Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 77.2
edited by Xiaoling
on 2022/07/09 09:05
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,720 +13,782 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
36 36  
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
50 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
53 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
56 +
57 +== 1.2 ​Features ==
58 +
59 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
61 +* Monitor Soil Moisture
62 +* Monitor Soil Temperature
63 +* Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 58  
59 59  
60 -== 1.3  Specification ==
61 61  
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
75 +== 1.3 Specification ==
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
77 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
79 +[[image:image-20220606162220-5.png]]
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
76 76  
77 77  
78 -(% style="color:#037691" %)**Battery:**
83 +== ​1.4 Applications ==
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 -
86 -
87 -(% style="color:#037691" %)**Power Consumption**
88 -
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 -
92 -
93 -
94 -
95 -== ​1.4  Applications ==
96 -
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
90 +== 1.5 Firmware Change log ==
107 107  
108 108  
109 -== 1.5  Pin Definitions ==
93 +**LSE01 v1.0 :**  Release
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
113 113  
97 += 2. Configure LSE01 to connect to LoRaWAN network =
114 114  
99 +== 2.1 How it works ==
115 115  
116 -
117 -= 2.  Use NSE01 to communicate with IoT Server =
118 -
119 -== 2.1  How it works ==
120 -
121 121  (((
122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
123 123  )))
124 124  
125 -
126 126  (((
127 -The diagram below shows the working flow in default firmware of NDDS75:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
128 128  )))
129 129  
130 -(((
131 -
132 -)))
133 133  
134 -[[image:1657328659945-416.png]]
135 135  
136 -(((
137 -
138 -)))
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
139 139  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
140 140  
141 141  
142 -== 2.2 ​ Configure the NSE01 ==
116 +[[image:1654503992078-669.png]]
143 143  
144 144  
145 -=== 2.2.1 Test Requirement ===
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
146 146  
147 147  
148 -(((
149 -To use NSE01 in your city, make sure meet below requirements:
150 -)))
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
151 151  
152 -* Your local operator has already distributed a NB-IoT Network there.
153 -* The local NB-IoT network used the band that NSE01 supports.
154 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
155 155  
156 -(((
157 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
158 -)))
126 +[[image:image-20220606163732-6.jpeg]]
159 159  
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
160 160  
161 -[[image:1657249419225-449.png]]
130 +**Add APP EUI in the application**
162 162  
163 163  
133 +[[image:1654504596150-405.png]]
164 164  
165 -=== 2.2.2 Insert SIM card ===
166 166  
167 -(((
168 -Insert the NB-IoT Card get from your provider.
169 -)))
170 170  
171 -(((
172 -User need to take out the NB-IoT module and insert the SIM card like below:
173 -)))
137 +**Add APP KEY and DEV EUI**
174 174  
139 +[[image:1654504683289-357.png]]
175 175  
176 -[[image:1657249468462-536.png]]
177 177  
178 178  
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
179 179  
180 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
181 181  
182 -(((
183 -(((
184 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
185 -)))
186 -)))
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
187 187  
148 +[[image:image-20220606163915-7.png]]
188 188  
189 -**Connection:**
190 190  
191 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
192 192  
193 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
153 +[[image:1654504778294-788.png]]
194 194  
195 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
196 196  
197 197  
198 -In the PC, use below serial tool settings:
157 +== 2.3 Uplink Payload ==
199 199  
200 -* Baud:  (% style="color:green" %)**9600**
201 -* Data bits:** (% style="color:green" %)8(%%)**
202 -* Stop bits: (% style="color:green" %)**1**
203 -* Parity:  (% style="color:green" %)**None**
204 -* Flow Control: (% style="color:green" %)**None**
205 205  
206 -(((
207 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
208 -)))
160 +=== 2.3.1 MOD~=0(Default Mode) ===
209 209  
210 -[[image:image-20220708110657-3.png]]
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
211 211  
212 212  (((
213 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
165 +Uplink payload includes in total 11 bytes.
