Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 33 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,732 +1,753 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==102 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657328609906-564.png]]105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 115 115 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 116 116 117 - = 2. Use NSE01 to communicatewith IoT Server =112 +[[image:image-20220606163732-6.jpeg]] 118 118 119 - ==2.1Howitworks==114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 121 121 ((( 122 - The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware inNDDS75 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNDDS75.153 +Uplink payload includes in total 11 bytes. 123 123 ))) 124 124 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 125 125 126 -((( 127 -The diagram below shows the working flow in default firmware of NDDS75: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 128 128 ))) 129 129 130 -((( 131 - 172 + 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 132 132 ))) 133 133 134 -[[image:1657328659945-416.png]] 135 135 195 + 196 +=== 2.3.3 Battery Info === 197 + 136 136 ((( 137 - 199 +Check the battery voltage for LSE01. 138 138 ))) 139 139 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 140 140 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 141 141 142 -== 2.2 Configure the NSE01 == 143 143 144 144 145 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 146 146 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 147 147 148 148 ((( 149 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 150 150 ))) 151 151 152 - * Your local operator has already distributed a NB-IoT Network there.153 - *The local NB-IoT network used the band that NSE01 supports.154 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 155 155 156 156 ((( 157 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 158 158 ))) 159 159 160 160 161 -[[image:1657249419225-449.png]] 162 162 232 +=== 2.3.5 Soil Temperature === 163 163 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 164 164 165 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 166 166 167 167 ((( 168 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 169 169 ))) 170 170 171 171 ((( 172 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 173 173 ))) 174 174 175 175 176 -[[image:1657249468462-536.png]] 177 177 252 +=== 2.3.6 Soil Conductivity (EC) === 178 178 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 179 179 180 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 181 181 182 182 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 183 183 ((( 184 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 185 185 ))) 269 + 270 +((( 271 + 186 186 ))) 187 187 274 +=== 2.3.7 MOD === 188 188 189 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 190 190 191 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 192 192 193 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 194 194 195 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 196 196 283 +**Downlink Command:** 197 197 198 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 199 199 200 -* Baud: (% style="color:green" %)**9600** 201 -* Data bits:** (% style="color:green" %)8(%%)** 202 -* Stop bits: (% style="color:green" %)**1** 203 -* Parity: (% style="color:green" %)**None** 204 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 205 205 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 206 206 ((( 207 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 208 208 ))) 209 209 210 -[[image:image-20220708110657-3.png]] 211 - 212 212 ((( 213 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 214 214 ))) 215 215 216 216 217 217 218 -== =2.2.4se CoAPprotocolto uplinkdata ===308 +== 2.4 Uplink Interval == 219 219 220 - (%style="color:red"%)Note: ifyoudon'thaveCoAPserver,you canreferthis linktosetup one:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 221 221 222 222 223 -**Use below commands:** 224 224 225 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 226 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 227 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 +== 2.5 Downlink Payload == 228 228 229 - Forparameterdescription,pleaserefertoATcommandset316 +By default, LSE50 prints the downlink payload to console port. 230 230 231 -[[image:165 7249793983-486.png]]318 +[[image:image-20220606165544-8.png]] 232 232 233 233 234 - After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.321 +**Examples:** 235 235 236 -[[image:1657249831934-534.png]] 