Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 77.3
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,719 +13,782 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 58  
59 59  
60 -== 1.3  Specification ==
61 61  
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
75 +== 1.3 Specification ==
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
77 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +[[image:image-20220606162220-5.png]]
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
76 76  
77 77  
78 -(% style="color:#037691" %)**Battery:**
83 +== ​1.4 Applications ==
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 -
86 -
87 -(% style="color:#037691" %)**Power Consumption**
88 -
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 -
92 -
93 -
94 -
95 -== ​1.4  Applications ==
96 -
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
90 +== 1.5 Firmware Change log ==
107 107  
108 108  
109 -== 1.5  Pin Definitions ==
93 +**LSE01 v1.0 :**  Release
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
113 113  
97 += 2. Configure LSE01 to connect to LoRaWAN network =
114 114  
99 +== 2.1 How it works ==
115 115  
116 -
117 -= 2.  Use NSE01 to communicate with IoT Server =
118 -
119 -== 2.1  How it works ==
120 -
121 121  (((
122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
123 123  )))
124 124  
125 -
126 126  (((
127 -The diagram below shows the working flow in default firmware of NDDS75:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
128 128  )))
129 129  
130 -(((
131 -
132 -)))
133 133  
134 -[[image:1657328659945-416.png]]
135 135  
136 -(((
137 -
138 -)))
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
139 139  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
140 140  
141 -== 2.2 ​ Configure the NSE01 ==
142 142  
116 +[[image:1654503992078-669.png]]
143 143  
144 -=== 2.2.1 Test Requirement ===
145 145  
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
146 146  
147 -(((
148 -To use NSE01 in your city, make sure meet below requirements:
149 -)))
150 150  
151 -* Your local operator has already distributed a NB-IoT Network there.
152 -* The local NB-IoT network used the band that NSE01 supports.
153 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
154 154  
155 -(((
156 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
157 -)))
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
158 158  
126 +[[image:image-20220606163732-6.jpeg]]
159 159  
160 -[[image:1657249419225-449.png]]
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
161 161  
130 +**Add APP EUI in the application**
162 162  
163 163  
164 -=== 2.2.2 Insert SIM card ===
133 +[[image:1654504596150-405.png]]
165 165  
166 -(((
167 -Insert the NB-IoT Card get from your provider.
168 -)))
169 169  
170 -(((
171 -User need to take out the NB-IoT module and insert the SIM card like below:
172 -)))
173 173  
137 +**Add APP KEY and DEV EUI**
174 174  
175 -[[image:1657249468462-536.png]]
139 +[[image:1654504683289-357.png]]
176 176  
177 177  
178 178  
179 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
180 180  
181 -(((
182 -(((
183 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
184 -)))
185 -)))
186 186  
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
187 187  
188 -**Connection:**
148 +[[image:image-20220606163915-7.png]]
189 189  
190 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
191 191  
192 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
193 193  
194 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
153 +[[image:1654504778294-788.png]]
195 195  
196 196  
197 -In the PC, use below serial tool settings:
198 198  
199 -* Baud:  (% style="color:green" %)**9600**
200 -* Data bits:** (% style="color:green" %)8(%%)**
201 -* Stop bits: (% style="color:green" %)**1**
202 -* Parity:  (% style="color:green" %)**None**
203 -* Flow Control: (% style="color:green" %)**None**
157 +== 2.3 Uplink Payload ==
204 204  
205 -(((
206 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
207 -)))
208 208  
209 -[[image:image-20220708110657-3.png]]
160 +=== 2.3.1 MOD~=0(Default Mode) ===
210 210  
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
211 211  (((
212 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
165 +Uplink payload includes in total 11 bytes.
