Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 76.2
edited by Xiaoling
on 2022/07/09 09:03
Change comment: There is no comment for this version
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,23 +35,23 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
... ... @@ -65,6 +65,7 @@
65 65  * Supply Voltage: 2.1v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
72 +
68 68  (% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 70  * - B1 @H-FDD: 2100MHz
... ... @@ -75,655 +75,718 @@
75 75  * - B28 @H-FDD: 700MHz
76 76  
77 77  
78 -(% style="color:#037691" %)**Battery:**
83 +(% style="color:#037691" %)**Probe Specification:**
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
87 +[[image:image-20220708101224-1.png]]
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 91  
92 -
93 -
94 -
95 95  == ​1.4  Applications ==
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
98 +== 1.5  Pin Definitions ==
107 107  
108 108  
109 -== 1.5  Pin Definitions ==
101 +[[image:1657246476176-652.png]]
110 110  
111 111  
112 -[[image:1657328609906-564.png]]
113 113  
105 += 2. Configure LSE01 to connect to LoRaWAN network =
114 114  
107 +== 2.1 How it works ==
115 115  
109 +(((
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
111 +)))
116 116  
117 -= 2.  Use NSE01 to communicate with IoT Server =
113 +(((
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 +)))
118 118  
119 -== 2.1  How it works ==
120 120  
121 121  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
120 +
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 +
123 +
124 +[[image:1654503992078-669.png]]
125 +
126 +
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
128 +
129 +
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 +
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
133 +
134 +[[image:image-20220606163732-6.jpeg]]
135 +
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
137 +
138 +**Add APP EUI in the application**
139 +
140 +
141 +[[image:1654504596150-405.png]]
142 +
143 +
144 +
145 +**Add APP KEY and DEV EUI**
146 +
147 +[[image:1654504683289-357.png]]
148 +
149 +
150 +
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
152 +
153 +
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
155 +
156 +[[image:image-20220606163915-7.png]]
157 +
158 +
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
160 +
161 +[[image:1654504778294-788.png]]
162 +
163 +
164 +
165 +== 2.3 Uplink Payload ==
166 +
167 +
168 +=== 2.3.1 MOD~=0(Default Mode) ===
169 +
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
122 122  (((
123 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
173 +Uplink payload includes in total 11 bytes.
124 124  )))
125 125  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
126 126  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
184 +
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
188 +
189 +(Optional)
190 +)))
191 +
192 +=== 2.3.2 MOD~=1(Original value) ===
193 +
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
195 +
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
199 +
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
204 +
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 +
209 +(Optional)
210 +)))
211 +
212 +=== 2.3.3 Battery Info ===
213 +
127 127  (((
128 -The diagram below shows the working flow in default firmware of NSE01:
215 +Check the battery voltage for LSE01.
129 129  )))
130 130  
131 -[[image:image-20220708101605-2.png]]
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
132 132  
133 133  (((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
225 +
226 +
227 +
228 +=== 2.3.4 Soil Moisture ===
229 +
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
233 +
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
237 +
238 +(((
134 134  
135 135  )))
136 136  
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
137 137  
138 138  
139 -== 2.2 ​ Configure the NSE01 ==
140 140  
248 +=== 2.3.5 Soil Temperature ===
141 141  
142 -=== 2.2.1 Test Requirement ===
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
143 143  
254 +(((
255 +**Example**:
256 +)))
144 144  
145 145  (((
146 -To use NSE01 in your city, make sure meet below requirements:
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
147 147  )))
148 148  
149 -* Your local operator has already distributed a NB-IoT Network there.
150 -* The local NB-IoT network used the band that NSE01 supports.
151 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
152 152  
266 +
267 +
268 +=== 2.3.6 Soil Conductivity (EC) ===
269 +
153 153  (((
154 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
155 155  )))
156 156  
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
157 157  
158 -[[image:1657249419225-449.png]]
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
159 159  
282 +(((
283 +
284 +)))
160 160  
286 +(((
287 +
288 +)))
161 161  
162 -=== 2.2.2 Insert SIM card ===
290 +=== 2.3.7 MOD ===
163 163  
292 +Firmware version at least v2.1 supports changing mode.
