Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 33 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,732 +1,741 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==102 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657328609906-564.png]]105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 115 115 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 116 116 117 - = 2. Use NSE01 to communicatewith IoT Server =112 +[[image:image-20220606163732-6.jpeg]] 118 118 119 - ==2.1Howitworks==114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 121 -((( 122 -The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 123 -))) 116 +**Add APP EUI in the application** 124 124 125 125 126 -((( 127 -The diagram below shows the working flow in default firmware of NDDS75: 128 -))) 119 +[[image:1654504596150-405.png]] 129 129 130 -((( 131 - 132 -))) 133 133 134 -[[image:1657328659945-416.png]] 135 135 136 -((( 137 - 138 -))) 123 +**Add APP KEY and DEV EUI** 139 139 125 +[[image:1654504683289-357.png]] 140 140 141 141 142 -== 2.2 Configure the NSE01 == 143 143 129 +**Step 2**: Power on LSE01 144 144 145 -=== 2.2.1 Test Requirement === 146 146 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 147 147 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 148 148 ((( 149 - To useNSE01inyour city, makesuremeetbelow requirements:153 +Uplink payload includes in total 11 bytes. 150 150 ))) 151 151 152 - *Yourlocaloperatorhasalready distributeda NB-IoT Networkthere.153 - * The local NB-IoT network used the band that NSE01 supports.154 -* Your operatoris ableto distribute the data received in their NB-IoT network to your IoT server.156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 155 155 156 -((( 157 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 158 158 ))) 159 159 160 160 161 -[[image:1657249419225-449.png]] 162 162 174 +=== 2.3.2 MOD~=1(Original value) === 163 163 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 164 164 165 -=== 2.2.2 Insert SIM card === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 166 166 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 167 167 ((( 168 - InserttheNB-IoT Cardgetfrom yourprovider.199 +Check the battery voltage for LSE01. 169 169 ))) 170 170 171 171 ((( 172 - Userneed to take out the NB-IoTmoduleand insert the SIM card like below:203 +Ex1: 0x0B45 = 2885mV 173 173 ))) 174 174 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 175 175 176 -[[image:1657249468462-536.png]] 177 177 178 178 212 +=== 2.3.4 Soil Moisture === 179 179 180 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 181 181 182 182 ((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 221 + 183 183 ((( 184 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.223 + 185 185 ))) 225 + 226 +((( 227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 186 186 ))) 187 187 188 188 189 -**Connection:** 190 190 191 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND232 +=== 2.3.5 Soil Temperature === 192 192 193 - (%style="background-color:yellow"%)USBTTLTXD<~-~-~-~->UART_RXD234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 194 194 195 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD236 +**Example**: 196 196 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 197 197 198 -I nthe PC, use below serialtool settings:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 199 199 200 -* Baud: (% style="color:green" %)**9600** 201 -* Data bits:** (% style="color:green" %)8(%%)** 202 -* Stop bits: (% style="color:green" %)**1** 203 -* Parity: (% style="color:green" %)**None** 204 -* Flow Control: (% style="color:green" %)**None** 205 205 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 206 206 ((( 207 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 208 208 ))) 209 209 210 -[[image:image-20220708110657-3.png]] 250 +((( 251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 252 +))) 211 211 212 212 ((( 213 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]255 +Generally, the EC value of irrigation water is less than 800uS / cm. 214 214 ))) 215 215 258 +((( 259 + 260 +))) 216 216 262 +((( 263 + 264 +))) 217 217 218 -=== 2. 2.4Use CoAP protocol to uplink data===266 +=== 2.3.7 MOD === 219 219 220 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]268 +Firmware version at least v2.1 supports changing mode. 221 221 270 +For example, bytes[10]=90 222 222 223 - **Use below commands:**272 +mod=(bytes[10]>>7)&0x01=1. 