213 213  )))
214 214  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
215 215  
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
216 216  
217 -=== 2.2.4 Use CoAP protocol to uplink data ===
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
218 218  
219 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 +(Optional)
182 +)))
220 220  
221 221  
222 -**Use below commands:**
223 223  
224 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
226 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
227 227  
228 -For parameter description, please refer to AT command set
229 229  
230 -[[image:1657249793983-486.png]]
231 231  
232 232  
233 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
190 +=== 2.3.2 MOD~=1(Original value) ===
234 234  
235 -[[image:1657249831934-534.png]]
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
236 236  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
237 237  
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
238 238  
239 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
240 240  
241 -This feature is supported since firmware version v1.0.1
207 +(Optional)
208 +)))
242 242  
243 243  
244 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
245 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
246 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
247 247  
248 -[[image:1657249864775-321.png]]
249 249  
250 250  
251 -[[image:1657249930215-289.png]]
252 252  
253 253  
216 +=== 2.3.3 Battery Info ===
254 254  
255 -=== 2.2.6 Use MQTT protocol to uplink data ===
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
256 256  
257 -This feature is supported since firmware version v110
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
258 258  
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
259 259  
260 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
261 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
262 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
263 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
264 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
265 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
266 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
267 267  
268 -[[image:1657249978444-674.png]]
269 269  
232 +=== 2.3.4 Soil Moisture ===
270 270  
271 -[[image:1657249990869-686.png]]
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
272 272  
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
273 273  
274 274  (((
275 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
243 +
276 276  )))
277 277  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
278 278  
279 279  
280 -=== 2.2.7 Use TCP protocol to uplink data ===
281 281  
282 -This feature is supported since firmware version v110
252 +=== 2.3.5 Soil Temperature ===
283 283  
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
284 284  
285 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
286 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
258 +(((
259 +**Example**:
260 +)))
287 287  
288 -[[image:1657250217799-140.png]]
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
289 289  
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
290 290  
291 -[[image:1657250255956-604.png]]
292 292  
293 293  
272 +=== 2.3.6 Soil Conductivity (EC) ===
294 294  
295 -=== 2.2.8 Change Update Interval ===
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
296 296  
297 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
298 298  
299 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
300 -
301 301  (((
302 -(% style="color:red" %)**NOTE:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
303 303  )))
304 304  
305 305  (((
306 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
307 307  )))
308 308  
309 -
310 -
311 -== 2.3  Uplink Payload ==
312 -
313 -In this mode, uplink payload includes in total 18 bytes
314 -
315 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
316 -|=(% style="width: 60px;" %)(((
317 -**Size(bytes)**
318 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
319 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
320 -
321 321  (((
322 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
291 +
323 323  )))
324 324  
294 +=== 2.3.7 MOD ===
325 325  
326 -[[image:image-20220708111918-4.png]]
296 +Firmware version at least v2.1 supports changing mode.
327 327  
298 +For example, bytes[10]=90
328 328  
329 -The payload is ASCII string, representative same HEX:
300 +mod=(bytes[10]>>7)&0x01=1.
330 330  
331 -0x72403155615900640c7817075e0a8c02f900 where:
332 332  
333 -* Device ID: 0x 724031556159 = 724031556159
334 -* Version: 0x0064=100=1.0.0
303 +**Downlink Command:**
335 335  
336 -* BAT: 0x0c78 = 3192 mV = 3.192V
337 -* Singal: 0x17 = 23
338 -* Soil Moisture: 0x075e= 1886 = 18.86  %
339 -* Soil Temperature:0x0a8c =2700=27 °C
340 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
341 -* Interrupt: 0x00 = 0
305 +If payload = 0x0A00, workmode=0
342 342  
343 -== 2.4  Payload Explanation and Sensor Interface ==
307 +If** **payload =** **0x0A01, workmode=1
344 344  
345 345  
346 -=== 2.4.1  Device ID ===
347 347  
348 -(((
349 -By default, the Device ID equal to the last 6 bytes of IMEI.
350 -)))
311 +=== 2.3.8 ​Decode payload in The Things Network ===
351 351  
352 -(((
353 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
354 -)))
313 +While using TTN network, you can add the payload format to decode the payload.