214 214  )))
215 215  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
216 216  
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
217 217  
218 -=== 2.2.4 Use CoAP protocol to uplink data ===
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
219 219  
220 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 +(Optional)
182 +)))
221 221  
222 222  
223 -**Use below commands:**
224 224  
225 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
226 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
227 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
228 228  
229 -For parameter description, please refer to AT command set
230 230  
231 -[[image:1657249793983-486.png]]
232 232  
233 233  
234 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
190 +=== 2.3.2 MOD~=1(Original value) ===
235 235  
236 -[[image:1657249831934-534.png]]
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
237 237  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
238 238  
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
239 239  
240 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
241 241  
242 -This feature is supported since firmware version v1.0.1
207 +(Optional)
208 +)))
243 243  
244 244  
245 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
247 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
248 248  
249 -[[image:1657249864775-321.png]]
250 250  
251 251  
252 -[[image:1657249930215-289.png]]
253 253  
254 254  
216 +=== 2.3.3 Battery Info ===
255 255  
256 -=== 2.2.6 Use MQTT protocol to uplink data ===
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
257 257  
258 -This feature is supported since firmware version v110
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
259 259  
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
260 260  
261 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
263 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
264 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
265 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
266 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
267 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
268 268  
269 -[[image:1657249978444-674.png]]
270 270  
232 +=== 2.3.4 Soil Moisture ===
271 271  
272 -[[image:1657249990869-686.png]]
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
273 273  
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
274 274  
275 275  (((
276 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
243 +
277 277  )))
278 278  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
279 279  
280 280  
281 -=== 2.2.7 Use TCP protocol to uplink data ===
282 282  
283 -This feature is supported since firmware version v110
252 +=== 2.3.5 Soil Temperature ===
284 284  
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
285 285  
286 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
287 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
258 +(((
259 +**Example**:
260 +)))
288 288  
289 -[[image:1657250217799-140.png]]
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
290 290  
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
291 291  
292 -[[image:1657250255956-604.png]]
293 293  
294 294  
272 +=== 2.3.6 Soil Conductivity (EC) ===
295 295  
296 -=== 2.2.8 Change Update Interval ===
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
297 297  
298 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
299 299  
300 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
301 -
302 302  (((
303 -(% style="color:red" %)**NOTE:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
304 304  )))
305 305  
306 306  (((
307 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
308 308  )))
309 309  
310 -
311 -
312 -== 2.3  Uplink Payload ==
313 -
314 -In this mode, uplink payload includes in total 18 bytes
315 -
316 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
317 -|=(% style="width: 60px;" %)(((
318 -**Size(bytes)**
319 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
320 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
321 -
322 322  (((
323 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
291 +
324 324  )))
325 325  
294 +=== 2.3.7 MOD ===
326 326  
327 -[[image:image-20220708111918-4.png]]
296 +Firmware version at least v2.1 supports changing mode.
328 328  
298 +For example, bytes[10]=90
329 329  
330 -The payload is ASCII string, representative same HEX:
300 +mod=(bytes[10]>>7)&0x01=1.
331 331  
332 -0x72403155615900640c7817075e0a8c02f900 where:
333 333  
334 -* Device ID: 0x 724031556159 = 724031556159
335 -* Version: 0x0064=100=1.0.0
303 +**Downlink Command:**
336 336  
337 -* BAT: 0x0c78 = 3192 mV = 3.192V
338 -* Singal: 0x17 = 23
339 -* Soil Moisture: 0x075e= 1886 = 18.86  %
340 -* Soil Temperature:0x0a8c =2700=27 °C
341 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
342 -* Interrupt: 0x00 = 0
305 +If payload = 0x0A00, workmode=0
343 343  
344 -== 2.4  Payload Explanation and Sensor Interface ==
307 +If** **payload =** **0x0A01, workmode=1
345 345  
346 346  
347 -=== 2.4.1  Device ID ===
348 348  
349 -(((
350 -By default, the Device ID equal to the last 6 bytes of IMEI.
