Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 77.3
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version
To version 38.1
edited by Xiaoling
on 2022/06/25 16:31
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,719 +13,777 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 58  
59 59  
60 -== 1.3  Specification ==
73 +== 1.3 Specification ==
61 61  
75 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
77 +[[image:image-20220606162220-5.png]]
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
81 +== ​1.4 Applications ==
76 76  
83 +* Smart Agriculture
77 77  
78 -(% style="color:#037691" %)**Battery:**
85 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
86 +​
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
88 +== 1.5 Firmware Change log ==
85 85  
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
91 +**LSE01 v1.0 :**  Release
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 91  
92 92  
95 += 2. Configure LSE01 to connect to LoRaWAN network =
93 93  
97 +== 2.1 How it works ==
94 94  
95 -== ​1.4  Applications ==
99 +(((
100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
101 +)))
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 -* Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 +(((
104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
105 +)))
103 103  
104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 -​
106 106  
107 107  
109 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -== 1.5  Pin Definitions ==
111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
114 +[[image:1654503992078-669.png]]
113 113  
114 114  
117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
115 115  
116 116  
117 -= 2.  Use NSE01 to communicate with IoT Server =
120 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
118 118  
119 -== 2.1  How it works ==
122 +Each LSE01 is shipped with a sticker with the default device EUI as below:
120 120  
124 +[[image:image-20220606163732-6.jpeg]]
125 +
126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
127 +
128 +**Add APP EUI in the application**
129 +
130 +
131 +[[image:1654504596150-405.png]]
132 +
133 +
134 +
135 +**Add APP KEY and DEV EUI**
136 +
137 +[[image:1654504683289-357.png]]
138 +
139 +
140 +
141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
142 +
143 +
144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
145 +
146 +[[image:image-20220606163915-7.png]]
147 +
148 +
149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
150 +
151 +[[image:1654504778294-788.png]]
152 +
153 +
154 +
155 +== 2.3 Uplink Payload ==
156 +
157 +
158 +=== 2.3.1 MOD~=0(Default Mode) ===
159 +
160 +LSE01 will uplink payload via LoRaWAN with below payload format: 
161 +
121 121  (((
122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
163 +Uplink payload includes in total 11 bytes.
123 123  )))
124 124  
166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
167 +|(((
168 +**Size**
125 125  
170 +**(bytes)**
171 +)))|**2**|**2**|**2**|**2**|**2**|**1**
172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
173 +Temperature
174 +
175 +(Reserve, Ignore now)
176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
177 +MOD & Digital Interrupt
178 +
179 +(Optional)
180 +)))
181 +
182 +
183 +
184 +=== 2.3.2 MOD~=1(Original value) ===
185 +
186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
187 +
188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
189 +|(((
190 +**Size**
191 +
192 +**(bytes)**
193 +)))|**2**|**2**|**2**|**2**|**2**|**1**
194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
195 +Temperature
196 +
197 +(Reserve, Ignore now)
198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
199 +MOD & Digital Interrupt
200 +
201 +(Optional)
202 +)))
203 +
204 +
205 +
206 +=== 2.3.3 Battery Info ===
207 +
126 126  (((
127 -The diagram below shows the working flow in default firmware of NDDS75:
209 +Check the battery voltage for LSE01.
128 128  )))
129 129  
130 130  (((
131 -
213 +Ex1: 0x0B45 = 2885mV
132 132  )))
133 133  
134 -[[image:1657328659945-416.png]]
216 +(((
217 +Ex2: 0x0B49 = 2889mV
218 +)))
135 135  
220 +
221 +
222 +=== 2.3.4 Soil Moisture ===
223 +
136 136  (((
225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
226 +)))
227 +
228 +(((
229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
230 +)))
231 +
232 +(((
137 137  
138 138  )))
139 139  
236 +(((
237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
238 +)))
140 140  
141 -== 2.2 ​ Configure the NSE01 ==
142 142  
143 143  
144 -=== 2.2.1 Test Requirement ===
242 +=== 2.3.5 Soil Temperature ===
145 145  
244 +(((
245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
246 +)))
146 146  
147 147  (((
148 -To use NSE01 in your city, make sure meet below requirements:
249 +**Example**:
149 149  )))
150 150  
151 -* Your local operator has already distributed a NB-IoT Network there.
152 -* The local NB-IoT network used the band that NSE01 supports.