293 +
294 +For example, bytes[10]=90
295 +
296 +mod=(bytes[10]>>7)&0x01=1.
297 +
298 +
299 +**Downlink Command:**
300 +
301 +If payload = 0x0A00, workmode=0
302 +
303 +If** **payload =** **0x0A01, workmode=1
304 +
305 +
306 +
307 +=== 2.3.8 ​Decode payload in The Things Network ===
308 +
309 +While using TTN network, you can add the payload format to decode the payload.
310 +
311 +
312 +[[image:1654505570700-128.png]]
313 +
164 164  (((
165 -Insert the NB-IoT Card get from your provider.
315 +The payload decoder function for TTN is here:
166 166  )))
167 167  
168 168  (((
169 -User need to take out the NB-IoT module and insert the SIM card like below:
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
170 170  )))
171 171  
172 172  
173 -[[image:1657249468462-536.png]]
323 +== 2.4 Uplink Interval ==
174 174  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
175 175  
176 176  
177 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
178 178  
329 +== 2.5 Downlink Payload ==
330 +
331 +By default, LSE50 prints the downlink payload to console port.
332 +
333 +[[image:image-20220606165544-8.png]]
334 +
335 +
179 179  (((
337 +(% style="color:blue" %)**Examples:**
338 +)))
339 +
180 180  (((
181 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
341 +
182 182  )))
343 +
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
183 183  )))
184 184  
348 +(((
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
350 +)))
185 185  
186 -**Connection:**
352 +(((
353 +Payload:    01 00 00 1E    TDC=30S
354 +)))
187 187  
188 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
356 +(((
357 +Payload:    01 00 00 3C    TDC=60S
358 +)))
189 189  
190 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
360 +(((
361 +
362 +)))
191 191  
192 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 +)))
193 193  
368 +(((
369 +If payload = 0x04FF, it will reset the LSE01
370 +)))
194 194  
195 -In the PC, use below serial tool settings:
196 196  
197 -* Baud:  (% style="color:green" %)**9600**
198 -* Data bits:** (% style="color:green" %)8(%%)**
199 -* Stop bits: (% style="color:green" %)**1**
200 -* Parity:  (% style="color:green" %)**None**
201 -* Flow Control: (% style="color:green" %)**None**
373 +* (% style="color:blue" %)**CFM**
202 202  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 +
377 +
378 +
379 +== 2.6 ​Show Data in DataCake IoT Server ==
380 +
203 203  (((
204 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
205 205  )))
206 206  
207 -[[image:image-20220708110657-3.png]]
385 +(((
386 +
387 +)))
208 208  
209 209  (((
210 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
390 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
211 211  )))
212 212  
393 +(((
394 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
395 +)))
213 213  
214 214  
215 -=== 2.2.4 Use CoAP protocol to uplink data ===
398 +[[image:1654505857935-743.png]]
216 216  
217 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
218 218  
401 +[[image:1654505874829-548.png]]
219 219  
220 -**Use below commands:**
221 221  
222 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
223 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
224 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
225 225  
226 -For parameter description, please refer to AT command set
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
227 227  
228 -[[image:1657249793983-486.png]]
229 229  
409 +[[image:1654505905236-553.png]]
230 230  
231 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
232 232  
233 -[[image:1657249831934-534.png]]
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
234 234  
414 +[[image:1654505925508-181.png]]
235 235  
236 236  
237 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
238 238  
239 -This feature is supported since firmware version v1.0.1
418 +== 2.7 Frequency Plans ==
240 240  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
241 241  
242 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
244 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
245 245  
246 -[[image:1657249864775-321.png]]
423 +=== 2.7.1 EU863-870 (EU868) ===
247 247  
425 +(% style="color:#037691" %)** Uplink:**
248 248  