351 -)))
311 +=== 2.3.8 ​Decode payload in The Things Network ===
352 352  
353 -(((
354 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
355 -)))
313 +While using TTN network, you can add the payload format to decode the payload.
356 356  
357 -(((
358 -**Example:**
359 -)))
360 360  
316 +[[image:1654505570700-128.png]]
317 +
361 361  (((
362 -AT+DEUI=A84041F15612
319 +The payload decoder function for TTN is here:
363 363  )))
364 364  
365 365  (((
366 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
367 367  )))
368 368  
369 369  
327 +== 2.4 Uplink Interval ==
370 370  
371 -=== 2.4.2  Version Info ===
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
372 372  
373 -(((
374 -Specify the software version: 0x64=100, means firmware version 1.00.
375 -)))
376 376  
377 -(((
378 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
379 -)))
380 380  
333 +== 2.5 Downlink Payload ==
381 381  
335 +By default, LSE50 prints the downlink payload to console port.
382 382  
383 -=== 2.4.3  Battery Info ===
337 +[[image:image-20220606165544-8.png]]
384 384  
385 -(((
386 -Check the battery voltage for LSE01.
387 -)))
388 388  
389 389  (((
390 -Ex1: 0x0B45 = 2885mV
341 +**Examples:**
391 391  )))
392 392  
393 393  (((
394 -Ex2: 0x0B49 = 2889mV
345 +
395 395  )))
396 396  
397 -
398 -
399 -=== 2.4.4  Signal Strength ===
400 -
401 -(((
402 -NB-IoT Network signal Strength.
348 +* (((
349 +**Set TDC**
403 403  )))
404 404  
405 405  (((
406 -**Ex1: 0x1d = 29**
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
407 407  )))
408 408  
409 409  (((
410 -(% style="color:blue" %)**0**(%%)  -113dBm or less
357 +Payload:    01 00 00 1E    TDC=30S
411 411  )))
412 412  
413 413  (((
414 -(% style="color:blue" %)**1**(%%)  -111dBm
361 +Payload:    01 00 00 3C    TDC=60S
415 415  )))
416 416  
417 417  (((
418 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
365 +
419 419  )))
420 420  
421 -(((
422 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
368 +* (((
369 +**Reset**
423 423  )))
424 424  
425 425  (((
426 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +If payload = 0x04FF, it will reset the LSE01
427 427  )))
428 428  
429 429  
377 +* **CFM**
430 430  
431 -=== 2.4.5  Soil Moisture ===
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
432 432  
381 +
382 +
383 +== 2.6 ​Show Data in DataCake IoT Server ==
384 +
433 433  (((
434 -(((
435 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
436 436  )))
437 -)))
438 438  
439 439  (((
440 -(((
441 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
390 +
442 442  )))
443 -)))
444 444  
445 445  (((
446 -
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
447 447  )))
448 448  
449 449  (((
450 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
398 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
451 451  )))
452 452  
453 453  
402 +[[image:1654505857935-743.png]]
454 454  
455 -=== 2.4.6  Soil Temperature ===
456 456  
457 -(((
458 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
459 -)))
405 +[[image:1654505874829-548.png]]
460 460  
461 -(((
462 -**Example**:
463 -)))
464 464  
465 -(((
466 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
467 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
468 468  
469 -(((
470 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
471 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
472 472  
473 473  
413 +[[image:1654505905236-553.png]]
474 474  
475 -=== 2.4.7  Soil Conductivity (EC) ===
476 476  
477 -(((
478 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
479 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
480 480  
481 -(((
482 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
483 -)))
418 +[[image:1654505925508-181.png]]
484 484  
485 -(((
486 -Generally, the EC value of irrigation water is less than 800uS / cm.