153 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
252 +(((
253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
254 +)))
154 154  
155 155  (((
156 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
157 157  )))
158 158  
159 159  
160 -[[image:1657249419225-449.png]]
161 161  
262 +=== 2.3.6 Soil Conductivity (EC) ===
162 162  
264 +(((
265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
266 +)))
163 163  
164 -=== 2.2.2 Insert SIM card ===
268 +(((
269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
270 +)))
165 165  
166 166  (((
167 -Insert the NB-IoT Card get from your provider.
273 +Generally, the EC value of irrigation water is less than 800uS / cm.
168 168  )))
169 169  
170 170  (((
171 -User need to take out the NB-IoT module and insert the SIM card like below:
277 +
172 172  )))
173 173  
280 +(((
281 +
282 +)))
174 174  
175 -[[image:1657249468462-536.png]]
284 +=== 2.3.7 MOD ===
176 176  
286 +Firmware version at least v2.1 supports changing mode.
177 177  
288 +For example, bytes[10]=90
178 178  
179 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
290 +mod=(bytes[10]>>7)&0x01=1.
180 180  
292 +
293 +**Downlink Command:**
294 +
295 +If payload = 0x0A00, workmode=0
296 +
297 +If** **payload =** **0x0A01, workmode=1
298 +
299 +
300 +
301 +=== 2.3.8 ​Decode payload in The Things Network ===
302 +
303 +While using TTN network, you can add the payload format to decode the payload.
304 +
305 +
306 +[[image:1654505570700-128.png]]
307 +
181 181  (((
309 +The payload decoder function for TTN is here:
310 +)))
311 +
182 182  (((
183 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
184 184  )))
315 +
316 +
317 +== 2.4 Uplink Interval ==
318 +
319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
320 +
321 +
322 +
323 +== 2.5 Downlink Payload ==
324 +
325 +By default, LSE50 prints the downlink payload to console port.
326 +
327 +[[image:image-20220606165544-8.png]]
328 +
329 +
330 +(((
331 +**Examples:**
185 185  )))
186 186  
334 +(((
335 +
336 +)))
187 187  
188 -**Connection:**
338 +* (((
339 +**Set TDC**
340 +)))
189 189  
190 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
342 +(((
343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
344 +)))
191 191  
192 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
346 +(((
347 +Payload:    01 00 00 1E    TDC=30S
348 +)))
193 193  
194 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
350 +(((
351 +Payload:    01 00 00 3C    TDC=60S
352 +)))
195 195  
354 +(((
355 +
356 +)))
196 196  
197 -In the PC, use below serial tool settings:
358 +* (((
359 +**Reset**
360 +)))
198 198  
199 -* Baud:  (% style="color:green" %)**9600**
200 -* Data bits:** (% style="color:green" %)8(%%)**
201 -* Stop bits: (% style="color:green" %)**1**
202 -* Parity:  (% style="color:green" %)**None**
203 -* Flow Control: (% style="color:green" %)**None**
362 +(((
363 +If payload = 0x04FF, it will reset the LSE01
364 +)))
204 204  
366 +
367 +* **CFM**
368 +
369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
370 +
371 +
372 +
373 +== 2.6 ​Show Data in DataCake IoT Server ==
374 +
205 205  (((
206 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
207 207  )))
208 208  
209 -[[image:image-20220708110657-3.png]]
379 +(((
380 +
381 +)))
210 210  
211 211  (((
212 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
384 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
213 213  )))
214 214  
387 +(((
388 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
389 +)))
215 215  
216 216  
217 -=== 2.2.4 Use CoAP protocol to uplink data ===
392 +[[image:1654505857935-743.png]]
218 218  
219 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
220 220  
395 +[[image:1654505874829-548.png]]
221 221  
222 -**Use below commands:**
223 223  
224 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
398 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
227 227  
228 -For parameter description, please refer to AT command set
400 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
229 229  
230 -[[image:1657249793983-486.png]]
231 231  
403 +[[image:1654505905236-553.png]]
232 232  
233 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
234 234  
235 -[[image:1657249831934-534.png]]
406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