237 237 324 +* **Set TDC** 238 238 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 239 239 240 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===328 +Payload: 01 00 00 1E TDC=30S 241 241 242 - This feature is supportedsincefirmwareversionv1.0.1330 +Payload: 01 00 00 3C TDC=60S 243 243 244 244 245 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 333 +* **Reset** 248 248 249 - [[image:1657249864775-321.png]]335 +If payload = 0x04FF, it will reset the LSE01 250 250 251 251 252 - [[image:1657249930215-289.png]]338 +* **CFM** 253 253 340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 254 254 255 255 256 -=== 2.2.6 Use MQTT protocol to uplink data === 257 257 258 - Thisfeatureissupportedsincefirmwaresionv110344 +== 2.6 Show Data in DataCake IoT Server == 259 259 346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 260 260 261 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 263 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 264 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 265 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 266 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 267 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 268 268 269 - [[image:1657249978444-674.png]]349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 270 270 351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 271 271 272 -[[image:1657249990869-686.png]] 273 273 354 +[[image:1654505857935-743.png]] 274 274 275 -((( 276 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 277 -))) 278 278 357 +[[image:1654505874829-548.png]] 279 279 359 +Step 3: Create an account or log in Datacake. 280 280 281 - === 2.2.7 UseTCPprotocoltouplinkdata===361 +Step 4: Search the LSE01 and add DevEUI. 282 282 283 -This feature is supported since firmware version v110 284 284 364 +[[image:1654505905236-553.png]] 285 285 286 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 287 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 288 288 289 - [[image:1657250217799-140.png]]367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 290 290 369 +[[image:1654505925508-181.png]] 291 291 292 -[[image:1657250255956-604.png]] 293 293 294 294 373 +== 2.7 Frequency Plans == 295 295 296 - ===2.2.8ChangeUpdateInterval===375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 297 297 298 -User can use below command to change the (% style="color:green" %)**uplink interval**. 299 299 300 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/ SetUpdate Interval to600s378 +=== 2.7.1 EU863-870 (EU868) === 301 301 302 -((( 303 -(% style="color:red" %)**NOTE:** 304 -))) 380 +(% style="color:#037691" %)** Uplink:** 305 305 306 -((( 307 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 308 -))) 382 +868.1 - SF7BW125 to SF12BW125 309 309 384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 310 310 386 +868.5 - SF7BW125 to SF12BW125 311 311 312 - == 2.3UplinkPayload==388 +867.1 - SF7BW125 to SF12BW125 313 313 314 - Inthismode,uplink payload includes intotal18 bytes390 +867.3 - SF7BW125 to SF12BW125 315 315 316 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 317 -|=(% style="width: 60px;" %)((( 318 -**Size(bytes)** 319 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 320 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 392 +867.5 - SF7BW125 to SF12BW125 321 321 322 -((( 323 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 324 -))) 394 +867.7 - SF7BW125 to SF12BW125 325 325 396 +867.9 - SF7BW125 to SF12BW125 326 326 327 - [[image:image-20220708111918-4.png]]398 +868.8 - FSK 328 328 329 329 330 - ThepayloadisASCII string, representative same HEX:401 +(% style="color:#037691" %)** Downlink:** 331 331 332 - 0x72403155615900640c7817075e0a8c02f900where:403 +Uplink channels 1-9 (RX1) 333 333 334 -* Device ID: 0x 724031556159 = 724031556159 335 -* Version: 0x0064=100=1.0.0 405 +869.525 - SF9BW125 (RX2 downlink only) 336 336 337 -* BAT: 0x0c78 = 3192 mV = 3.192V 338 -* Singal: 0x17 = 23 339 -* Soil Moisture: 0x075e= 1886 = 18.86 % 340 -* Soil Temperature:0x0a8c =2700=27 °C 341 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 342 -* Interrupt: 0x00 = 0 343 343 344 -== 2.4 Payload Explanation and Sensor Interface == 345 345 409 +=== 2.7.2 US902-928(US915) === 346 346 347 - ===2.4.1 DeviceID ===411 +Used in USA, Canada and South America. Default use CHE=2 348 348 349 -((( 350 -By default, the Device ID equal to the last 6 bytes of IMEI. 351 -))) 413 +(% style="color:#037691" %)**Uplink:** 352 352 353 -((( 354 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 355 -))) 415 +903.9 - SF7BW125 to SF10BW125 356 356 357 -((( 358 -**Example:** 359 -))) 417 +904.1 - SF7BW125 to SF10BW125 360 360 361 -((( 362 -AT+DEUI=A84041F15612 363 -))) 419 +904.3 - SF7BW125 to SF10BW125 364 364 365 -((( 366 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 367 -))) 421 +904.5 - SF7BW125 to SF10BW125 368 368 423 +904.7 - SF7BW125 to SF10BW125 369 369 425 +904.9 - SF7BW125 to SF10BW125 370 370 371 - ===2.4.2VersionInfo ===427 +905.1 - SF7BW125 to SF10BW125 372 372 373 -((( 374 -Specify the software version: 0x64=100, means firmware version 1.00. 