249 -[[image:1657249930215-289.png]]
427 +868.1 - SF7BW125 to SF12BW125
250 250  
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
251 251  
431 +868.5 - SF7BW125 to SF12BW125
252 252  
253 -=== 2.2.6 Use MQTT protocol to uplink data ===
433 +867.1 - SF7BW125 to SF12BW125
254 254  
255 -This feature is supported since firmware version v110
435 +867.3 - SF7BW125 to SF12BW125
256 256  
437 +867.5 - SF7BW125 to SF12BW125
257 257  
258 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
259 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
260 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
261 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
262 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
263 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
264 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
439 +867.7 - SF7BW125 to SF12BW125
265 265  
266 -[[image:1657249978444-674.png]]
441 +867.9 - SF7BW125 to SF12BW125
267 267  
443 +868.8 - FSK
268 268  
269 -[[image:1657249990869-686.png]]
270 270  
446 +(% style="color:#037691" %)** Downlink:**
271 271  
272 -(((
273 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
274 -)))
448 +Uplink channels 1-9 (RX1)
275 275  
450 +869.525 - SF9BW125 (RX2 downlink only)
276 276  
277 277  
278 -=== 2.2.7 Use TCP protocol to uplink data ===
279 279  
280 -This feature is supported since firmware version v110
454 +=== 2.7.2 US902-928(US915) ===
281 281  
456 +Used in USA, Canada and South America. Default use CHE=2
282 282  
283 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
284 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
458 +(% style="color:#037691" %)**Uplink:**
285 285  
286 -[[image:1657250217799-140.png]]
460 +903.9 - SF7BW125 to SF10BW125
287 287  
462 +904.1 - SF7BW125 to SF10BW125
288 288  
289 -[[image:1657250255956-604.png]]
464 +904.3 - SF7BW125 to SF10BW125
290 290  
466 +904.5 - SF7BW125 to SF10BW125
291 291  
468 +904.7 - SF7BW125 to SF10BW125
292 292  
293 -=== 2.2.8 Change Update Interval ===
470 +904.9 - SF7BW125 to SF10BW125
294 294  
295 -User can use below command to change the (% style="color:green" %)**uplink interval**.
472 +905.1 - SF7BW125 to SF10BW125
296 296  
297 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
474 +905.3 - SF7BW125 to SF10BW125
298 298  
299 -(((
300 -(% style="color:red" %)**NOTE:**
301 -)))
302 302  
303 -(((
304 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
305 -)))
477 +(% style="color:#037691" %)**Downlink:**
306 306  
479 +923.3 - SF7BW500 to SF12BW500
307 307  
481 +923.9 - SF7BW500 to SF12BW500
308 308  
309 -== 2. Uplink Payload ==
483 +924.5 - SF7BW500 to SF12BW500
310 310  
311 -In this mode, uplink payload includes in total 18 bytes
485 +925.1 - SF7BW500 to SF12BW500
312 312  
313 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
314 -|=(% style="width: 60px;" %)(((
315 -**Size(bytes)**
316 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
317 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
487 +925.7 - SF7BW500 to SF12BW500
318 318  
319 -(((
320 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
321 -)))
489 +926.3 - SF7BW500 to SF12BW500
322 322  
491 +926.9 - SF7BW500 to SF12BW500
323 323  
324 -[[image:image-20220708111918-4.png]]
493 +927.5 - SF7BW500 to SF12BW500
325 325  
495 +923.3 - SF12BW500(RX2 downlink only)
326 326  
327 -The payload is ASCII string, representative same HEX:
328 328  
329 -0x72403155615900640c7817075e0a8c02f900 where:
330 330  
331 -* Device ID: 0x 724031556159 = 724031556159
332 -* Version: 0x0064=100=1.0.0
499 +=== 2.7.3 CN470-510 (CN470) ===
333 333  
334 -* BAT: 0x0c78 = 3192 mV = 3.192V
335 -* Singal: 0x17 = 23
336 -* Soil Moisture: 0x075e= 1886 = 18.86  %
337 -* Soil Temperature:0x0a8c =2700=27 °C
338 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
339 -* Interrupt: 0x00 = 0
501 +Used in China, Default use CHE=1
340 340  
341 -== 2.4  Payload Explanation and Sensor Interface ==
503 +(% style="color:#037691" %)**Uplink:**
342 342  
505 +486.3 - SF7BW125 to SF12BW125
343 343  
344 -=== 2.4.1  Device ID ===
507 +486.5 - SF7BW125 to SF12BW125
345 345  
346 -(((
347 -By default, the Device ID equal to the last 6 bytes of IMEI.