236 236  
408 +[[image:1654505925508-181.png]]
237 237  
238 238  
239 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
240 240  
241 -This feature is supported since firmware version v1.0.1
412 +== 2.7 Frequency Plans ==
242 242  
414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
243 243  
244 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
247 247  
248 -[[image:1657249864775-321.png]]
417 +=== 2.7.1 EU863-870 (EU868) ===
249 249  
419 +(% style="color:#037691" %)** Uplink:**
250 250  
251 -[[image:1657249930215-289.png]]
421 +868.1 - SF7BW125 to SF12BW125
252 252  
423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
253 253  
425 +868.5 - SF7BW125 to SF12BW125
254 254  
255 -=== 2.2.6 Use MQTT protocol to uplink data ===
427 +867.1 - SF7BW125 to SF12BW125
256 256  
257 -This feature is supported since firmware version v110
429 +867.3 - SF7BW125 to SF12BW125
258 258  
431 +867.5 - SF7BW125 to SF12BW125
259 259  
260 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
433 +867.7 - SF7BW125 to SF12BW125
267 267  
268 -[[image:1657249978444-674.png]]
435 +867.9 - SF7BW125 to SF12BW125
269 269  
437 +868.8 - FSK
270 270  
271 -[[image:1657249990869-686.png]]
272 272  
440 +(% style="color:#037691" %)** Downlink:**
273 273  
274 -(((
275 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
276 -)))
442 +Uplink channels 1-9 (RX1)
277 277  
444 +869.525 - SF9BW125 (RX2 downlink only)
278 278  
279 279  
280 -=== 2.2.7 Use TCP protocol to uplink data ===
281 281  
282 -This feature is supported since firmware version v110
448 +=== 2.7.2 US902-928(US915) ===
283 283  
450 +Used in USA, Canada and South America. Default use CHE=2
284 284  
285 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
452 +(% style="color:#037691" %)**Uplink:**
287 287  
288 -[[image:1657250217799-140.png]]
454 +903.9 - SF7BW125 to SF10BW125
289 289  
456 +904.1 - SF7BW125 to SF10BW125
290 290  
291 -[[image:1657250255956-604.png]]
458 +904.3 - SF7BW125 to SF10BW125
292 292  
460 +904.5 - SF7BW125 to SF10BW125
293 293  
462 +904.7 - SF7BW125 to SF10BW125
294 294  
295 -=== 2.2.8 Change Update Interval ===
464 +904.9 - SF7BW125 to SF10BW125
296 296  
297 -User can use below command to change the (% style="color:green" %)**uplink interval**.
466 +905.1 - SF7BW125 to SF10BW125
298 298  
299 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
468 +905.3 - SF7BW125 to SF10BW125
300 300  
301 -(((
302 -(% style="color:red" %)**NOTE:**
303 -)))
304 304  
305 -(((
306 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
307 -)))
471 +(% style="color:#037691" %)**Downlink:**
308 308  
473 +923.3 - SF7BW500 to SF12BW500
309 309  
475 +923.9 - SF7BW500 to SF12BW500
310 310  
311 -== 2. Uplink Payload ==
477 +924.5 - SF7BW500 to SF12BW500
312 312  
313 -In this mode, uplink payload includes in total 18 bytes
479 +925.1 - SF7BW500 to SF12BW500
314 314  
315 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 -|=(% style="width: 60px;" %)(((
317 -**Size(bytes)**
318 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
481 +925.7 - SF7BW500 to SF12BW500
320 320  
321 -(((
322 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
323 -)))
483 +926.3 - SF7BW500 to SF12BW500
324 324  
485 +926.9 - SF7BW500 to SF12BW500
325 325  
326 -[[image:image-20220708111918-4.png]]
487 +927.5 - SF7BW500 to SF12BW500
327 327  
489 +923.3 - SF12BW500(RX2 downlink only)
328 328  
329 -The payload is ASCII string, representative same HEX:
330 330  
331 -0x72403155615900640c7817075e0a8c02f900 where:
332 332  
333 -* Device ID: 0x 724031556159 = 724031556159
334 -* Version: 0x0064=100=1.0.0
493 +=== 2.7.3 CN470-510 (CN470) ===
335 335  
336 -* BAT: 0x0c78 = 3192 mV = 3.192V
337 -* Singal: 0x17 = 23
338 -* Soil Moisture: 0x075e= 1886 = 18.86  %
339 -* Soil Temperature:0x0a8c =2700=27 °C
340 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 -* Interrupt: 0x00 = 0
495 +Used in China, Default use CHE=1
342 342  
343 -== 2.4  Payload Explanation and Sensor Interface ==
497 +(% style="color:#037691" %)**Uplink:**
344 344  
499 +486.3 - SF7BW125 to SF12BW125
345 345  
346 -=== 2.4.1  Device ID ===
501 +486.5 - SF7BW125 to SF12BW125
347 347  
348 -(((
349 -By default, the Device ID equal to the last 6 bytes of IMEI.