375 -))) 429 +905.3 - SF7BW125 to SF10BW125 376 376 377 -((( 378 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 379 -))) 380 380 432 +(% style="color:#037691" %)**Downlink:** 381 381 434 +923.3 - SF7BW500 to SF12BW500 382 382 383 - ===2.4.3atteryInfo===436 +923.9 - SF7BW500 to SF12BW500 384 384 385 -((( 386 -Check the battery voltage for LSE01. 387 -))) 438 +924.5 - SF7BW500 to SF12BW500 388 388 389 -((( 390 -Ex1: 0x0B45 = 2885mV 391 -))) 440 +925.1 - SF7BW500 to SF12BW500 392 392 393 -((( 394 -Ex2: 0x0B49 = 2889mV 395 -))) 442 +925.7 - SF7BW500 to SF12BW500 396 396 444 +926.3 - SF7BW500 to SF12BW500 397 397 446 +926.9 - SF7BW500 to SF12BW500 398 398 399 - ===2.4.4SignalStrength===448 +927.5 - SF7BW500 to SF12BW500 400 400 401 -((( 402 -NB-IoT Network signal Strength. 403 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 404 404 405 -((( 406 -**Ex1: 0x1d = 29** 407 -))) 408 408 409 -((( 410 -(% style="color:blue" %)**0**(%%) -113dBm or less 411 -))) 412 412 413 -((( 414 -(% style="color:blue" %)**1**(%%) -111dBm 415 -))) 454 +=== 2.7.3 CN470-510 (CN470) === 416 416 417 -((( 418 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 -))) 456 +Used in China, Default use CHE=1 420 420 421 -((( 422 -(% style="color:blue" %)**31** (%%) -51dBm or greater 423 -))) 458 +(% style="color:#037691" %)**Uplink:** 424 424 425 -((( 426 -(% style="color:blue" %)**99** (%%) Not known or not detectable 427 -))) 460 +486.3 - SF7BW125 to SF12BW125 428 428 462 +486.5 - SF7BW125 to SF12BW125 429 429 464 +486.7 - SF7BW125 to SF12BW125 430 430 431 - === 2.4.5SoilMoisture===466 +486.9 - SF7BW125 to SF12BW125 432 432 433 -((( 434 -((( 435 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 436 -))) 437 -))) 468 +487.1 - SF7BW125 to SF12BW125 438 438 439 -((( 440 -((( 441 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 442 -))) 443 -))) 470 +487.3 - SF7BW125 to SF12BW125 444 444 445 -((( 446 - 447 -))) 472 +487.5 - SF7BW125 to SF12BW125 448 448 449 -((( 450 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 451 -))) 474 +487.7 - SF7BW125 to SF12BW125 452 452 453 453 477 +(% style="color:#037691" %)**Downlink:** 454 454 455 - === 2.4.6oilTemperature===479 +506.7 - SF7BW125 to SF12BW125 456 456 457 -((( 458 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 459 -))) 481 +506.9 - SF7BW125 to SF12BW125 460 460 461 -((( 462 -**Example**: 463 -))) 483 +507.1 - SF7BW125 to SF12BW125 464 464 465 -((( 466 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 467 -))) 485 +507.3 - SF7BW125 to SF12BW125 468 468 469 -((( 470 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 471 -))) 487 +507.5 - SF7BW125 to SF12BW125 472 472 489 +507.7 - SF7BW125 to SF12BW125 473 473 491 +507.9 - SF7BW125 to SF12BW125 474 474 475 - === 2.4.7SoilConductivity(EC) ===493 +508.1 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 479 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 480 480 481 -((( 482 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 483 -))) 484 484 485 -((( 486 -Generally, the EC value of irrigation water is less than 800uS / cm. 487 -))) 488 488 489 -((( 490 - 491 -))) 499 +=== 2.7.4 AU915-928(AU915) === 492 492 493 -((( 494 - 495 -))) 501 +Default use CHE=2 496 496 497 - ===2.4.8 DigitalInterrupt===503 +(% style="color:#037691" %)**Uplink:** 498 498 499 -((( 500 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 -))) 505 +916.8 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -The command is: 505 -))) 507 +917.0 - SF7BW125 to SF12BW125 506 506 507 -((( 508 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 509 -))) 509 +917.2 - SF7BW125 to SF12BW125 510 510 511 +917.4 - SF7BW125 to SF12BW125 511 511 512 -((( 513 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 514 -))) 513 +917.6 - SF7BW125 to SF12BW125 515 515 515 +917.8 - SF7BW125 to SF12BW125 516 516 517 -((( 518 -Example: 519 -))) 517 +918.0 - SF7BW125 to SF12BW125 520 520 521 -((( 522 -0x(00): Normal uplink packet. 