355 355  
356 -(((
357 -**Example:**
358 -)))
359 359  
316 +[[image:1654505570700-128.png]]
317 +
360 360  (((
361 -AT+DEUI=A84041F15612
319 +The payload decoder function for TTN is here:
362 362  )))
363 363  
364 364  (((
365 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
366 366  )))
367 367  
368 368  
327 +== 2.4 Uplink Interval ==
369 369  
370 -=== 2.4.2  Version Info ===
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
371 371  
372 -(((
373 -Specify the software version: 0x64=100, means firmware version 1.00.
374 -)))
375 375  
376 -(((
377 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
378 -)))
379 379  
333 +== 2.5 Downlink Payload ==
380 380  
335 +By default, LSE50 prints the downlink payload to console port.
381 381  
382 -=== 2.4.3  Battery Info ===
337 +[[image:image-20220606165544-8.png]]
383 383  
384 -(((
385 -Check the battery voltage for LSE01.
386 -)))
387 387  
388 388  (((
389 -Ex1: 0x0B45 = 2885mV
341 +**Examples:**
390 390  )))
391 391  
392 392  (((
393 -Ex2: 0x0B49 = 2889mV
345 +
394 394  )))
395 395  
396 -
397 -
398 -=== 2.4.4  Signal Strength ===
399 -
400 -(((
401 -NB-IoT Network signal Strength.
348 +* (((
349 +**Set TDC**
402 402  )))
403 403  
404 404  (((
405 -**Ex1: 0x1d = 29**
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
406 406  )))
407 407  
408 408  (((
409 -(% style="color:blue" %)**0**(%%)  -113dBm or less
357 +Payload:    01 00 00 1E    TDC=30S
410 410  )))
411 411  
412 412  (((
413 -(% style="color:blue" %)**1**(%%)  -111dBm
361 +Payload:    01 00 00 3C    TDC=60S
414 414  )))
415 415  
416 416  (((
417 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
365 +
418 418  )))
419 419  
420 -(((
421 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
368 +* (((
369 +**Reset**
422 422  )))
423 423  
424 424  (((
425 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +If payload = 0x04FF, it will reset the LSE01
426 426  )))
427 427  
428 428  
377 +* **CFM**
429 429  
430 -=== 2.4.5  Soil Moisture ===
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
431 431  
381 +
382 +
383 +== 2.6 ​Show Data in DataCake IoT Server ==
384 +
432 432  (((
433 -(((
434 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
435 435  )))
436 -)))
437 437  
438 438  (((
439 -(((
440 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
390 +
441 441  )))
442 -)))
443 443  
444 444  (((
445 -
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
446 446  )))
447 447  
448 448  (((
449 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
398 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
450 450  )))
451 451  
452 452  
402 +[[image:1654505857935-743.png]]
453 453  
454 -=== 2.4.6  Soil Temperature ===
455 455  
456 -(((
457 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
458 -)))
405 +[[image:1654505874829-548.png]]
459 459  
460 -(((
461 -**Example**:
462 -)))
463 463  
464 -(((
465 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
466 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
467 467  
468 -(((
469 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
470 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
471 471  
472 472  
413 +[[image:1654505905236-553.png]]
473 473  
474 -=== 2.4.7  Soil Conductivity (EC) ===
475 475  
476 -(((
477 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
478 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
479 479  
480 -(((
481 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
482 -)))
418 +[[image:1654505925508-181.png]]
483 483  
484 -(((
485 -Generally, the EC value of irrigation water is less than 800uS / cm.
486 -)))
487 487  
488 -(((
489 -
490 -)))
491 491  
492 -(((
493 -
494 -)))
422 +== 2.7 Frequency Plans ==
495 495  
496 -=== 2.4.8  Digital Interrupt ===
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
497 497  
498 -(((
499 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
500 -)))
501 501  
502 -(((
503 -The command is:
504 -)))
427 +=== 2.7.1 EU863-870 (EU868) ===
505 505  
506 -(((
507 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
508 -)))
429 +(% style="color:#037691" %)** Uplink:**
509 509  
431 +868.1 - SF7BW125 to SF12BW125
510 510  
511 -(((
512 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
513 -)))
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
514 514  
435 +868.5 - SF7BW125 to SF12BW125
515 515  
516 -(((
517 -Example:
518 -)))
437 +867.1 - SF7BW125 to SF12BW125
519 519  
520 -(((
521 -0x(00): Normal uplink packet.