350 -)))
503 +486.7 - SF7BW125 to SF12BW125
351 351  
352 -(((
353 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 -)))
505 +486.9 - SF7BW125 to SF12BW125
355 355  
356 -(((
357 -**Example:**
358 -)))
507 +487.1 - SF7BW125 to SF12BW125
359 359  
360 -(((
361 -AT+DEUI=A84041F15612
362 -)))
509 +487.3 - SF7BW125 to SF12BW125
363 363  
364 -(((
365 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
366 -)))
511 +487.5 - SF7BW125 to SF12BW125
367 367  
513 +487.7 - SF7BW125 to SF12BW125
368 368  
369 369  
370 -=== 2.4.2  Version Info ===
516 +(% style="color:#037691" %)**Downlink:**
371 371  
372 -(((
373 -Specify the software version: 0x64=100, means firmware version 1.00.
374 -)))
518 +506.7 - SF7BW125 to SF12BW125
375 375  
376 -(((
377 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 -)))
520 +506.9 - SF7BW125 to SF12BW125
379 379  
522 +507.1 - SF7BW125 to SF12BW125
380 380  
524 +507.3 - SF7BW125 to SF12BW125
381 381  
382 -=== 2.4.3  Battery Info ===
526 +507.5 - SF7BW125 to SF12BW125
383 383  
384 -(((
385 -Check the battery voltage for LSE01.
386 -)))
528 +507.7 - SF7BW125 to SF12BW125
387 387  
388 -(((
389 -Ex1: 0x0B45 = 2885mV
390 -)))
530 +507.9 - SF7BW125 to SF12BW125
391 391  
392 -(((
393 -Ex2: 0x0B49 = 2889mV
394 -)))
532 +508.1 - SF7BW125 to SF12BW125
395 395  
534 +505.3 - SF12BW125 (RX2 downlink only)
396 396  
397 397  
398 -=== 2.4.4  Signal Strength ===
399 399  
400 -(((
401 -NB-IoT Network signal Strength.
402 -)))
538 +=== 2.7.4 AU915-928(AU915) ===
403 403  
404 -(((
405 -**Ex1: 0x1d = 29**
406 -)))
540 +Default use CHE=2
407 407  
408 -(((
409 -(% style="color:blue" %)**0**(%%)  -113dBm or less
410 -)))
542 +(% style="color:#037691" %)**Uplink:**
411 411  
412 -(((
413 -(% style="color:blue" %)**1**(%%)  -111dBm
414 -)))
544 +916.8 - SF7BW125 to SF12BW125
415 415  
416 -(((
417 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
418 -)))
546 +917.0 - SF7BW125 to SF12BW125
419 419  
420 -(((
421 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
422 -)))
548 +917.2 - SF7BW125 to SF12BW125
423 423  
424 -(((
425 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
426 -)))
550 +917.4 - SF7BW125 to SF12BW125
427 427  
552 +917.6 - SF7BW125 to SF12BW125
428 428  
554 +917.8 - SF7BW125 to SF12BW125
429 429  
430 -=== 2.4.5  Soil Moisture ===
556 +918.0 - SF7BW125 to SF12BW125
431 431  
432 -(((
433 -(((
434 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
435 -)))
436 -)))
558 +918.2 - SF7BW125 to SF12BW125
437 437  
438 -(((
439 -(((
440 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
441 -)))
442 -)))
443 443  
444 -(((
445 -
446 -)))
561 +(% style="color:#037691" %)**Downlink:**
447 447  
448 -(((
449 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
450 -)))
563 +923.3 - SF7BW500 to SF12BW500
451 451  
565 +923.9 - SF7BW500 to SF12BW500
452 452  
567 +924.5 - SF7BW500 to SF12BW500
453 453  
454 -=== 2.4.6  Soil Temperature ===
569 +925.1 - SF7BW500 to SF12BW500
455 455  
456 -(((
457 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 -)))
571 +925.7 - SF7BW500 to SF12BW500
459 459  
460 -(((
461 -**Example**:
462 -)))
573 +926.3 - SF7BW500 to SF12BW500
463 463  
464 -(((
465 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 -)))
575 +926.9 - SF7BW500 to SF12BW500
467 467  
468 -(((
469 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 -)))
577 +927.5 - SF7BW500 to SF12BW500
471 471  
579 +923.3 - SF12BW500(RX2 downlink only)
472 472  
473 473  
474 -=== 2.4.7  Soil Conductivity (EC) ===
475 475  
476 -(((
477 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 -)))
583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
479 479  
480 -(((
481 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 -)))
585 +(% style="color:#037691" %)**Default Uplink channel:**
483 483  
484 -(((
485 -Generally, the EC value of irrigation water is less than 800uS / cm.
