 0x0A00, workmode=0 231 231 279 +If** **payload =** **0x0A01, workmode=1 232 232 233 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 234 234 235 -[[image:1657249831934-534.png]] 236 236 283 +=== 2.3.8 Decode payload in The Things Network === 237 237 285 +While using TTN network, you can add the payload format to decode the payload. 238 238 239 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 240 240 241 - This feature is supported since firmwareversion v1.0.1288 +[[image:1654505570700-128.png]] 242 242 290 +The payload decoder function for TTN is here: 243 243 244 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 245 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 246 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 247 247 248 -[[image:1657249864775-321.png]] 249 249 250 250 251 - [[image:1657249930215-289.png]]296 +== 2.4 Uplink Interval == 252 252 298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 253 253 254 254 255 -=== 2.2.6 Use MQTT protocol to uplink data === 256 256 257 - Thisfeatureis supported sincefirmware versionv110302 +== 2.5 Downlink Payload == 258 258 304 +By default, LSE50 prints the downlink payload to console port. 259 259 260 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 261 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 262 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 263 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 264 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 265 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 266 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 +[[image:image-20220606165544-8.png]] 267 267 268 -[[image:1657249978444-674.png]] 269 269 309 +**Examples:** 270 270 271 -[[image:1657249990869-686.png]] 272 272 312 +* **Set TDC** 273 273 274 -((( 275 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 276 -))) 314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 277 277 316 +Payload: 01 00 00 1E TDC=30S 278 278 318 +Payload: 01 00 00 3C TDC=60S 279 279 280 -=== 2.2.7 Use TCP protocol to uplink data === 281 281 282 - Thisfeature issupported since firmware version v110321 +* **Reset** 283 283 323 +If payload = 0x04FF, it will reset the LSE01 284 284 285 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 287 287 288 - [[image:1657250217799-140.png]]326 +* **CFM** 289 289 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 290 290 291 -[[image:1657250255956-604.png]] 292 292 293 293 332 +== 2.6 Show Data in DataCake IoT Server == 294 294 295 - === 2.2.8ChangeUpdateInterval===334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 296 296 297 -User can use below command to change the (% style="color:green" %)**uplink interval**. 298 298 299 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 300 300 301 -((( 302 -(% style="color:red" %)**NOTE:** 303 -))) 339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 304 304 305 -((( 306 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 307 -))) 308 308 342 +[[image:1654505857935-743.png]] 309 309 310 310 311 - ==2.3 Uplink Payload ==345 +[[image:1654505874829-548.png]] 312 312 313 - Inthis mode, uplinkpayloadincludes intal18bytes347 +Step 3: Create an account or log in Datacake. 314 314 315 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 316 -|=(% style="width: 60px;" %)((( 317 -**Size(bytes)** 318 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 349 +Step 4: Search the LSE01 and add DevEUI. 320 320 321 -((( 322 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 323 -))) 324 324 352 +[[image:1654505905236-553.png]] 325 325 326 -[[image:image-20220708111918-4.png]] 327 327 355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 328 328 329 - The payloadis ASCII string, representative same HEX:357 +[[image:1654505925508-181.png]] 330 330 331 -0x72403155615900640c7817075e0a8c02f900 where: 332 332 333 -* Device ID: 0x 724031556159 = 724031556159 334 -* Version: 0x0064=100=1.0.0 335 335 336 -* BAT: 0x0c78 = 3192 mV = 3.192V 337 -* Singal: 0x17 = 23 338 -* Soil Moisture: 0x075e= 1886 = 18.86 % 339 -* Soil Temperature:0x0a8c =2700=27 °C 340 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 341 -* Interrupt: 0x00 = 0 361 +== 2.7 Frequency Plans == 342 342 343 - ==2.4PayloadExplanationandSensorInterface==363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 344 344 345 345 346 -=== 2. 