348 -)))
509 +486.7 - SF7BW125 to SF12BW125
349 349  
350 -(((
351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
352 -)))
511 +486.9 - SF7BW125 to SF12BW125
353 353  
354 -(((
355 -**Example:**
356 -)))
513 +487.1 - SF7BW125 to SF12BW125
357 357  
358 -(((
359 -AT+DEUI=A84041F15612
360 -)))
515 +487.3 - SF7BW125 to SF12BW125
361 361  
362 -(((
363 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
364 -)))
517 +487.5 - SF7BW125 to SF12BW125
365 365  
519 +487.7 - SF7BW125 to SF12BW125
366 366  
367 367  
368 -=== 2.4.2  Version Info ===
522 +(% style="color:#037691" %)**Downlink:**
369 369  
370 -(((
371 -Specify the software version: 0x64=100, means firmware version 1.00.
372 -)))
524 +506.7 - SF7BW125 to SF12BW125
373 373  
374 -(((
375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
376 -)))
526 +506.9 - SF7BW125 to SF12BW125
377 377  
528 +507.1 - SF7BW125 to SF12BW125
378 378  
530 +507.3 - SF7BW125 to SF12BW125
379 379  
380 -=== 2.4.3  Battery Info ===
532 +507.5 - SF7BW125 to SF12BW125
381 381  
382 -(((
383 -Check the battery voltage for LSE01.
384 -)))
534 +507.7 - SF7BW125 to SF12BW125
385 385  
386 -(((
387 -Ex1: 0x0B45 = 2885mV
388 -)))
536 +507.9 - SF7BW125 to SF12BW125
389 389  
390 -(((
391 -Ex2: 0x0B49 = 2889mV
392 -)))
538 +508.1 - SF7BW125 to SF12BW125
393 393  
540 +505.3 - SF12BW125 (RX2 downlink only)
394 394  
395 395  
396 -=== 2.4.4  Signal Strength ===
397 397  
398 -(((
399 -NB-IoT Network signal Strength.
400 -)))
544 +=== 2.7.4 AU915-928(AU915) ===
401 401  
402 -(((
403 -**Ex1: 0x1d = 29**
404 -)))
546 +Default use CHE=2
405 405  
406 -(((
407 -(% style="color:blue" %)**0**(%%)  -113dBm or less
408 -)))
548 +(% style="color:#037691" %)**Uplink:**
409 409  
410 -(((
411 -(% style="color:blue" %)**1**(%%)  -111dBm
412 -)))
550 +916.8 - SF7BW125 to SF12BW125
413 413  
414 -(((
415 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
416 -)))
552 +917.0 - SF7BW125 to SF12BW125
417 417  
418 -(((
419 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
420 -)))
554 +917.2 - SF7BW125 to SF12BW125
421 421  
422 -(((
423 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
424 -)))
556 +917.4 - SF7BW125 to SF12BW125
425 425  
558 +917.6 - SF7BW125 to SF12BW125
426 426  
560 +917.8 - SF7BW125 to SF12BW125
427 427  
428 -=== 2.4.5  Soil Moisture ===
562 +918.0 - SF7BW125 to SF12BW125
429 429  
430 -(((
431 -(((
432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
433 -)))
434 -)))
564 +918.2 - SF7BW125 to SF12BW125
435 435  
436 -(((
437 -(((
438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
439 -)))
440 -)))
441 441  
442 -(((
443 -
444 -)))
567 +(% style="color:#037691" %)**Downlink:**
445 445  
446 -(((
447 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
448 -)))
569 +923.3 - SF7BW500 to SF12BW500
449 449  
571 +923.9 - SF7BW500 to SF12BW500
450 450  
573 +924.5 - SF7BW500 to SF12BW500
451 451  
452 -=== 2.4.6  Soil Temperature ===
575 +925.1 - SF7BW500 to SF12BW500
453 453  
454 -(((
455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
456 -)))
577 +925.7 - SF7BW500 to SF12BW500
457 457  
458 -(((
459 -**Example**:
460 -)))
579 +926.3 - SF7BW500 to SF12BW500
461 461  
462 -(((
463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
464 -)))
581 +926.9 - SF7BW500 to SF12BW500
465 465  
466 -(((
467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
468 -)))
583 +927.5 - SF7BW500 to SF12BW500
469 469  
585 +923.3 - SF12BW500(RX2 downlink only)
470 470  
471 471  
472 -=== 2.4.7  Soil Conductivity (EC) ===
473 473  
474 -(((
475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
476 -)))
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
477 477  
478 -(((
479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
480 -)))
591 +(% style="color:#037691" %)**Default Uplink channel:**
481 481  
482 -(((
483 -Generally, the EC value of irrigation water is less than 800uS / cm.