486 -)))
587 +923.2 - SF7BW125 to SF10BW125
487 487  
488 -(((
489 -
490 -)))
589 +923.4 - SF7BW125 to SF10BW125
491 491  
492 -(((
493 -
494 -)))
495 495  
496 -=== 2.4.8  Digital Interrupt ===
592 +(% style="color:#037691" %)**Additional Uplink Channel**:
497 497  
498 -(((
499 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 -)))
594 +(OTAA mode, channel added by JoinAccept message)
501 501  
502 -(((
503 -The command is:
504 -)))
596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
505 505  
506 -(((
507 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 -)))
598 +922.2 - SF7BW125 to SF10BW125
509 509  
600 +922.4 - SF7BW125 to SF10BW125
510 510  
511 -(((
512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 -)))
602 +922.6 - SF7BW125 to SF10BW125
514 514  
604 +922.8 - SF7BW125 to SF10BW125
515 515  
516 -(((
517 -Example:
518 -)))
606 +923.0 - SF7BW125 to SF10BW125
519 519  
520 -(((
521 -0x(00): Normal uplink packet.
522 -)))
608 +922.0 - SF7BW125 to SF10BW125
523 523  
524 -(((
525 -0x(01): Interrupt Uplink Packet.
526 -)))
527 527  
611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
528 528  
613 +923.6 - SF7BW125 to SF10BW125
529 529  
530 -=== 2.4.9  ​+5V Output ===
615 +923.8 - SF7BW125 to SF10BW125
531 531  
532 -(((
533 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 -)))
617 +924.0 - SF7BW125 to SF10BW125
535 535  
619 +924.2 - SF7BW125 to SF10BW125
536 536  
537 -(((
538 -The 5V output time can be controlled by AT Command.
539 -)))
621 +924.4 - SF7BW125 to SF10BW125
540 540  
541 -(((
542 -(% style="color:blue" %)**AT+5VT=1000**
543 -)))
623 +924.6 - SF7BW125 to SF10BW125
544 544  
545 -(((
546 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 -)))
548 548  
626 +(% style="color:#037691" %)** Downlink:**
549 549  
628 +Uplink channels 1-8 (RX1)
550 550  
551 -== 2. Downlink Payload ==
630 +923.2 - SF10BW125 (RX2)
552 552  
553 -By default, NSE01 prints the downlink payload to console port.
554 554  
555 -[[image:image-20220708133731-5.png]]
556 556  
634 +=== 2.7.6 KR920-923 (KR920) ===
557 557  
558 -(((
559 -(% style="color:blue" %)**Examples:**
560 -)))
636 +Default channel:
561 561  
562 -(((
563 -
564 -)))
638 +922.1 - SF7BW125 to SF12BW125
565 565  
566 -* (((
567 -(% style="color:blue" %)**Set TDC**
568 -)))
640 +922.3 - SF7BW125 to SF12BW125
569 569  
570 -(((
571 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 -)))
642 +922.5 - SF7BW125 to SF12BW125
573 573  
574 -(((
575 -Payload:    01 00 00 1E    TDC=30S
576 -)))
577 577  
578 -(((
579 -Payload:    01 00 00 3C    TDC=60S
580 -)))
645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
581 581  
582 -(((
583 -
584 -)))
647 +922.1 - SF7BW125 to SF12BW125
585 585  
586 -* (((
587 -(% style="color:blue" %)**Reset**
588 -)))
649 +922.3 - SF7BW125 to SF12BW125
589 589  
590 -(((
591 -If payload = 0x04FF, it will reset the NSE01
592 -)))
651 +922.5 - SF7BW125 to SF12BW125
593 593  
653 +922.7 - SF7BW125 to SF12BW125
594 594  
595 -* (% style="color:blue" %)**INTMOD**
655 +922.9 - SF7BW125 to SF12BW125
596 596  
597 -(((
598 -Downlink Payload: 06000003, Set AT+INTMOD=3
599 -)))
657 +923.1 - SF7BW125 to SF12BW125
600 600  
659 +923.3 - SF7BW125 to SF12BW125
601 601  
602 602  
603 -== 2.6  ​LED Indicator ==
662 +(% style="color:#037691" %)**Downlink:**
604 604  
605 -(((
606 -The NSE01 has an internal LED which is to show the status of different state.