224 224 225 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 226 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 227 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 228 228 229 - For parameter description,please refer toAT commandset275 +**Downlink Command:** 230 230 231 - [[image:1657249793983-486.png]]277 +If payload = 0x0A00, workmode=0 232 232 279 +If** **payload =** **0x0A01, workmode=1 233 233 234 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 235 235 236 -[[image:1657249831934-534.png]] 237 237 283 +=== 2.3.8 Decode payload in The Things Network === 238 238 285 +While using TTN network, you can add the payload format to decode the payload. 239 239 240 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 241 241 242 - This feature is supported since firmwareversion v1.0.1288 +[[image:1654505570700-128.png]] 243 243 290 +The payload decoder function for TTN is here: 244 244 245 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 247 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 248 248 249 -[[image:1657249864775-321.png]] 250 250 251 251 252 - [[image:1657249930215-289.png]]296 +== 2.4 Uplink Interval == 253 253 298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 254 254 255 255 256 -=== 2.2.6 Use MQTT protocol to uplink data === 257 257 258 - Thisfeatureis supported sincefirmware versionv110302 +== 2.5 Downlink Payload == 259 259 304 +By default, LSE50 prints the downlink payload to console port. 260 260 261 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 263 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 264 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 265 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 266 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 267 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 306 +[[image:image-20220606165544-8.png]] 268 268 269 -[[image:1657249978444-674.png]] 270 270 309 +**Examples:** 271 271 272 -[[image:1657249990869-686.png]] 273 273 312 +* **Set TDC** 274 274 275 -((( 276 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 277 -))) 314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 278 278 316 +Payload: 01 00 00 1E TDC=30S 279 279 318 +Payload: 01 00 00 3C TDC=60S 280 280 281 -=== 2.2.7 Use TCP protocol to uplink data === 282 282 283 - Thisfeature issupported since firmware version v110321 +* **Reset** 284 284 323 +If payload = 0x04FF, it will reset the LSE01 285 285 286 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 287 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 288 288 289 - [[image:1657250217799-140.png]]326 +* **CFM** 290 290 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 291 291 292 -[[image:1657250255956-604.png]] 293 293 294 294 332 +== 2.6 Show Data in DataCake IoT Server == 295 295 296 - === 2.2.8ChangeUpdateInterval===334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 297 297 298 -User can use below command to change the (% style="color:green" %)**uplink interval**. 299 299 300 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 301 301 302 -((( 303 -(% style="color:red" %)**NOTE:** 304 -))) 339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 305 305 306 -((( 307 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 308 -))) 309 309 342 +[[image:1654505857935-743.png]] 310 310 311 311 312 - ==2.3 Uplink Payload ==345 +[[image:1654505874829-548.png]] 313 313 314 - Inthis mode, uplinkpayloadincludes intal18bytes347 +Step 3: Create an account or log in Datacake. 315 315 316 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 317 -|=(% style="width: 60px;" %)((( 318 -**Size(bytes)** 319 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 320 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 349 +Step 4: Search the LSE01 and add DevEUI. 321 321 322 -((( 323 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 324 -))) 325 325 352 +[[image:1654505905236-553.png]] 326 326 327 -[[image:image-20220708111918-4.png]] 328 328 355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 329 329 330 - The payloadis ASCII string, representative same HEX:357 +[[image:1654505925508-181.png]] 331 331 332 -0x72403155615900640c7817075e0a8c02f900 where: 333 333 334 -* Device ID: 0x 724031556159 = 724031556159 335 -* Version: 0x0064=100=1.0.0 336 336 337 -* BAT: 0x0c78 = 3192 mV = 3.192V 338 -* Singal: 0x17 = 23 339 -* Soil Moisture: 0x075e= 1886 = 18.86 % 340 -* Soil Temperature:0x0a8c =2700=27 °C 341 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 342 -* Interrupt: 0x00 = 0 361 +== 2.7 Frequency Plans == 343 343 344 - ==2.4PayloadExplanationandSensorInterface==363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 345 345 346 346 347 -=== 2. 