484 -)))
593 +923.2 - SF7BW125 to SF10BW125
485 485  
486 -(((
487 -
488 -)))
595 +923.4 - SF7BW125 to SF10BW125
489 489  
490 -(((
491 -
492 -)))
493 493  
494 -=== 2.4.8  Digital Interrupt ===
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
495 495  
496 -(((
497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
498 -)))
600 +(OTAA mode, channel added by JoinAccept message)
499 499  
500 -(((
501 -The command is:
502 -)))
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
503 503  
504 -(((
505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
506 -)))
604 +922.2 - SF7BW125 to SF10BW125
507 507  
606 +922.4 - SF7BW125 to SF10BW125
508 508  
509 -(((
510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
511 -)))
608 +922.6 - SF7BW125 to SF10BW125
512 512  
610 +922.8 - SF7BW125 to SF10BW125
513 513  
514 -(((
515 -Example:
516 -)))
612 +923.0 - SF7BW125 to SF10BW125
517 517  
518 -(((
519 -0x(00): Normal uplink packet.
520 -)))
614 +922.0 - SF7BW125 to SF10BW125
521 521  
522 -(((
523 -0x(01): Interrupt Uplink Packet.
524 -)))
525 525  
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
526 526  
619 +923.6 - SF7BW125 to SF10BW125
527 527  
528 -=== 2.4.9  ​+5V Output ===
621 +923.8 - SF7BW125 to SF10BW125
529 529  
530 -(((
531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
532 -)))
623 +924.0 - SF7BW125 to SF10BW125
533 533  
625 +924.2 - SF7BW125 to SF10BW125
534 534  
535 -(((
536 -The 5V output time can be controlled by AT Command.
537 -)))
627 +924.4 - SF7BW125 to SF10BW125
538 538  
539 -(((
540 -(% style="color:blue" %)**AT+5VT=1000**
541 -)))
629 +924.6 - SF7BW125 to SF10BW125
542 542  
543 -(((
544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
545 -)))
546 546  
632 +(% style="color:#037691" %)** Downlink:**
547 547  
634 +Uplink channels 1-8 (RX1)
548 548  
549 -== 2. Downlink Payload ==
636 +923.2 - SF10BW125 (RX2)
550 550  
551 -By default, NSE01 prints the downlink payload to console port.