664 +Uplink channels 1-7(RX1)
607 607  
666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
608 608  
609 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 -* Then the LED will be on for 1 second means device is boot normally.
611 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 -* For each uplink probe, LED will be on for 500ms.
613 -)))
614 614  
615 615  
670 +=== 2.7.7 IN865-867 (IN865) ===
616 616  
672 +(% style="color:#037691" %)** Uplink:**
617 617  
618 -== 2.7  Installation in Soil ==
674 +865.0625 - SF7BW125 to SF12BW125
619 619  
620 -__**Measurement the soil surface**__
676 +865.4025 - SF7BW125 to SF12BW125
621 621  
622 -(((
623 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 -)))
678 +865.9850 - SF7BW125 to SF12BW125
625 625  
626 -[[image:1657259653666-883.png]] ​
627 627  
681 +(% style="color:#037691" %) **Downlink:**
628 628  
629 -(((
630 -
683 +Uplink channels 1-3 (RX1)
631 631  
632 -(((
633 -Dig a hole with diameter > 20CM.
634 -)))
685 +866.550 - SF10BW125 (RX2)
635 635  
636 -(((
637 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 -)))
639 -)))
640 640  
641 -[[image:1654506665940-119.png]]
642 642  
643 -(((
644 -
645 -)))
646 646  
690 +== 2.8 LED Indicator ==
647 647  
648 -== 2.8  ​Firmware Change Log ==
692 +The LSE01 has an internal LED which is to show the status of different state.
649 649  
694 +* Blink once when device power on.
695 +* Solid ON for 5 seconds once device successful Join the network.
696 +* Blink once when device transmit a packet.
650 650  
651 -Download URL & Firmware Change log
652 652  
653 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
654 654  
655 655  
656 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
657 657  
658 658  
703 +== 2.9 Installation in Soil ==
659 659  
660 -== 2.9  ​Battery Analysis ==
705 +**Measurement the soil surface**
661 661  
662 -=== 2.9.1  ​Battery Type ===
663 663  
708 +[[image:1654506634463-199.png]] ​
664 664  
665 665  (((
666 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
711 +(((
712 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
667 667  )))
714 +)))
668 668  
669 669  
717 +
718 +[[image:1654506665940-119.png]]
719 +
670 670  (((
671 -The battery is designed to last for several years depends on the actually use environment and update interval. 
721 +Dig a hole with diameter > 20CM.
672 672  )))
673 673  
724 +(((
725 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
726 +)))
674 674  
728 +
729 +== 2.10 ​Firmware Change Log ==
730 +
675 675  (((
676 -The battery related documents as below:
732 +**Firmware download link:**
677 677  )))
678 678  
679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
735 +(((
736 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
737 +)))
682 682  
683 683  (((
684 -[[image:image-20220708140453-6.png]]
740 +
685 685  )))
686 686  
743 +(((
744 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
745 +)))
687 687  
747 +(((
748 +
749 +)))
688 688  
689 -=== 2.9.2  Power consumption Analyze ===
751 +(((
752 +**V1.0.**
753 +)))
690 690  
691 691  (((
692 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
756 +Release
693 693  )))
694 694  
695 695  
760 +== 2.11 ​Battery Analysis ==
761 +
762 +=== 2.11.1 ​Battery Type ===
763 +
696 696  (((
697 -Instruction to use as below:
765 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 699  
700 700  (((
701 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
769 +The battery is designed to last for more than 5 years for the LSN50.
702 702  )))
703 703  
704 -
705 705  (((
706 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
773 +(((
774 +The battery-related documents are as below:
707 707  )))
776 +)))
708 708  
709 709  * (((
710 -Product Model
779 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 711  )))
712 712  * (((
713 -Uplink Interval
782 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
714 714  )))
715 715  * (((
716 -Working Mode
785 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 717  )))
718 718  
719 -(((
720 -And the Life expectation in difference case will be shown on the right.