487 -)))
488 488  
489 -(((
490 -
491 -)))
492 492  
493 -(((
494 -
495 -)))
422 +== 2.7 Frequency Plans ==
496 496  
497 -=== 2.4.8  Digital Interrupt ===
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
498 498  
499 -(((
500 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
501 -)))
502 502  
503 -(((
504 -The command is:
505 -)))
427 +=== 2.7.1 EU863-870 (EU868) ===
506 506  
507 -(((
508 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
509 -)))
429 +(% style="color:#037691" %)** Uplink:**
510 510  
431 +868.1 - SF7BW125 to SF12BW125
511 511  
512 -(((
513 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
514 -)))
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
515 515  
435 +868.5 - SF7BW125 to SF12BW125
516 516  
517 -(((
518 -Example:
519 -)))
437 +867.1 - SF7BW125 to SF12BW125
520 520  
521 -(((
522 -0x(00): Normal uplink packet.
523 -)))
439 +867.3 - SF7BW125 to SF12BW125
524 524  
525 -(((
526 -0x(01): Interrupt Uplink Packet.
527 -)))
441 +867.5 - SF7BW125 to SF12BW125
528 528  
443 +867.7 - SF7BW125 to SF12BW125
529 529  
445 +867.9 - SF7BW125 to SF12BW125
530 530  
531 -=== 2.4.9  ​+5V Output ===
447 +868.8 - FSK
532 532  
533 -(((
534 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
535 -)))
536 536  
450 +(% style="color:#037691" %)** Downlink:**
537 537  
538 -(((
539 -The 5V output time can be controlled by AT Command.
540 -)))
452 +Uplink channels 1-9 (RX1)
541 541  
542 -(((
543 -(% style="color:blue" %)**AT+5VT=1000**
544 -)))
454 +869.525 - SF9BW125 (RX2 downlink only)
545 545  
546 -(((
547 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
548 -)))
549 549  
550 550  
458 +=== 2.7.2 US902-928(US915) ===
551 551  
552 -== 2.5  Downlink Payload ==
460 +Used in USA, Canada and South America. Default use CHE=2
553 553  
554 -By default, NSE01 prints the downlink payload to console port.
462 +(% style="color:#037691" %)**Uplink:**
555 555  
556 -[[image:image-20220708133731-5.png]]
464 +903.9 - SF7BW125 to SF10BW125
557 557  
466 +904.1 - SF7BW125 to SF10BW125
558 558  
559 -(((
560 -(% style="color:blue" %)**Examples:**
561 -)))
468 +904.3 - SF7BW125 to SF10BW125
562 562  
563 -(((
564 -
565 -)))
470 +904.5 - SF7BW125 to SF10BW125
566 566  
567 -* (((
568 -(% style="color:blue" %)**Set TDC**
569 -)))
472 +904.7 - SF7BW125 to SF10BW125
570 570  
571 -(((
572 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
573 -)))
474 +904.9 - SF7BW125 to SF10BW125
574 574  
575 -(((
576 -Payload:    01 00 00 1E    TDC=30S
577 -)))
476 +905.1 - SF7BW125 to SF10BW125
578 578  
579 -(((
580 -Payload:    01 00 00 3C    TDC=60S
581 -)))
478 +905.3 - SF7BW125 to SF10BW125
582 582  
583 -(((
584 -
585 -)))
586 586  
587 -* (((
588 -(% style="color:blue" %)**Reset**
589 -)))
481 +(% style="color:#037691" %)**Downlink:**
590 590  
591 -(((
592 -If payload = 0x04FF, it will reset the NSE01
593 -)))
483 +923.3 - SF7BW500 to SF12BW500
594 594  
485 +923.9 - SF7BW500 to SF12BW500
595 595  
596 -* (% style="color:blue" %)**INTMOD**
487 +924.5 - SF7BW500 to SF12BW500
597 597  
598 -(((
599 -Downlink Payload: 06000003, Set AT+INTMOD=3
600 -)))
489 +925.1 - SF7BW500 to SF12BW500
601 601  
491 +925.7 - SF7BW500 to SF12BW500
602 602  
493 +926.3 - SF7BW500 to SF12BW500
603 603  
604 -== 2.6  ​LED Indicator ==
495 +926.9 - SF7BW500 to SF12BW500
605 605  
606 -(((
607 -The NSE01 has an internal LED which is to show the status of different state.