552 552  
553 -[[image:image-20220708133731-5.png]]
554 554  
640 +=== 2.7.6 KR920-923 (KR920) ===
555 555  
556 -(((
557 -(% style="color:blue" %)**Examples:**
558 -)))
642 +Default channel:
559 559  
560 -(((
561 -
562 -)))
644 +922.1 - SF7BW125 to SF12BW125
563 563  
564 -* (((
565 -(% style="color:blue" %)**Set TDC**
566 -)))
646 +922.3 - SF7BW125 to SF12BW125
567 567  
568 -(((
569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
570 -)))
648 +922.5 - SF7BW125 to SF12BW125
571 571  
572 -(((
573 -Payload:    01 00 00 1E    TDC=30S
574 -)))
575 575  
576 -(((
577 -Payload:    01 00 00 3C    TDC=60S
578 -)))
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
579 579  
580 -(((
581 -
582 -)))
653 +922.1 - SF7BW125 to SF12BW125
583 583  
584 -* (((
585 -(% style="color:blue" %)**Reset**
586 -)))
655 +922.3 - SF7BW125 to SF12BW125
587 587  
588 -(((
589 -If payload = 0x04FF, it will reset the NSE01
590 -)))
657 +922.5 - SF7BW125 to SF12BW125
591 591  
659 +922.7 - SF7BW125 to SF12BW125
592 592  
593 -* (% style="color:blue" %)**INTMOD**
661 +922.9 - SF7BW125 to SF12BW125
594 594  
595 -(((
596 -Downlink Payload: 06000003, Set AT+INTMOD=3
597 -)))
663 +923.1 - SF7BW125 to SF12BW125
598 598  
665 +923.3 - SF7BW125 to SF12BW125
599 599  
600 600  
601 -== 2.6  ​LED Indicator ==
668 +(% style="color:#037691" %)**Downlink:**
602 602  
603 -(((
604 -The NSE01 has an internal LED which is to show the status of different state.
670 +Uplink channels 1-7(RX1)
605 605  
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
606 606  
607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
608 -* Then the LED will be on for 1 second means device is boot normally.
609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
610 -* For each uplink probe, LED will be on for 500ms.
611 -)))
612 612  
613 613  
676 +=== 2.7.7 IN865-867 (IN865) ===
614 614  
678 +(% style="color:#037691" %)** Uplink:**
615 615  
616 -== 2.7  Installation in Soil ==
680 +865.0625 - SF7BW125 to SF12BW125
617 617  
618 -__**Measurement the soil surface**__
682 +865.4025 - SF7BW125 to SF12BW125
619 619  
620 -(((
621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
622 -)))
684 +865.9850 - SF7BW125 to SF12BW125
623 623  
624 -[[image:1657259653666-883.png]] ​
625 625  
687 +(% style="color:#037691" %) **Downlink:**
626 626  
627 -(((
628 -
689 +Uplink channels 1-3 (RX1)
629 629  
630 -(((
631 -Dig a hole with diameter > 20CM.
632 -)))
691 +866.550 - SF10BW125 (RX2)
633 633  
634 -(((
635 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
636 -)))
637 -)))
638 638  
639 -[[image:1654506665940-119.png]]
640 640  
641 -(((
642 -
643 -)))
644 644  
696 +== 2.8 LED Indicator ==
645 645  
646 -== 2.8  ​Firmware Change Log ==
698 +The LSE01 has an internal LED which is to show the status of different state.
647 647  
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
648 648  
649 -Download URL & Firmware Change log
704 +== 2.9 Installation in Soil ==
650 650  
651 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
706 +**Measurement the soil surface**
652 652  
653 653  
654 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
709 +[[image:1654506634463-199.png]]
655 655  
711 +(((
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
714 +)))
715 +)))
656 656  
657 657  
658 -== 2.9  ​Battery Analysis ==
659 659  
660 -=== 2.9.1  ​Battery Type ===
719 +[[image:1654506665940-119.png]]
661 661  
721 +(((
722 +Dig a hole with diameter > 20CM.
723 +)))
662 662  
663 663  (((
664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
665 665  )))
666 666  
667 667  
730 +== 2.10 ​Firmware Change Log ==
731 +
668 668  (((
669 -The battery is designed to last for several years depends on the actually use environment and update interval. 
733 +**Firmware download link:**
670 670  )))
671 671  
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
672 672  
673 673  (((
674 -The battery related documents as below:
741 +
675 675  )))
676 676  
677 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
679 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
680 680  
681 681  (((
682 -[[image:image-20220708140453-6.png]]
749 +
683 683  )))
684 684  
752 +(((
753 +**V1.0.**
754 +)))
685 685  
686 -
687 -=== 2.9.2  Power consumption Analyze ===
688 -
689 689  (((
690 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
691 691  )))
692 692  
693 693  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
694 694  (((
695 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
696 696  )))
697 697  
698 698  (((
699 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
700 700  )))
701 701  
702 -
703 703  (((
704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
705 705  )))
777 +)))
706 706  
707 707  * (((
708 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
709 709  )))
710 710  * (((
711 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
712 712  )))
713 713  * (((
714 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
715 715  )))
716 716  
717 -(((
718 -And the Life expectation in difference case will be shown on the right.