4.1DeviceID===366 +=== 2.7.1 EU863-870 (EU868) === 348 348 349 -((( 350 -By default, the Device ID equal to the last 6 bytes of IMEI. 351 -))) 368 +(% style="color:#037691" %)** Uplink:** 352 352 353 -((( 354 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 355 -))) 370 +868.1 - SF7BW125 to SF12BW125 356 356 357 -((( 358 -**Example:** 359 -))) 372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 360 360 361 -((( 362 -AT+DEUI=A84041F15612 363 -))) 374 +868.5 - SF7BW125 to SF12BW125 364 364 365 -((( 366 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 367 -))) 376 +867.1 - SF7BW125 to SF12BW125 368 368 378 +867.3 - SF7BW125 to SF12BW125 369 369 380 +867.5 - SF7BW125 to SF12BW125 370 370 371 - ===2.4.2VersionInfo ===382 +867.7 - SF7BW125 to SF12BW125 372 372 373 -((( 374 -Specify the software version: 0x64=100, means firmware version 1.00. 375 -))) 384 +867.9 - SF7BW125 to SF12BW125 376 376 377 -((( 378 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 379 -))) 386 +868.8 - FSK 380 380 381 381 389 +(% style="color:#037691" %)** Downlink:** 382 382 383 - ===2.4.3 BatteryInfo===391 +Uplink channels 1-9 (RX1) 384 384 385 -((( 386 -Check the battery voltage for LSE01. 387 -))) 393 +869.525 - SF9BW125 (RX2 downlink only) 388 388 389 -((( 390 -Ex1: 0x0B45 = 2885mV 391 -))) 392 392 393 -((( 394 -Ex2: 0x0B49 = 2889mV 395 -))) 396 396 397 +=== 2.7.2 US902-928(US915) === 397 397 399 +Used in USA, Canada and South America. Default use CHE=2 398 398 399 - ===2.4.4 Signal Strength===401 +(% style="color:#037691" %)**Uplink:** 400 400 401 -((( 402 -NB-IoT Network signal Strength. 403 -))) 403 +903.9 - SF7BW125 to SF10BW125 404 404 405 -((( 406 -**Ex1: 0x1d = 29** 407 -))) 405 +904.1 - SF7BW125 to SF10BW125 408 408 409 -((( 410 -(% style="color:blue" %)**0**(%%) -113dBm or less 411 -))) 407 +904.3 - SF7BW125 to SF10BW125 412 412 413 -((( 414 -(% style="color:blue" %)**1**(%%) -111dBm 415 -))) 409 +904.5 - SF7BW125 to SF10BW125 416 416 417 -((( 418 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 419 -))) 411 +904.7 - SF7BW125 to SF10BW125 420 420 421 -((( 422 -(% style="color:blue" %)**31** (%%) -51dBm or greater 423 -))) 413 +904.9 - SF7BW125 to SF10BW125 424 424 425 -((( 426 -(% style="color:blue" %)**99** (%%) Not known or not detectable 427 -))) 415 +905.1 - SF7BW125 to SF10BW125 428 428 417 +905.3 - SF7BW125 to SF10BW125 429 429 430 430 431 - ===2.4.5 SoilMoisture===420 +(% style="color:#037691" %)**Downlink:** 432 432 433 -((( 434 -((( 435 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 436 -))) 437 -))) 422 +923.3 - SF7BW500 to SF12BW500 438 438 439 -((( 440 -((( 441 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 442 -))) 443 -))) 424 +923.9 - SF7BW500 to SF12BW500 444 444 445 -((( 446 - 447 -))) 426 +924.5 - SF7BW500 to SF12BW500 448 448 449 -((( 450 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 451 -))) 428 +925.1 - SF7BW500 to SF12BW500 452 452 430 +925.7 - SF7BW500 to SF12BW500 453 453 432 +926.3 - SF7BW500 to SF12BW500 454 454 455 - ===2.4.6oilTemperature===434 +926.9 - SF7BW500 to SF12BW500 456 456 457 -((( 458 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 459 -))) 436 +927.5 - SF7BW500 to SF12BW500 460 460 461 -((( 462 -**Example**: 463 -))) 438 +923.3 - SF12BW500(RX2 downlink only) 464 464 465 -((( 466 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 467 -))) 468 468 469 -((( 470 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 471 -))) 472 472 442 +=== 2.7.3 CN470-510 (CN470) === 473 473 444 +Used in China, Default use CHE=1 474 474 475 - ===2.4.7 SoilConductivity(EC)===446 +(% style="color:#037691" %)**Uplink:** 476 476 477 -((( 478 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 479 -))) 448 +486.3 - SF7BW125 to SF12BW125 480 480 481 -((( 482 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 483 -))) 450 +486.5 - SF7BW125 to SF12BW125 484 484 485 -((( 486 -Generally, the EC value of irrigation water is less than 800uS / cm. 487 -))) 452 +486.7 - SF7BW125 to SF12BW125 488 488 489 -((( 490 - 491 -))) 454 +486.9 - SF7BW125 to SF12BW125 492 492 493 -((( 494 - 495 -))) 456 +487.1 - SF7BW125 to SF12BW125 496 496 497 - === 2.4.8DigitalInterrupt===458 +487.3 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 501 -))) 460 +487.5 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -The command is: 505 -))) 462 +487.7 - SF7BW125 to SF12BW125 506 506 507 -((( 508 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 509 -))) 510 510 465 +(% style="color:#037691" %)**Downlink:** 511 511 512 -((( 513 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 514 -))) 467 +506.7 - SF7BW125 to SF12BW125 515 515 469 +506.9 - SF7BW125 to SF12BW125 516 516 517 -((( 518 -Example: 519 -))) 471 +507.1 - SF7BW125 to SF12BW125 520 520 521 -((( 522 -0x(00): Normal uplink packet. 