522 -)))
439 +867.3 - SF7BW125 to SF12BW125
523 523  
524 -(((
525 -0x(01): Interrupt Uplink Packet.
526 -)))
441 +867.5 - SF7BW125 to SF12BW125
527 527  
443 +867.7 - SF7BW125 to SF12BW125
528 528  
445 +867.9 - SF7BW125 to SF12BW125
529 529  
530 -=== 2.4.9  ​+5V Output ===
447 +868.8 - FSK
531 531  
532 -(((
533 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
534 -)))
535 535  
450 +(% style="color:#037691" %)** Downlink:**
536 536  
537 -(((
538 -The 5V output time can be controlled by AT Command.
539 -)))
452 +Uplink channels 1-9 (RX1)
540 540  
541 -(((
542 -(% style="color:blue" %)**AT+5VT=1000**
543 -)))
454 +869.525 - SF9BW125 (RX2 downlink only)
544 544  
545 -(((
546 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
547 -)))
548 548  
549 549  
458 +=== 2.7.2 US902-928(US915) ===
550 550  
551 -== 2.5  Downlink Payload ==
460 +Used in USA, Canada and South America. Default use CHE=2
552 552  
553 -By default, NSE01 prints the downlink payload to console port.
462 +(% style="color:#037691" %)**Uplink:**
554 554  
555 -[[image:image-20220708133731-5.png]]
464 +903.9 - SF7BW125 to SF10BW125
556 556  
466 +904.1 - SF7BW125 to SF10BW125
557 557  
558 -(((
559 -(% style="color:blue" %)**Examples:**
560 -)))
468 +904.3 - SF7BW125 to SF10BW125
561 561  
562 -(((
563 -
564 -)))
470 +904.5 - SF7BW125 to SF10BW125
565 565  
566 -* (((
567 -(% style="color:blue" %)**Set TDC**
568 -)))
472 +904.7 - SF7BW125 to SF10BW125
569 569  
570 -(((
571 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
572 -)))
474 +904.9 - SF7BW125 to SF10BW125
573 573  
574 -(((
575 -Payload:    01 00 00 1E    TDC=30S
576 -)))
476 +905.1 - SF7BW125 to SF10BW125
577 577  
578 -(((
579 -Payload:    01 00 00 3C    TDC=60S
580 -)))
478 +905.3 - SF7BW125 to SF10BW125
581 581  
582 -(((
583 -
584 -)))
585 585  
586 -* (((
587 -(% style="color:blue" %)**Reset**
588 -)))
481 +(% style="color:#037691" %)**Downlink:**
589 589  
590 -(((
591 -If payload = 0x04FF, it will reset the NSE01
592 -)))
483 +923.3 - SF7BW500 to SF12BW500
593 593  
485 +923.9 - SF7BW500 to SF12BW500
594 594  
595 -* (% style="color:blue" %)**INTMOD**
487 +924.5 - SF7BW500 to SF12BW500
596 596  
597 -(((
598 -Downlink Payload: 06000003, Set AT+INTMOD=3
599 -)))
489 +925.1 - SF7BW500 to SF12BW500
600 600  
491 +925.7 - SF7BW500 to SF12BW500
601 601  
493 +926.3 - SF7BW500 to SF12BW500
602 602  
603 -== 2.6  ​LED Indicator ==
495 +926.9 - SF7BW500 to SF12BW500
604 604  
605 -(((
606 -The NSE01 has an internal LED which is to show the status of different state.