497 +927.5 - SF7BW500 to SF12BW500
608 608  
499 +923.3 - SF12BW500(RX2 downlink only)
609 609  
610 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
611 -* Then the LED will be on for 1 second means device is boot normally.
612 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
613 -* For each uplink probe, LED will be on for 500ms.
614 -)))
615 615  
616 616  
503 +=== 2.7.3 CN470-510 (CN470) ===
617 617  
505 +Used in China, Default use CHE=1
618 618  
619 -== 2.7  Installation in Soil ==
507 +(% style="color:#037691" %)**Uplink:**
620 620  
621 -__**Measurement the soil surface**__
509 +486.3 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
625 -)))
511 +486.5 - SF7BW125 to SF12BW125
626 626  
627 -[[image:1657259653666-883.png]]
513 +486.7 - SF7BW125 to SF12BW125
628 628  
515 +486.9 - SF7BW125 to SF12BW125
629 629  
630 -(((
631 -
517 +487.1 - SF7BW125 to SF12BW125
632 632  
633 -(((
634 -Dig a hole with diameter > 20CM.
635 -)))
519 +487.3 - SF7BW125 to SF12BW125
636 636  
637 -(((
638 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
639 -)))
640 -)))
521 +487.5 - SF7BW125 to SF12BW125
641 641  
642 -[[image:1654506665940-119.png]]
523 +487.7 - SF7BW125 to SF12BW125
643 643  
644 -(((
645 -
646 -)))
647 647  
526 +(% style="color:#037691" %)**Downlink:**
648 648  
649 -== 2. Firmware Change Log ==
528 +506.7 - SF7BW125 to SF12BW125
650 650  
530 +506.9 - SF7BW125 to SF12BW125
651 651  
652 -Download URL & Firmware Change log
532 +507.1 - SF7BW125 to SF12BW125
653 653  
654 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 +507.3 - SF7BW125 to SF12BW125
655 655  
536 +507.5 - SF7BW125 to SF12BW125
656 656  
657 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 +507.7 - SF7BW125 to SF12BW125
658 658  
540 +507.9 - SF7BW125 to SF12BW125
659 659  
542 +508.1 - SF7BW125 to SF12BW125
660 660  
661 -== 2. Battery Analysis ==
544 +505.3 - SF12BW125 (RX2 downlink only)
662 662  
663 -=== 2.9.1  ​Battery Type ===
664 664  
665 665  
548 +=== 2.7.4 AU915-928(AU915) ===
549 +
550 +Default use CHE=2
551 +
552 +(% style="color:#037691" %)**Uplink:**
553 +
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
666 666  (((
667 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
668 668  )))
719 +)))
669 669  
670 670  
722 +
723 +[[image:1654506665940-119.png]]
724 +
671 671  (((
672 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
673 673  )))
674 674  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
675 675  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
676 676  (((
677 -The battery related documents as below:
737 +**Firmware download link:**
678 678  )))
679 679  
680 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
681 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
682 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
683 683  
684 684  (((
685 -[[image:image-20220708140453-6.png]]
745 +
686 686  )))
687 687  
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
688 688  
752 +(((
753 +
754 +)))
689 689  
690 -=== 2.9.2  Power consumption Analyze ===
756 +(((
757 +**V1.0.**
758 +)))
691 691  
692 692  (((
693 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +Release
694 694  )))
695 695  
696 696  
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
697 697  (((
698 -Instruction to use as below:
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
699 699  )))
700 700  
701 701  (((
702 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The battery is designed to last for more than 5 years for the LSN50.
703 703  )))
704 704  
705 -
706 706  (((
707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
708 708  )))
781 +)))
709 709  
710 710  * (((
711 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
712 712  )))
713 713  * (((
714 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
715 715  )))
716 716  * (((
717 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
718 718  )))
719 719  
720 -(((
721 -And the Life expectation in difference case will be shown on the right.