721 -)))
788 + [[image:image-20220610172436-1.png]]
722 722  
723 -[[image:image-20220708141352-7.jpeg]]
724 724  
725 725  
792 +=== 2.11.2 ​Battery Note ===
726 726  
727 -=== 2.9.3  ​Battery Note ===
728 -
729 729  (((
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
731 731  )))
... ... @@ -732,176 +732,298 @@
732 732  
733 733  
734 734  
735 -=== 2.9. Replace the battery ===
800 +=== 2.11.3 Replace the battery ===
736 736  
737 737  (((
738 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
803 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
739 739  )))
740 740  
741 -
742 -
743 -= 3. ​ Access NB-IoT Module =
744 -
745 745  (((
746 -Users can directly access the AT command set of the NB-IoT module.
807 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
747 747  )))
748 748  
749 749  (((
750 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
811 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
751 751  )))
752 752  
753 -[[image:1657261278785-153.png]]
754 754  
755 755  
816 += 3. ​Using the AT Commands =
756 756  
757 -= 4.  Using the AT Commands =
818 +== 3.1 Access AT Commands ==
758 758  
759 -== 4.1  Access AT Commands ==
760 760  
761 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
821 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
762 762  
823 +[[image:1654501986557-872.png||height="391" width="800"]]
763 763  
764 -AT+<CMD>?  : Help on <CMD>
765 765  
766 -AT+<CMD>         : Run <CMD>
826 +Or if you have below board, use below connection:
767 767  
768 -AT+<CMD>=<value> : Set the value
769 769  
770 -AT+<CMD>=?  : Get the value
829 +[[image:1654502005655-729.png||height="503" width="801"]]
771 771  
772 772  
832 +
833 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
834 +
835 +
836 + [[image:1654502050864-459.png||height="564" width="806"]]
837 +
838 +
839 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
840 +
841 +
842 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
843 +
844 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
845 +
846 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
847 +
848 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
849 +
850 +
773 773  (% style="color:#037691" %)**General Commands**(%%)      
774 774  
775 -AT  : Attention       
853 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
776 776  
777 -AT?  : Short Help     
855 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
778 778  
779 -ATZ  : MCU Reset    
857 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
780 780  
781 -AT+TDC  : Application Data Transmission Interval
859 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
782 782  
783 -AT+CFG  : Print all configurations
784 784  
785 -AT+CFGMOD           : Working mode selection
862 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
786 786  
787 -AT+INTMOD            : Set the trigger interrupt mode
864 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
788 788  
789 -AT+5VT  : Set extend the time of 5V power  
866 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
790 790  
791 -AT+PRO  : Choose agreement
868 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
792 792  
793 -AT+WEIGRE  : Get weight or set weight to 0
870 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
794 794  
795 -AT+WEIGAP  : Get or Set the GapValue of weight
872 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
796 796  
797 -AT+RXDL  : Extend the sending and receiving time
874 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
798 798  
799 -AT+CNTFAC  : Get or set counting parameters
876 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
800 800  
801 -AT+SERVADDR  : Server Address
878 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
802 802  
880 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
803 803  
804 -(% style="color:#037691" %)**COAP Management**      
882 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
805 805  
806 -AT+URI            : Resource parameters
884 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
807 807  
886 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
808 808  
809 -(% style="color:#037691" %)**UDP Management**
888 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
810 810  
811 -AT+CFM          : Upload confirmation mode (only valid for UDP)
890 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
812 812  
892 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
813 813  
814 -(% style="color:#037691" %)**MQTT Management**
894 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
815 815  
816 -AT+CLIENT               : Get or Set MQTT client
817 817  
818 -AT+UNAME  : Get or Set MQTT Username
897 +(% style="color:#037691" %)**LoRa Network Management**
819 819  
820 -AT+PWD                  : Get or Set MQTT password
899 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
821 821  
822 -AT+PUBTOPI : Get or Set MQTT publish topic
901 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
823 823  
824 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
903 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
825 825  
905 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
826 826  
827 -(% style="color:#037691" %)**Information**          
907 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
828 828  
829 -AT+FDR  : Factory Data Reset
909 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
830 830  
831 -AT+PWOR : Serial Access Password
911 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
832 832  
913 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
833 833  
915 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
834 834  
835 -= ​5.  FAQ =
917 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
836 836  
837 -== 5.1 How to Upgrade Firmware ==