497 +927.5 - SF7BW500 to SF12BW500
607 607  
499 +923.3 - SF12BW500(RX2 downlink only)
608 608  
609 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
610 -* Then the LED will be on for 1 second means device is boot normally.
611 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
612 -* For each uplink probe, LED will be on for 500ms.
613 -)))
614 614  
615 615  
503 +=== 2.7.3 CN470-510 (CN470) ===
616 616  
505 +Used in China, Default use CHE=1
617 617  
618 -== 2.7  Installation in Soil ==
507 +(% style="color:#037691" %)**Uplink:**
619 619  
620 -__**Measurement the soil surface**__
509 +486.3 - SF7BW125 to SF12BW125
621 621  
622 -(((
623 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
624 -)))
511 +486.5 - SF7BW125 to SF12BW125
625 625  
626 -[[image:1657259653666-883.png]]
513 +486.7 - SF7BW125 to SF12BW125
627 627  
515 +486.9 - SF7BW125 to SF12BW125
628 628  
629 -(((
630 -
517 +487.1 - SF7BW125 to SF12BW125
631 631  
632 -(((
633 -Dig a hole with diameter > 20CM.
634 -)))
519 +487.3 - SF7BW125 to SF12BW125
635 635  
636 -(((
637 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
638 -)))
639 -)))
521 +487.5 - SF7BW125 to SF12BW125
640 640  
641 -[[image:1654506665940-119.png]]
523 +487.7 - SF7BW125 to SF12BW125
642 642  
643 -(((
644 -
645 -)))
646 646  
526 +(% style="color:#037691" %)**Downlink:**
647 647  
648 -== 2. Firmware Change Log ==
528 +506.7 - SF7BW125 to SF12BW125
649 649  
530 +506.9 - SF7BW125 to SF12BW125
650 650  
651 -Download URL & Firmware Change log
532 +507.1 - SF7BW125 to SF12BW125
652 652  
653 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 +507.3 - SF7BW125 to SF12BW125
654 654  
536 +507.5 - SF7BW125 to SF12BW125
655 655  
656 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 +507.7 - SF7BW125 to SF12BW125
657 657  
540 +507.9 - SF7BW125 to SF12BW125
658 658  
542 +508.1 - SF7BW125 to SF12BW125
659 659  
660 -== 2. Battery Analysis ==
544 +505.3 - SF12BW125 (RX2 downlink only)
661 661  
662 -=== 2.9.1  ​Battery Type ===
663 663  
664 664  
548 +=== 2.7.4 AU915-928(AU915) ===
549 +
550 +Default use CHE=2
551 +
552 +(% style="color:#037691" %)**Uplink:**
553 +
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
665 665  (((
666 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
667 667  )))
719 +)))
668 668  
669 669  
722 +
723 +[[image:1654506665940-119.png]]
724 +
670 670  (((
671 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
672 672  )))
673 673  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
674 674  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
675 675  (((
676 -The battery related documents as below:
737 +**Firmware download link:**
677 677  )))
678 678  
679 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
680 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
682 682  
683 683  (((
684 -[[image:image-20220708140453-6.png]]
745 +
685 685  )))
686 686  
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
687 687  
752 +(((
753 +
754 +)))
688 688  
689 -=== 2.9.2  Power consumption Analyze ===
756 +(((
757 +**V1.0.**
758 +)))
690 690  
691 691  (((
692 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +Release
693 693  )))
694 694  
695 695  
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
696 696  (((
697 -Instruction to use as below:
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 698  )))
699 699  
700 700  (((
701 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The battery is designed to last for more than 5 years for the LSN50.
702 702  )))
703 703  
704 -
705 705  (((
706 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
707 707  )))
781 +)))
708 708  
709 709  * (((
710 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
711 711  )))
712 712  * (((
713 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
714 714  )))
715 715  * (((
716 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
717 717  )))
718 718  
719 -(((
720 -And the Life expectation in difference case will be shown on the right.