719 -)))
789 + [[image:image-20220610172436-1.png]]
720 720  
721 -[[image:image-20220708141352-7.jpeg]]
722 722  
723 723  
793 +=== 2.11.2 ​Battery Note ===
724 724  
725 -=== 2.9.3  ​Battery Note ===
726 -
727 727  (((
728 728  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
729 729  )))
... ... @@ -730,176 +730,302 @@
730 730  
731 731  
732 732  
733 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
734 734  
735 735  (((
736 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
737 737  )))
738 738  
739 -
740 -
741 -= 3. ​ Access NB-IoT Module =
742 -
743 743  (((
744 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
745 745  )))
746 746  
747 747  (((
748 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
749 749  )))
750 750  
751 -[[image:1657261278785-153.png]]
752 752  
753 753  
817 += 3. ​Using the AT Commands =
754 754  
755 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
756 756  
757 -== 4.1  Access AT Commands ==
758 758  
759 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
760 760  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
761 761  
762 -AT+<CMD>?  : Help on <CMD>
763 763  
764 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
765 765  
766 -AT+<CMD>=<value> : Set the value
767 767  
768 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
769 769  
770 770  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
771 771  (% style="color:#037691" %)**General Commands**(%%)      
772 772  
773 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
774 774  
775 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
776 776  
777 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
778 778  
779 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
780 780  
781 -AT+CFG  : Print all configurations
782 782  
783 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
784 784  
785 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
786 786  
787 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
788 788  
789 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
790 790  
791 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
792 792  
793 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
794 794  
795 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
796 796  
797 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
798 798  
799 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
800 800  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
801 801  
802 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
803 803  
804 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
805 805  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
806 806  
807 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
808 808  
809 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
810 810  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
811 811  
812 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
813 813  
814 -AT+CLIENT               : Get or Set MQTT client
815 815  
816 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
817 817  
818 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
819 819  
820 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
821 821  
822 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
823 823  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
824 824  
825 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
826 826  
827 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
828 828  
829 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
830 830  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
831 831  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
832 832  
833 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
834 834  
835 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
836 836  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
837 837  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
838 838  (((
839 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
840 840  )))
841 841  
842 842  (((
843 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
844 844  )))
845 845  
846 846  (((
847 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
848 848  )))
849 849  
965 +(((
966 +
967 +)))
850 850  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
851 851  
852 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
853 853  
854 854  (((
855 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
856 856  )))
857 857  
981 +[[image:image-20220606154726-3.png]]
858 858  
859 -= 6.  Trouble Shooting =
860 860  
861 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
862 862  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
863 863  
864 864  (((
865 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
866 866  )))
867 867  
868 -(% class="wikigeneratedid" %)
869 869  (((
870 870  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
871 871  )))
872 872  
1009 +(((
1010 +
1011 +)))
873 873  
874 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
875 875  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
876 876  (((
877 877  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
878 878  
879 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
880 880  )))
881 881  
882 882  
883 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
884 884  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
885 885  
886 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
887 887  
888 888  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
889 889  (% class="wikigeneratedid" %)
890 890  (((
891 891  
892 892  )))
893 893  
894 -= 8.  Packing Info =
1087 += 7. Packing Info =
895 895  
896 896  (((
897 897  
898 898  
899 899  (% style="color:#037691" %)**Package Includes**:
1093 +)))
900 900  
901 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
902 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
903 903  )))
904 904  
905 905  (((
... ... @@ -906,19 +906,24 @@
906 906  
907 907  
908 908  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
909 909  
910 -* Size: 195 x 125 x 55 mm
911 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
912 912  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
913 913  
914 -(((
915 915  
916 -
917 -
918 -
919 919  )))
920 920  
921 -= 9.  Support =
1120 += 8. Support =
922 922  
923 923  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
924 924  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content