919 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
838 838  
921 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
839 839  
923 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
924 +
925 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
926 +
927 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
928 +
929 +
930 +(% style="color:#037691" %)**Information** 
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
937 +
938 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
939 +
940 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
941 +
942 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
943 +
944 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
945 +
946 +
947 += ​4. FAQ =
948 +
949 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
950 +
840 840  (((
841 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
952 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
953 +When downloading the images, choose the required image file for download. ​
842 842  )))
843 843  
844 844  (((
845 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
957 +
846 846  )))
847 847  
848 848  (((
849 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
961 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
850 850  )))
851 851  
964 +(((
965 +
966 +)))
852 852  
968 +(((
969 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
970 +)))
853 853  
854 -== 5.2  Can I calibrate NSE01 to different soil types? ==
972 +(((
973 +
974 +)))
855 855  
856 856  (((
857 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
977 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
858 858  )))
859 859  
980 +[[image:image-20220606154726-3.png]]
860 860  
861 -= 6.  Trouble Shooting =
862 862  
863 -== 6.1  ​Connection problem when uploading firmware ==
983 +When you use the TTN network, the US915 frequency bands use are:
864 864  
985 +* 903.9 - SF7BW125 to SF10BW125
986 +* 904.1 - SF7BW125 to SF10BW125
987 +* 904.3 - SF7BW125 to SF10BW125
988 +* 904.5 - SF7BW125 to SF10BW125
989 +* 904.7 - SF7BW125 to SF10BW125
990 +* 904.9 - SF7BW125 to SF10BW125
991 +* 905.1 - SF7BW125 to SF10BW125
992 +* 905.3 - SF7BW125 to SF10BW125
993 +* 904.6 - SF8BW500
865 865  
866 866  (((
867 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
996 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
997 +
998 +* (% style="color:#037691" %)**AT+CHE=2**
999 +* (% style="color:#037691" %)**ATZ**
868 868  )))
869 869  
870 -(% class="wikigeneratedid" %)
871 871  (((
872 872  
1004 +
1005 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
873 873  )))
874 874  
1008 +(((
1009 +
1010 +)))
875 875  
876 -== 6.2  AT Command input doesn't work ==
1012 +(((
1013 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1014 +)))
877 877  
1016 +[[image:image-20220606154825-4.png]]
1017 +
1018 +
1019 +
1020 += 5. Trouble Shooting =
1021 +
1022 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1023 +
1024 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1025 +
1026 +
1027 +== 5.2 AT Command input doesn’t work ==
1028 +
878 878  (((
879 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1030 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1031 +)))
880 880  
881 -
1033 +
1034 +== 5.3 Device rejoin in at the second uplink packet ==
1035 +
1036 +(% style="color:#4f81bd" %)**Issue describe as below:**
1037 +
1038 +[[image:1654500909990-784.png]]
1039 +
1040 +
1041 +(% style="color:#4f81bd" %)**Cause for this issue:**
1042 +
1043 +(((
1044 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
882 882  )))
883 883  
884 884  
885 -= 7. ​ Order Info =
1048 +(% style="color:#4f81bd" %)**Solution: **
886 886  
1050 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
887 887  
888 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1052 +[[image:1654500929571-736.png||height="458" width="832"]]
889 889  
890 890  
1055 += 6. ​Order Info =
1056 +
1057 +
1058 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1059 +
1060 +
1061 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1062 +
1063 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1064 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1065 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1066 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1067 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1068 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1069 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1070 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1071 +
1072 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1073 +
1074 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1075 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1076 +
891 891  (% class="wikigeneratedid" %)
892 892  (((
893 893  
894 894  )))
895 895  
896 -= 8.  Packing Info =
1082 += 7. Packing Info =
897 897  
898 898  (((
899 899  
900 900  
901 901  (% style="color:#037691" %)**Package Includes**:
1088 +)))
902 902  
903 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 -* External antenna x 1
1090 +* (((
1091 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
905 905  )))
906 906  
907 907  (((
... ... @@ -908,19 +908,24 @@
908 908  
909 909  
910 910  (% style="color:#037691" %)**Dimension and weight**:
1098 +)))
911 911  
912 -* Size: 195 x 125 x 55 mm
913 -* Weight:   420g
1100 +* (((
1101 +Device Size: cm
914 914  )))
1103 +* (((
1104 +Device Weight: g
1105 +)))
1106 +* (((
1107 +Package Size / pcs : cm
1108 +)))
1109 +* (((
1110 +Weight / pcs : g
915 915  
916 -(((
917 917  
918 -
919 -
920 -
921 921  )))
922 922  
923 -= 9.  Support =
1115 += 8. Support =
924 924  
925 925  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
926 926  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content