523 -))) 473 +507.3 - SF7BW125 to SF12BW125 524 524 525 -((( 526 -0x(01): Interrupt Uplink Packet. 527 -))) 475 +507.5 - SF7BW125 to SF12BW125 528 528 477 +507.7 - SF7BW125 to SF12BW125 529 529 479 +507.9 - SF7BW125 to SF12BW125 530 530 531 - === 2.4.9+5VOutput===481 +508.1 - SF7BW125 to SF12BW125 532 532 533 -((( 534 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 535 -))) 483 +505.3 - SF12BW125 (RX2 downlink only) 536 536 537 537 538 -((( 539 -The 5V output time can be controlled by AT Command. 540 -))) 541 541 542 -((( 543 -(% style="color:blue" %)**AT+5VT=1000** 544 -))) 487 +=== 2.7.4 AU915-928(AU915) === 545 545 546 -((( 547 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 548 -))) 489 +Default use CHE=2 549 549 491 +(% style="color:#037691" %)**Uplink:** 550 550 493 +916.8 - SF7BW125 to SF12BW125 551 551 552 - ==2.5DownlinkPayload ==495 +917.0 - SF7BW125 to SF12BW125 553 553 554 - Bydefault,NSE01prints the downlinkpayload to console port.497 +917.2 - SF7BW125 to SF12BW125 555 555 556 - [[image:image-20220708133731-5.png]]499 +917.4 - SF7BW125 to SF12BW125 557 557 501 +917.6 - SF7BW125 to SF12BW125 558 558 559 -((( 560 -(% style="color:blue" %)**Examples:** 561 -))) 503 +917.8 - SF7BW125 to SF12BW125 562 562 563 -((( 564 - 565 -))) 505 +918.0 - SF7BW125 to SF12BW125 566 566 567 -* ((( 568 -(% style="color:blue" %)**Set TDC** 569 -))) 507 +918.2 - SF7BW125 to SF12BW125 570 570 571 -((( 572 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 573 -))) 574 574 575 -((( 576 -Payload: 01 00 00 1E TDC=30S 577 -))) 510 +(% style="color:#037691" %)**Downlink:** 578 578 579 -((( 580 -Payload: 01 00 00 3C TDC=60S 581 -))) 512 +923.3 - SF7BW500 to SF12BW500 582 582 583 -((( 584 - 585 -))) 514 +923.9 - SF7BW500 to SF12BW500 586 586 587 -* ((( 588 -(% style="color:blue" %)**Reset** 589 -))) 516 +924.5 - SF7BW500 to SF12BW500 590 590 591 -((( 592 -If payload = 0x04FF, it will reset the NSE01 593 -))) 518 +925.1 - SF7BW500 to SF12BW500 594 594 520 +925.7 - SF7BW500 to SF12BW500 595 595 596 - *(%style="color:blue"%)**INTMOD**522 +926.3 - SF7BW500 to SF12BW500 597 597 598 -((( 599 -Downlink Payload: 06000003, Set AT+INTMOD=3 600 -))) 524 +926.9 - SF7BW500 to SF12BW500 601 601 526 +927.5 - SF7BW500 to SF12BW500 602 602 528 +923.3 - SF12BW500(RX2 downlink only) 603 603 604 -== 2.6 LED Indicator == 605 605 606 -((( 607 -The NSE01 has an internal LED which is to show the status of different state. 608 608 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 609 609 610 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 611 -* Then the LED will be on for 1 second means device is boot normally. 612 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 613 -* For each uplink probe, LED will be on for 500ms. 614 -))) 534 +(% style="color:#037691" %)**Default Uplink channel:** 615 615 536 +923.2 - SF7BW125 to SF10BW125 616 616 538 +923.4 - SF7BW125 to SF10BW125 617 617 618 618 619 - ==2.7 Installation inSoil==541 +(% style="color:#037691" %)**Additional Uplink Channel**: 620 620 621 - __**Measurementthesoilsurface**__543 +(OTAA mode, channel added by JoinAccept message) 622 622 623 -((( 624 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 625 -))) 545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 626 626 627 - [[image:1657259653666-883.png]]547 +922.2 - SF7BW125 to SF10BW125 628 628 549 +922.4 - SF7BW125 to SF10BW125 629 629 630 -((( 631 - 551 +922.6 - SF7BW125 to SF10BW125 632 632 633 -((( 634 -Dig a hole with diameter > 20CM. 635 -))) 553 +922.8 - SF7BW125 to SF10BW125 636 636 637 -((( 638 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 639 -))) 640 -))) 555 +923.0 - SF7BW125 to SF10BW125 641 641 642 - [[image:1654506665940-119.png]]557 +922.0 - SF7BW125 to SF10BW125 643 643 644 -((( 645 - 646 -))) 647 647 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 648 648 649 - ==2.8FirmwareChange Log==562 +923.6 - SF7BW125 to SF10BW125 650 650 564 +923.8 - SF7BW125 to SF10BW125 651 651 652 - DownloadURL&FirmwareChange log566 +924.0 - SF7BW125 to SF10BW125 653 653 654 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]568 +924.2 - SF7BW125 to SF10BW125 655 655 570 +924.4 - SF7BW125 to SF10BW125 656 656 657 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]572 +924.6 - SF7BW125 to SF10BW125 658 658 659 659 575 +(% style="color:#037691" %)** Downlink:** 660 660 661 - ==2.9 Battery Analysis==577 +Uplink channels 1-8 (RX1) 662 662 663 - ===2.9.1BatteryType ===579 +923.2 - SF10BW125 (RX2) 664 664 665 665 582 + 583 +=== 2.7.6 KR920-923 (KR920) === 584 + 585 +Default channel: 586 + 587 +922.1 - SF7BW125 to SF12BW125 588 + 589 +922.3 - SF7BW125 to SF12BW125 590 + 591 +922.5 - SF7BW125 to SF12BW125 592 + 593 + 594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 595 + 596 +922.1 - SF7BW125 to SF12BW125 597 + 598 +922.3 - SF7BW125 to SF12BW125 599 + 600 +922.5 - SF7BW125 to SF12BW125 601 + 602 +922.7 - SF7BW125 to SF12BW125 603 + 604 +922.9 - SF7BW125 to SF12BW125 605 + 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 666 666 ((( 667 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 668 668 ))) 660 +))) 669 669 670 670 663 +[[image:1654506665940-119.png]] 664 + 671 671 ((( 672 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.666 +Dig a hole with diameter > 20CM. 673 673 ))) 674 674 669 +((( 670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 671 +))) 675 675 673 + 674 +== 2.10 Firmware Change Log == 675 + 676 676 ((( 677 - The battery relateddocumentsasbelow:677 +**Firmware download link:** 678 678 ))) 679 679 680 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]681 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]682 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]680 +((( 681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 682 +))) 683 683 684 684 ((( 685 - [[image:image-20220708140453-6.png]]685 + 686 686 ))) 687 687 688 +((( 689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 690 +))) 688 688 692 +((( 693 + 694 +))) 689 689 690 -=== 2.9.2 Power consumption Analyze === 696 +((( 697 +**V1.0.** 698 +))) 691 691 692 692 ((( 693 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.701 +Release 694 694 ))) 695 695 696 696 705 +== 2.11 Battery Analysis == 706 + 707 +=== 2.11.1 Battery Type === 708 + 697 697 ((( 698 - Instruction touse as below:710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 699 699 ))) 700 700 701 701 ((( 702 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]714 +The battery is designed to last for more than 5 years for the LSN50. 703 703 ))) 704 704 705 - 706 706 ((( 707 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 718 +((( 719 +The battery-related documents are as below: 708 708 ))) 721 +))) 709 709 710 710 * ((( 711 - ProductModel724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 712 712 ))) 713 713 * ((( 714 - UplinkInterval727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 715 715 ))) 716 716 * ((( 717 - WorkingMode730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 718 718 ))) 719 719 720 -((( 721 -And the Life expectation in difference case will be shown on the right. 722 -))) 733 + [[image:image-20220606171726-9.png]] 723 723 724 -[[image:image-20220708141352-7.jpeg]] 725 725 726 726 737 +=== 2.11.2 Battery Note === 727 727 728 -=== 2.9.3 Battery Note === 729 - 730 730 ((( 731 731 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 732 732 ))) ... ... @@ -733,176 +733,303 @@ 733 733 734 734 735 735 736 -=== 2. 9.4Replace the battery ===745 +=== 2.11.3 Replace the battery === 737 737 738 738 ((( 739 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 740 740 ))) 741 741 742 - 743 - 744 -= 3. Access NB-IoT Module = 745 - 746 746 ((( 747 - Userscan directly accesstheATcommand set of theNB-IoTmodule.752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 748 748 ))) 749 749 750 750 ((( 751 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 752 752 ))) 753 753 754 -[[image:1657261278785-153.png]] 755 755 756 756 761 += 3. Using the AT Commands = 757 757 758 -= 4.UsingtheAT Commands =763 +== 3.1 Access AT Commands == 759 759 760 -== 4.1 Access AT Commands == 761 761 762 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 763 763 768 +[[image:1654501986557-872.png||height="391" width="800"]] 764 764 765 -AT+<CMD>? : Help on <CMD> 766 766 767 - AT+<CMD>: Run<CMD>771 +Or if you have below board, use below connection: 768 768 769 -AT+<CMD>=<value> : Set the value 770 770 771 - AT+<CMD>=?:Get the value774 +[[image:1654502005655-729.png||height="503" width="801"]] 772 772 773 773 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 774 774 (% style="color:#037691" %)**General Commands**(%%) 775 775 776 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 777 777 778 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 779 779 780 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 781 781 782 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 783 783 784 -AT+CFG : Print all configurations 785 785 786 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 787 787 788 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 789 789 790 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 791 791 792 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 793 793 794 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 795 795 796 