4.1DeviceID===366 +=== 2.7.1 EU863-870 (EU868) === 347 347 348 -((( 349 -By default, the Device ID equal to the last 6 bytes of IMEI. 350 -))) 368 +(% style="color:#037691" %)** Uplink:** 351 351 352 -((( 353 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 354 -))) 370 +868.1 - SF7BW125 to SF12BW125 355 355 356 -((( 357 -**Example:** 358 -))) 372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 359 359 360 -((( 361 -AT+DEUI=A84041F15612 362 -))) 374 +868.5 - SF7BW125 to SF12BW125 363 363 364 -((( 365 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 366 -))) 376 +867.1 - SF7BW125 to SF12BW125 367 367 378 +867.3 - SF7BW125 to SF12BW125 368 368 380 +867.5 - SF7BW125 to SF12BW125 369 369 370 - ===2.4.2VersionInfo ===382 +867.7 - SF7BW125 to SF12BW125 371 371 372 -((( 373 -Specify the software version: 0x64=100, means firmware version 1.00. 374 -))) 384 +867.9 - SF7BW125 to SF12BW125 375 375 376 -((( 377 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 378 -))) 386 +868.8 - FSK 379 379 380 380 389 +(% style="color:#037691" %)** Downlink:** 381 381 382 - ===2.4.3 BatteryInfo===391 +Uplink channels 1-9 (RX1) 383 383 384 -((( 385 -Check the battery voltage for LSE01. 386 -))) 393 +869.525 - SF9BW125 (RX2 downlink only) 387 387 388 -((( 389 -Ex1: 0x0B45 = 2885mV 390 -))) 391 391 392 -((( 393 -Ex2: 0x0B49 = 2889mV 394 -))) 395 395 397 +=== 2.7.2 US902-928(US915) === 396 396 399 +Used in USA, Canada and South America. Default use CHE=2 397 397 398 - ===2.4.4 Signal Strength===401 +(% style="color:#037691" %)**Uplink:** 399 399 400 -((( 401 -NB-IoT Network signal Strength. 402 -))) 403 +903.9 - SF7BW125 to SF10BW125 403 403 404 -((( 405 -**Ex1: 0x1d = 29** 406 -))) 405 +904.1 - SF7BW125 to SF10BW125 407 407 408 -((( 409 -(% style="color:blue" %)**0**(%%) -113dBm or less 410 -))) 407 +904.3 - SF7BW125 to SF10BW125 411 411 412 -((( 413 -(% style="color:blue" %)**1**(%%) -111dBm 414 -))) 409 +904.5 - SF7BW125 to SF10BW125 415 415 416 -((( 417 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 418 -))) 411 +904.7 - SF7BW125 to SF10BW125 419 419 420 -((( 421 -(% style="color:blue" %)**31** (%%) -51dBm or greater 422 -))) 413 +904.9 - SF7BW125 to SF10BW125 423 423 424 -((( 425 -(% style="color:blue" %)**99** (%%) Not known or not detectable 426 -))) 415 +905.1 - SF7BW125 to SF10BW125 427 427 417 +905.3 - SF7BW125 to SF10BW125 428 428 429 429 430 - ===2.4.5 SoilMoisture===420 +(% style="color:#037691" %)**Downlink:** 431 431 432 -((( 433 -((( 434 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 435 -))) 436 -))) 422 +923.3 - SF7BW500 to SF12BW500 437 437 438 -((( 439 -((( 440 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 441 -))) 442 -))) 424 +923.9 - SF7BW500 to SF12BW500 443 443 444 -((( 445 - 446 -))) 426 +924.5 - SF7BW500 to SF12BW500 447 447 448 -((( 449 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 450 -))) 428 +925.1 - SF7BW500 to SF12BW500 451 451 430 +925.7 - SF7BW500 to SF12BW500 452 452 432 +926.3 - SF7BW500 to SF12BW500 453 453 454 - ===2.4.6oilTemperature===434 +926.9 - SF7BW500 to SF12BW500 455 455 456 -((( 457 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 458 -))) 436 +927.5 - SF7BW500 to SF12BW500 459 459 460 -((( 461 -**Example**: 462 -))) 438 +923.3 - SF12BW500(RX2 downlink only) 463 463 464 -((( 465 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 466 -))) 467 467 468 -((( 469 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 470 -))) 471 471 442 +=== 2.7.3 CN470-510 (CN470) === 472 472 444 +Used in China, Default use CHE=1 473 473 474 - ===2.4.7 SoilConductivity(EC)===446 +(% style="color:#037691" %)**Uplink:** 475 475 476 -((( 477 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 478 -))) 448 +486.3 - SF7BW125 to SF12BW125 479 479 480 -((( 481 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 482 -))) 450 +486.5 - SF7BW125 to SF12BW125 483 483 484 -((( 485 -Generally, the EC value of irrigation water is less than 800uS / cm. 486 -))) 452 +486.7 - SF7BW125 to SF12BW125 487 487 488 -((( 489 - 490 -))) 454 +486.9 - SF7BW125 to SF12BW125 491 491 492 -((( 493 - 494 -))) 456 +487.1 - SF7BW125 to SF12BW125 495 495 496 - === 2.4.8DigitalInterrupt===458 +487.3 - SF7BW125 to SF12BW125 497 497 498 -((( 499 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 500 -))) 460 +487.5 - SF7BW125 to SF12BW125 501 501 502 -((( 503 -The command is: 504 -))) 462 +487.7 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 508 -))) 509 509 465 +(% style="color:#037691" %)**Downlink:** 510 510 511 -((( 512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 513 -))) 467 +506.7 - SF7BW125 to SF12BW125 514 514 469 +506.9 - SF7BW125 to SF12BW125 515 515 516 -((( 517 -Example: 518 -))) 471 +507.1 - SF7BW125 to SF12BW125 519 519 520 -((( 521 -0x(00): Normal uplink packet. 522 -))) 473 +507.3 - SF7BW125 to SF12BW125 523 523 524 -((( 525 -0x(01): Interrupt Uplink Packet. 