523 -))) 519 +918.2 - SF7BW125 to SF12BW125 524 524 525 -((( 526 -0x(01): Interrupt Uplink Packet. 527 -))) 528 528 522 +(% style="color:#037691" %)**Downlink:** 529 529 524 +923.3 - SF7BW500 to SF12BW500 530 530 531 - ===2.4.9+5VOutput===526 +923.9 - SF7BW500 to SF12BW500 532 532 533 -((( 534 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 -))) 528 +924.5 - SF7BW500 to SF12BW500 536 536 530 +925.1 - SF7BW500 to SF12BW500 537 537 538 -((( 539 -The 5V output time can be controlled by AT Command. 540 -))) 532 +925.7 - SF7BW500 to SF12BW500 541 541 542 -((( 543 -(% style="color:blue" %)**AT+5VT=1000** 544 -))) 534 +926.3 - SF7BW500 to SF12BW500 545 545 546 -((( 547 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 548 -))) 536 +926.9 - SF7BW500 to SF12BW500 549 549 538 +927.5 - SF7BW500 to SF12BW500 550 550 540 +923.3 - SF12BW500(RX2 downlink only) 551 551 552 -== 2.5 Downlink Payload == 553 553 554 -By default, NSE01 prints the downlink payload to console port. 555 555 556 - [[image:image-20220708133731-5.png]]544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 557 557 546 +(% style="color:#037691" %)**Default Uplink channel:** 558 558 559 -((( 560 -(% style="color:blue" %)**Examples:** 561 -))) 548 +923.2 - SF7BW125 to SF10BW125 562 562 563 -((( 564 - 565 -))) 550 +923.4 - SF7BW125 to SF10BW125 566 566 567 -* ((( 568 -(% style="color:blue" %)**Set TDC** 569 -))) 570 570 571 -((( 572 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 573 -))) 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 574 574 575 -((( 576 -Payload: 01 00 00 1E TDC=30S 577 -))) 555 +(OTAA mode, channel added by JoinAccept message) 578 578 579 -((( 580 -Payload: 01 00 00 3C TDC=60S 581 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 582 582 583 -((( 584 - 585 -))) 559 +922.2 - SF7BW125 to SF10BW125 586 586 587 -* ((( 588 -(% style="color:blue" %)**Reset** 589 -))) 561 +922.4 - SF7BW125 to SF10BW125 590 590 591 -((( 592 -If payload = 0x04FF, it will reset the NSE01 593 -))) 563 +922.6 - SF7BW125 to SF10BW125 594 594 565 +922.8 - SF7BW125 to SF10BW125 595 595 596 - *(%style="color:blue"%)**INTMOD**567 +923.0 - SF7BW125 to SF10BW125 597 597 598 -((( 599 -Downlink Payload: 06000003, Set AT+INTMOD=3 600 -))) 569 +922.0 - SF7BW125 to SF10BW125 601 601 602 602 572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 603 603 604 - ==2.6LEDIndicator==574 +923.6 - SF7BW125 to SF10BW125 605 605 606 -((( 607 -The NSE01 has an internal LED which is to show the status of different state. 576 +923.8 - SF7BW125 to SF10BW125 608 608 578 +924.0 - SF7BW125 to SF10BW125 609 609 610 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 611 -* Then the LED will be on for 1 second means device is boot normally. 612 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 613 -* For each uplink probe, LED will be on for 500ms. 614 -))) 580 +924.2 - SF7BW125 to SF10BW125 615 615 582 +924.4 - SF7BW125 to SF10BW125 616 616 584 +924.6 - SF7BW125 to SF10BW125 617 617 618 618 619 - ==2.7 InstallationinSoil==587 +(% style="color:#037691" %)** Downlink:** 620 620 621 - __**Measurementthesoilurface**__589 +Uplink channels 1-8 (RX1) 622 622 623 -((( 624 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 625 -))) 591 +923.2 - SF10BW125 (RX2) 626 626 627 -[[image:1657259653666-883.png]] 628 628 629 629 630 -((( 631 - 595 +=== 2.7.6 KR920-923 (KR920) === 632 632 633 -((( 634 -Dig a hole with diameter > 20CM. 635 -))) 597 +Default channel: 636 636 637 -((( 638 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 639 -))) 640 -))) 599 +922.1 - SF7BW125 to SF12BW125 641 641 642 - [[image:1654506665940-119.png]]601 +922.3 - SF7BW125 to SF12BW125 643 643 644 -((( 645 - 646 -))) 603 +922.5 - SF7BW125 to SF12BW125 647 647 648 648 649 -= =2.8 FirmwareChangeLog==606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 650 650 608 +922.1 - SF7BW125 to SF12BW125 651 651 652 - DownloadURL&FirmwareChange log610 +922.3 - SF7BW125 to SF12BW125 653 653 654 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]612 +922.5 - SF7BW125 to SF12BW125 655 655 614 +922.7 - SF7BW125 to SF12BW125 656 656 657 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]616 +922.9 - SF7BW125 to SF12BW125 658 658 618 +923.1 - SF7BW125 to SF12BW125 659 659 620 +923.3 - SF7BW125 to SF12BW125 660 660 661 -== 2.9 Battery Analysis == 662 662 663 - ===2.9.1 BatteryType==623 +(% style="color:#037691" %)**Downlink:** 664 664 625 +Uplink channels 1-7(RX1) 665 665 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 + 629 + 630 + 631 +=== 2.7.7 IN865-867 (IN865) === 632 + 633 +(% style="color:#037691" %)** Uplink:** 634 + 635 +865.0625 - SF7BW125 to SF12BW125 636 + 637 +865.4025 - SF7BW125 to SF12BW125 638 + 639 +865.9850 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %) **Downlink:** 643 + 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 666 666 ((( 667 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 668 668 ))) 672 +))) 669 669 670 670 675 +[[image:1654506665940-119.png]] 676 + 671 671 ((( 672 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.678 +Dig a hole with diameter > 20CM. 673 673 ))) 674 674 681 +((( 682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 +))) 675 675 685 + 686 +== 2.10 Firmware Change Log == 687 + 676 676 ((( 677 - The battery relateddocumentsasbelow:689 +**Firmware download link:** 678 678 ))) 679 679 680 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]681 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]682 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]692 +((( 693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 +))) 683 683 684 684 ((( 685 - [[image:image-20220708140453-6.png]]697 + 686 686 ))) 687 687 700 +((( 701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 +))) 688 688 704 +((( 705 + 706 +))) 689 689 690 -=== 2.9.2 Power consumption Analyze === 708 +((( 709 +**V1.0.** 710 +))) 691 691 692 692 ((( 693 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.713 +Release 694 694 ))) 695 695 696 696 717 +== 2.11 Battery Analysis == 718 + 719 +=== 2.11.1 Battery Type === 720 + 697 697 ((( 698 - Instruction touse as below:722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 699 699 ))) 700 700 701 701 ((( 702 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]726 +The battery is designed to last for more than 5 years for the LSN50. 703 703 ))) 704 704 705 - 706 706 ((( 707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 730 +((( 731 +The battery-related documents are as below: 708 708 ))) 733 +))) 709 709 710 710 * ((( 711 - ProductModel736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 712 ))) 713 713 * ((( 714 - UplinkInterval739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 715 ))) 716 716 * ((( 717 - WorkingMode742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 718 ))) 719 719 720 -((( 721 -And the Life expectation in difference case will be shown on the right. 722 -))) 745 + [[image:image-20220606171726-9.png]] 723 723 724 -[[image:image-20220708141352-7.jpeg]] 725 725 726 726 749 +=== 2.11.2 Battery Note === 727 727 728 -=== 2.9.3 Battery Note === 729 - 730 730 ((( 731 731 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 732 732 ))) ... ... @@ -733,176 +733,303 @@ 733 733 734 734 735 735 736 -=== 2. 9.4Replace the battery ===757 +=== 2.11.3 Replace the battery === 737 737 738 738 ((( 739 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 740 740 ))) 741 741 742 - 743 - 744 -= 3. Access NB-IoT Module = 745 - 746 746 ((( 747 - Userscan directly accesstheATcommand set of theNB-IoTmodule.764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 748 748 ))) 749 749 750 750 ((( 751 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 752 752 ))) 753 753 754 -[[image:1657261278785-153.png]] 755 755 756 756 773 += 3. Using the AT Commands = 757 757 758 -= 4.UsingtheAT Commands =775 +== 3.1 Access AT Commands == 759 759 760 -== 4.1 Access AT Commands == 761 761 762 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 763 763 780 +[[image:1654501986557-872.png||height="391" width="800"]] 764 764 765 -AT+<CMD>? : Help on <CMD> 766 766 767 - AT+<CMD>: Run<CMD>783 +Or if you have below board, use below connection: 768 768 769 -AT+<CMD>=<value> : Set the value 770 770 771 - AT+<CMD>=?:Get the value786 +[[image:1654502005655-729.png||height="503" width="801"]] 772 772 773 773 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 774 774 (% style="color:#037691" %)**General Commands**(%%) 775 775 776 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 777 777 778 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 779 779 780 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 781 781 782 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 783 783 784 -AT+CFG : Print all configurations 785 785 786 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 787 787 788 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 789 789 790 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 791 791 792 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 793 793 794 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 795 795 796 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 