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 797 797 798 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 799 799 800 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 801 801 802 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 803 803 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 804 804 805 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 806 806 807 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 808 808 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 809 809 810 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 811 811 812 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 813 813 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 814 814 815 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 816 816 817 -AT+CLIENT : Get or Set MQTT client 818 818 819 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 820 820 821 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 822 822 823 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 824 824 825 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 826 826 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 827 827 828 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 829 829 830 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 831 831 832 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 833 833 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 834 834 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 835 835 836 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 837 837 838 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 839 839 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 840 840 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 841 841 ((( 842 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 843 843 ))) 844 844 845 845 ((( 846 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 847 847 ))) 848 848 849 849 ((( 850 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 851 851 ))) 852 852 909 +((( 910 + 911 +))) 853 853 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 854 854 855 -== 5.2 Can I calibrate NSE01 to different soil types? == 917 +((( 918 + 919 +))) 856 856 857 857 ((( 858 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 859 859 ))) 860 860 925 +[[image:image-20220606154726-3.png]] 861 861 862 -= 6. Trouble Shooting = 863 863 864 - ==6.1 Connection problemwhenuploadingfirmware==928 +When you use the TTN network, the US915 frequency bands use are: 865 865 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 866 866 867 867 ((( 868 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 869 869 ))) 870 870 871 -(% class=" wikigeneratedid" %)944 +(% class="box infomessage" %) 872 872 ((( 946 +**AT+CHE=2** 947 +))) 948 + 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 953 + 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 957 + 958 +((( 873 873 874 874 ))) 875 875 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 876 876 877 - == 6.2 AT Commandinput doesn't work ==966 +[[image:image-20220606154825-4.png]] 878 878 968 + 969 + 970 += 5. Trouble Shooting = 971 + 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 973 + 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 879 879 ((( 880 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 881 881 882 - 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 883 883 ))) 884 884 885 885 886 - =7. OrderInfo=998 +(% style="color:#4f81bd" %)**Solution: ** 887 887 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 888 888 889 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1002 +[[image:1654500929571-736.png||height="458" width="832"]] 890 890 891 891 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 892 892 (% class="wikigeneratedid" %) 893 893 ((( 894 894 895 895 ))) 896 896 897 -= 8.1032 += 7. Packing Info = 898 898 899 899 ((( 900 900 901 901 902 902 (% style="color:#037691" %)**Package Includes**: 1038 +))) 903 903 904 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1905 - *Externalantennax 11040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 906 906 ))) 907 907 908 908 ((( ... ... @@ -909,19 +909,30 @@ 909 909 910 910 911 911 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 912 912 913 -* Size: 195 x 125 x 55 mm914 - * Weight:420g1050 +* ((( 1051 +Device Size: cm 915 915 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 916 916 917 -((( 918 - 919 919 920 - 921 921 922 922 ))) 923 923 924 -= 9.1066 += 8. Support = 925 925 926 926 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 927 927 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.8 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content