526 -))) 475 +507.5 - SF7BW125 to SF12BW125 527 527 477 +507.7 - SF7BW125 to SF12BW125 528 528 479 +507.9 - SF7BW125 to SF12BW125 529 529 530 - === 2.4.9+5VOutput===481 +508.1 - SF7BW125 to SF12BW125 531 531 532 -((( 533 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 534 -))) 483 +505.3 - SF12BW125 (RX2 downlink only) 535 535 536 536 537 -((( 538 -The 5V output time can be controlled by AT Command. 539 -))) 540 540 541 -((( 542 -(% style="color:blue" %)**AT+5VT=1000** 543 -))) 487 +=== 2.7.4 AU915-928(AU915) === 544 544 545 -((( 546 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 547 -))) 489 +Default use CHE=2 548 548 491 +(% style="color:#037691" %)**Uplink:** 549 549 493 +916.8 - SF7BW125 to SF12BW125 550 550 551 - ==2.5DownlinkPayload ==495 +917.0 - SF7BW125 to SF12BW125 552 552 553 - Bydefault,NSE01prints the downlinkpayload to console port.497 +917.2 - SF7BW125 to SF12BW125 554 554 555 - [[image:image-20220708133731-5.png]]499 +917.4 - SF7BW125 to SF12BW125 556 556 501 +917.6 - SF7BW125 to SF12BW125 557 557 558 -((( 559 -(% style="color:blue" %)**Examples:** 560 -))) 503 +917.8 - SF7BW125 to SF12BW125 561 561 562 -((( 563 - 564 -))) 505 +918.0 - SF7BW125 to SF12BW125 565 565 566 -* ((( 567 -(% style="color:blue" %)**Set TDC** 568 -))) 507 +918.2 - SF7BW125 to SF12BW125 569 569 570 -((( 571 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 572 -))) 573 573 574 -((( 575 -Payload: 01 00 00 1E TDC=30S 576 -))) 510 +(% style="color:#037691" %)**Downlink:** 577 577 578 -((( 579 -Payload: 01 00 00 3C TDC=60S 580 -))) 512 +923.3 - SF7BW500 to SF12BW500 581 581 582 -((( 583 - 584 -))) 514 +923.9 - SF7BW500 to SF12BW500 585 585 586 -* ((( 587 -(% style="color:blue" %)**Reset** 588 -))) 516 +924.5 - SF7BW500 to SF12BW500 589 589 590 -((( 591 -If payload = 0x04FF, it will reset the NSE01 592 -))) 518 +925.1 - SF7BW500 to SF12BW500 593 593 520 +925.7 - SF7BW500 to SF12BW500 594 594 595 - *(%style="color:blue"%)**INTMOD**522 +926.3 - SF7BW500 to SF12BW500 596 596 597 -((( 598 -Downlink Payload: 06000003, Set AT+INTMOD=3 599 -))) 524 +926.9 - SF7BW500 to SF12BW500 600 600 526 +927.5 - SF7BW500 to SF12BW500 601 601 528 +923.3 - SF12BW500(RX2 downlink only) 602 602 603 -== 2.6 LED Indicator == 604 604 605 -((( 606 -The NSE01 has an internal LED which is to show the status of different state. 607 607 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 608 608 609 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 610 -* Then the LED will be on for 1 second means device is boot normally. 611 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 612 -* For each uplink probe, LED will be on for 500ms. 613 -))) 534 +(% style="color:#037691" %)**Default Uplink channel:** 614 614 536 +923.2 - SF7BW125 to SF10BW125 615 615 538 +923.4 - SF7BW125 to SF10BW125 616 616 617 617 618 - ==2.7 Installation inSoil==541 +(% style="color:#037691" %)**Additional Uplink Channel**: 619 619 620 - __**Measurementthesoilsurface**__543 +(OTAA mode, channel added by JoinAccept message) 621 621 622 -((( 623 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 624 -))) 545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 625 625 626 - [[image:1657259653666-883.png]]547 +922.2 - SF7BW125 to SF10BW125 627 627 549 +922.4 - SF7BW125 to SF10BW125 628 628 629 -((( 630 - 551 +922.6 - SF7BW125 to SF10BW125 631 631 632 -((( 633 -Dig a hole with diameter > 20CM. 634 -))) 553 +922.8 - SF7BW125 to SF10BW125 635 635 636 -((( 637 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 638 -))) 639 -))) 555 +923.0 - SF7BW125 to SF10BW125 640 640 641 - [[image:1654506665940-119.png]]557 +922.0 - SF7BW125 to SF10BW125 642 642 643 -((( 644 - 645 -))) 646 646 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 647 647 648 - ==2.8FirmwareChange Log==562 +923.6 - SF7BW125 to SF10BW125 649 649 564 +923.8 - SF7BW125 to SF10BW125 650 650 651 - DownloadURL&FirmwareChange log566 +924.0 - SF7BW125 to SF10BW125 652 652 653 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]568 +924.2 - SF7BW125 to SF10BW125 654 654 570 +924.4 - SF7BW125 to SF10BW125 655 655 656 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]572 +924.6 - SF7BW125 to SF10BW125 657 657 658 658 575 +(% style="color:#037691" %)** Downlink:** 659 659 660 - ==2.9 Battery Analysis==577 +Uplink channels 1-8 (RX1) 661 661 662 - ===2.9.1BatteryType ===579 +923.2 - SF10BW125 (RX2) 663 663 664 664 582 + 583 +=== 2.7.6 KR920-923 (KR920) === 584 + 585 +Default channel: 586 + 587 +922.1 - SF7BW125 to SF12BW125 588 + 589 +922.3 - SF7BW125 to SF12BW125 590 + 591 +922.5 - SF7BW125 to SF12BW125 