721 -)))
793 + [[image:image-20220610172436-1.png]]
722 722  
723 -[[image:image-20220708141352-7.jpeg]]
724 724  
725 725  
797 +=== 2.11.2 ​Battery Note ===
726 726  
727 -=== 2.9.3  ​Battery Note ===
728 -
729 729  (((
730 730  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
731 731  )))
... ... @@ -732,176 +732,298 @@
732 732  
733 733  
734 734  
735 -=== 2.9. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
736 736  
737 737  (((
738 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
739 739  )))
740 740  
741 -
742 -
743 -= 3. ​ Access NB-IoT Module =
744 -
745 745  (((
746 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
747 747  )))
748 748  
749 749  (((
750 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
751 751  )))
752 752  
753 -[[image:1657261278785-153.png]]
754 754  
755 755  
821 += 3. ​Using the AT Commands =
756 756  
757 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
758 758  
759 -== 4.1  Access AT Commands ==
760 760  
761 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
762 762  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
763 763  
764 -AT+<CMD>?  : Help on <CMD>
765 765  
766 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
767 767  
768 -AT+<CMD>=<value> : Set the value
769 769  
770 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
771 771  
772 772  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
773 773  (% style="color:#037691" %)**General Commands**(%%)      
774 774  
775 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
776 776  
777 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
778 778  
779 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
780 780  
781 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
782 782  
783 -AT+CFG  : Print all configurations
784 784  
785 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
786 786  
787 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
788 788  
789 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
790 790  
791 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
792 792  
793 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
794 794  
795 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
796 796  
797 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
798 798  
799 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
800 800  
801 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
802 802  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
803 803  
804 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
805 805  
806 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
807 807  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
808 808  
809 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
810 810  
811 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
812 812  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
813 813  
814 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
815 815  
816 -AT+CLIENT               : Get or Set MQTT client
817 817  
818 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
819 819  
820 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
821 821  
822 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
823 823  
824 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
825 825  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
826 826  
827 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
828 828  
829 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
830 830  
831 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
832 832  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
833 833  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
834 834  
835 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
836 836  
837 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
838 838  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
839 839  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
840 840  (((
841 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
842 842  )))
843 843  
844 844  (((
845 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
846 846  )))
847 847  
848 848  (((
849 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
850 850  )))
851 851  
969 +(((
970 +
971 +)))
852 852  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
853 853  
854 -== 5.2  Can I calibrate NSE01 to different soil types? ==
977 +(((
978 +
979 +)))
855 855  
856 856  (((
857 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
858 858  )))
859 859  
985 +[[image:image-20220606154726-3.png]]
860 860  
861 -= 6.  Trouble Shooting =
862 862  
863 -== 6.1  ​Connection problem when uploading firmware ==
988 +When you use the TTN network, the US915 frequency bands use are:
864 864  
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
865 865  
866 866  (((
867 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
868 868  )))
869 869  
870 -(% class="wikigeneratedid" %)
871 871  (((
872 872  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
873 873  )))
874 874  
1013 +(((
1014 +
1015 +)))
875 875  
876 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
877 877  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
878 878  (((
879 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
880 880  
881 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
882 882  )))
883 883  
884 884  
885 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
886 886  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
887 887  
888 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
889 889  
890 890  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
891 891  (% class="wikigeneratedid" %)
892 892  (((
893 893  
894 894  )))
895 895  
896 -= 8.  Packing Info =
1087 += 7. Packing Info =
897 897  
898 898  (((
899 899  
900 900  
901 901  (% style="color:#037691" %)**Package Includes**:
1093 +)))
902 902  
903 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
904 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
905 905  )))
906 906  
907 907  (((
... ... @@ -908,19 +908,24 @@
908 908  
909 909  
910 910  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
911 911  
912 -* Size: 195 x 125 x 55 mm
913 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
914 914  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
915 915  
916 -(((
917 917  
918 -
919 -
920 -
921 921  )))
922 922  
923 -= 9.  Support =
1120 += 8. Support =
924 924  
925 925  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
926 926  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content