722 -)))
793 + [[image:image-20220610172436-1.png]]
723 723  
724 -[[image:image-20220708141352-7.jpeg]]
725 725  
726 726  
797 +=== 2.11.2 ​Battery Note ===
727 727  
728 -=== 2.9.3  ​Battery Note ===
729 -
730 730  (((
731 731  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
732 732  )))
... ... @@ -733,176 +733,298 @@
733 733  
734 734  
735 735  
736 -=== 2.9. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
737 737  
738 738  (((
739 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
740 740  )))
741 741  
742 -
743 -
744 -= 3. ​ Access NB-IoT Module =
745 -
746 746  (((
747 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
748 748  )))
749 749  
750 750  (((
751 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
752 752  )))
753 753  
754 -[[image:1657261278785-153.png]]
755 755  
756 756  
821 += 3. ​Using the AT Commands =
757 757  
758 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
759 759  
760 -== 4.1  Access AT Commands ==
761 761  
762 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
763 763  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
764 764  
765 -AT+<CMD>?  : Help on <CMD>
766 766  
767 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
768 768  
769 -AT+<CMD>=<value> : Set the value
770 770  
771 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
772 772  
773 773  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
774 774  (% style="color:#037691" %)**General Commands**(%%)      
775 775  
776 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
777 777  
778 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
779 779  
780 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
781 781  
782 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
783 783  
784 -AT+CFG  : Print all configurations
785 785  
786 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
787 787  
788 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
789 789  
790 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
791 791  
792 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
793 793  
794 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
795 795  
796 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
797 797  
798 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
799 799  
800 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
801 801  
802 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
803 803  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
804 804  
805 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
806 806  
807 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
808 808  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
809 809  
810 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
811 811  
812 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
813 813  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
814 814  
815 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
816 816  
817 -AT+CLIENT               : Get or Set MQTT client
818 818  
819 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
820 820  
821 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
822 822  
823 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
824 824  
825 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
826 826  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
827 827  
828 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
829 829  
830 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
831 831  
832 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
833 833  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
834 834  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
835 835  
836 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
837 837  
838 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
839 839  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
840 840  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
841 841  (((
842 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
843 843  )))
844 844  
845 845  (((
846 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
847 847  )))
848 848  
849 849  (((
850 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
851 851  )))
852 852  
969 +(((
970 +
971 +)))
853 853  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
854 854  
855 -== 5.2  Can I calibrate NSE01 to different soil types? ==
977 +(((
978 +
979 +)))
856 856  
857 857  (((
858 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
859 859  )))
860 860  
985 +[[image:image-20220606154726-3.png]]
861 861  
862 -= 6.  Trouble Shooting =
863 863  
864 -== 6.1  ​Connection problem when uploading firmware ==
988 +When you use the TTN network, the US915 frequency bands use are:
865 865  
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
866 866  
867 867  (((
868 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
869 869  )))
870 870  
871 -(% class="wikigeneratedid" %)
872 872  (((
873 873  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
874 874  )))
875 875  
1013 +(((
1014 +
1015 +)))
876 876  
877 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
878 878  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
879 879  (((
880 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
881 881  
882 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
883 883  )))
884 884  
885 885  
886 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
887 887  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
888 888  
889 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
890 890  
891 891  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
892 892  (% class="wikigeneratedid" %)
893 893  (((
894 894  
895 895  )))
896 896  
897 -= 8.  Packing Info =
1087 += 7. Packing Info =
898 898  
899 899  (((
900 900  
901 901  
902 902  (% style="color:#037691" %)**Package Includes**:
1093 +)))
903 903  
904 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
905 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
906 906  )))
907 907  
908 908  (((
... ... @@ -909,19 +909,24 @@
909 909  
910 910  
911 911  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
912 912  
913 -* Size: 195 x 125 x 55 mm
914 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
915 915  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
916 916  
917 -(((
918 918  
919 -
920 -
921 -
922 922  )))
923 923  
924 -= 9.  Support =
1120 += 8. Support =
925 925  
926 926  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
927 927  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657328659945-416.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.8 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content