592 + 593 + 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 + 596 +922.1 - SF7BW125 to SF12BW125 597 + 598 +922.3 - SF7BW125 to SF12BW125 599 + 600 +922.5 - SF7BW125 to SF12BW125 601 + 602 +922.7 - SF7BW125 to SF12BW125 603 + 604 +922.9 - SF7BW125 to SF12BW125 605 + 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 665 665 ((( 666 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 667 667 ))) 660 +))) 668 668 669 669 663 +[[image:1654506665940-119.png]] 664 + 670 670 ((( 671 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.666 +Dig a hole with diameter > 20CM. 672 672 ))) 673 673 669 +((( 670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 671 +))) 674 674 673 + 674 +== 2.10 Firmware Change Log == 675 + 675 675 ((( 676 - The battery relateddocumentsasbelow:677 +**Firmware download link:** 677 677 ))) 678 678 679 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]680 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]681 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]680 +((( 681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 682 +))) 682 682 683 683 ((( 684 - [[image:image-20220708140453-6.png]]685 + 685 685 ))) 686 686 688 +((( 689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 690 +))) 687 687 692 +((( 693 + 694 +))) 688 688 689 -=== 2.9.2 Power consumption Analyze === 696 +((( 697 +**V1.0.** 698 +))) 690 690 691 691 ((( 692 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.701 +Release 693 693 ))) 694 694 695 695 705 +== 2.11 Battery Analysis == 706 + 707 +=== 2.11.1 Battery Type === 708 + 696 696 ((( 697 - Instruction touse as below:710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 698 698 ))) 699 699 700 700 ((( 701 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]714 +The battery is designed to last for more than 5 years for the LSN50. 702 702 ))) 703 703 704 - 705 705 ((( 706 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 718 +((( 719 +The battery-related documents are as below: 707 707 ))) 721 +))) 708 708 709 709 * ((( 710 - ProductModel724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 711 711 ))) 712 712 * ((( 713 - UplinkInterval727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 714 714 ))) 715 715 * ((( 716 - WorkingMode730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 717 717 ))) 718 718 719 -((( 720 -And the Life expectation in difference case will be shown on the right. 721 -))) 733 + [[image:image-20220606171726-9.png]] 722 722 723 -[[image:image-20220708141352-7.jpeg]] 724 724 725 725 737 +=== 2.11.2 Battery Note === 726 726 727 -=== 2.9.3 Battery Note === 728 - 729 729 ((( 730 730 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 731 731 ))) ... ... @@ -732,176 +732,303 @@ 732 732 733 733 734 734 735 -=== 2. 9.4Replace the battery ===745 +=== 2.11.3 Replace the battery === 736 736 737 737 ((( 738 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 739 739 ))) 740 740 741 - 742 - 743 -= 3. Access NB-IoT Module = 744 - 745 745 ((( 746 - Userscan directly accesstheATcommand set of theNB-IoTmodule.752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 747 747 ))) 748 748 749 749 ((( 750 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 751 751 ))) 752 752 753 -[[image:1657261278785-153.png]] 754 754 755 755 761 += 3. Using the AT Commands = 756 756 757 -= 4.UsingtheAT Commands =763 +== 3.1 Access AT Commands == 758 758 759 -== 4.1 Access AT Commands == 760 760 761 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 762 762 768 +[[image:1654501986557-872.png||height="391" width="800"]] 763 763 764 -AT+<CMD>? : Help on <CMD> 765 765 766 - AT+<CMD>: Run<CMD>771 +Or if you have below board, use below connection: 767 767 768 -AT+<CMD>=<value> : Set the value 769 769 770 - AT+<CMD>=?:Get the value774 +[[image:1654502005655-729.png||height="503" width="801"]] 771 771 772 772 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 773 773 (% style="color:#037691" %)**General Commands**(%%) 774 774 775 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 776 776 777 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 778 778 779 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 780 780 781 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 782 782 783 -AT+CFG : Print all configurations 784 784 785 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 786 786 787 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 788 788 789 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 790 790 791 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 792 792 793 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 794 