797 797 798 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 799 799 800 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 801 801 802 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 803 803 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 804 804 805 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 806 806 807 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 808 808 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 809 809 810 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 811 811 812 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 813 813 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 814 814 815 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 816 816 817 -AT+CLIENT : Get or Set MQTT client 818 818 819 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 820 820 821 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 822 822 823 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 824 824 825 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 826 826 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 827 827 828 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 829 829 830 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 831 831 832 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 833 833 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 834 834 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 835 835 836 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 837 837 838 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 839 839 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 840 840 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 841 841 ((( 842 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 843 843 ))) 844 844 845 845 ((( 846 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 847 847 ))) 848 848 849 849 ((( 850 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 851 851 ))) 852 852 921 +((( 922 + 923 +))) 853 853 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 854 854 855 -== 5.2 Can I calibrate NSE01 to different soil types? == 929 +((( 930 + 931 +))) 856 856 857 857 ((( 858 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 859 859 ))) 860 860 937 +[[image:image-20220606154726-3.png]] 861 861 862 -= 6. Trouble Shooting = 863 863 864 - ==6.1 Connection problemwhenuploadingfirmware==940 +When you use the TTN network, the US915 frequency bands use are: 865 865 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 866 866 867 867 ((( 868 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 869 869 ))) 870 870 871 -(% class=" wikigeneratedid" %)956 +(% class="box infomessage" %) 872 872 ((( 958 +**AT+CHE=2** 959 +))) 960 + 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 965 + 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 969 + 970 +((( 873 873 874 874 ))) 875 875 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 876 876 877 - == 6.2 AT Commandinput doesn't work ==978 +[[image:image-20220606154825-4.png]] 878 878 980 + 981 + 982 += 5. Trouble Shooting = 983 + 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 + 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 879 879 ((( 880 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 881 881 882 - 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 883 883 ))) 884 884 885 885 886 - =7. OrderInfo=1010 +(% style="color:#4f81bd" %)**Solution: ** 887 887 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 888 888 889 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1014 +[[image:1654500929571-736.png||height="458" width="832"]] 890 890 891 891 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 892 892 (% class="wikigeneratedid" %) 893 893 ((( 894 894 895 895 ))) 896 896 897 -= 8.1044 += 7. Packing Info = 898 898 899 899 ((( 900 900 901 901 902 902 (% style="color:#037691" %)**Package Includes**: 1050 +))) 903 903 904 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1905 - *Externalantennax 11052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 906 906 ))) 907 907 908 908 ((( ... ... @@ -909,19 +909,30 @@ 909 909 910 910 911 911 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 912 912 913 -* Size: 195 x 125 x 55 mm914 - * Weight:420g1062 +* ((( 1063 +Device Size: cm 915 915 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 916 916 917 -((( 918 - 919 919 920 - 921 921 922 922 ))) 923 923 924 -= 9.1078 += 8. Support = 925 925 926 926 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 927 927 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content