794 795 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 796 796 797 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 798 798 799 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 800 800 801 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 802 802 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 803 803 804 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 805 805 806 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 807 807 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 808 808 809 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 810 810 811 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 812 812 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 813 813 814 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 815 815 816 -AT+CLIENT : Get or Set MQTT client 817 817 818 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 819 819 820 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 821 821 822 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 823 823 824 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 825 825 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 826 826 827 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 828 828 829 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 830 830 831 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 832 832 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 833 833 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 834 834 835 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 836 836 837 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 838 838 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 839 839 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 840 840 ((( 841 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 842 842 ))) 843 843 844 844 ((( 845 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 846 846 ))) 847 847 848 848 ((( 849 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 850 850 ))) 851 851 909 +((( 910 + 911 +))) 852 852 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 853 853 854 -== 5.2 Can I calibrate NSE01 to different soil types? == 917 +((( 918 + 919 +))) 855 855 856 856 ((( 857 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 858 858 ))) 859 859 925 +[[image:image-20220606154726-3.png]] 860 860 861 -= 6. Trouble Shooting = 862 862 863 - ==6.1 Connection problemwhenuploadingfirmware==928 +When you use the TTN network, the US915 frequency bands use are: 864 864 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 865 865 866 866 ((( 867 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 868 868 ))) 869 869 870 -(% class=" wikigeneratedid" %)944 +(% class="box infomessage" %) 871 871 ((( 946 +**AT+CHE=2** 947 +))) 948 + 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 953 + 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 957 + 958 +((( 872 872 873 873 ))) 874 874 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 875 875 876 - == 6.2 AT Commandinput doesn't work ==966 +[[image:image-20220606154825-4.png]] 877 877 968 + 969 + 970 += 5. Trouble Shooting = 971 + 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 973 + 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 878 878 ((( 879 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 880 880 881 - 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 882 882 ))) 883 883 884 884 885 - =7. OrderInfo=998 +(% style="color:#4f81bd" %)**Solution: ** 886 886 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 887 887 888 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1002 +[[image:1654500929571-736.png||height="458" width="832"]] 889 889 890 890 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 891 891 (% class="wikigeneratedid" %) 892 892 ((( 893 893 894 894 ))) 895 895 896 -= 8.1032 += 7. Packing Info = 897 897 898 898 ((( 899 899 900 900 901 901 (% style="color:#037691" %)**Package Includes**: 1038 +))) 902 902 903 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1904 - *Externalantennax 11040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 905 905 ))) 906 906 907 907 ((( ... ... @@ -908,19 +908,30 @@ 908 908 909 909 910 910 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 911 911 912 -* Size: 195 x 125 x 55 mm913 - * Weight:420g1050 +* ((( 1051 +Device Size: cm 914 914 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 915 915 916 -((( 917 - 918 918 919 - 920 920 921 921 ))) 922 922 923 -= 9.1066 += 8. Support = 924 924 925 925 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 926 926 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content