Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 31 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,12 +1,19 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 + 9 + 10 + 11 + 12 + 13 + 8 8 **Table of Contents:** 9 9 16 +{{toc/}} 10 10 11 11 12 12 ... ... @@ -13,717 +13,782 @@ 13 13 14 14 15 15 16 -= 1. 23 += 1. Introduction = 17 17 18 -== 1.1 DDS75DistanceDetectionSensor ==25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 32 + 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 30 30 ))) 31 31 32 - 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 ))) 34 34 35 -[[image:1654503236291-817.png]] 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 36 36 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 +))) 37 37 38 -[[image:1657327959271-447.png]] 39 39 50 +[[image:1654503236291-817.png]] 40 40 41 41 42 - == 1.2 Features ==53 +[[image:1654503265560-120.png]] 43 43 44 44 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 56 + 57 +== 1.2 Features == 58 + 59 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm61 +* Monitor Soil Moisture 62 +* Monitor Soil Temperature 63 +* Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 57 57 58 58 59 59 60 -== 1.3 Specification == 61 61 62 62 63 - (% style="color:#037691"%)**Common DC Characteristics:**75 +== 1.3 Specification == 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 77 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 67 67 68 - (% style="color:#037691" %)**NB-IoT Spec:**79 +[[image:image-20220606162220-5.png]] 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 76 76 77 77 78 - (% style="color:#037691"%)**Battery:**83 +== 1.4 Applications == 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 85 - 86 - 87 -(% style="color:#037691" %)**Power Consumption** 88 - 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 91 - 92 - 93 - 94 - 95 -== 1.4 Applications == 96 - 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 100 * Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 104 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 105 106 106 90 +== 1.5 Firmware Change log == 107 107 108 108 109 - ==1.5Pin Definitions==93 +**LSE01 v1.0 :** Release 110 110 111 111 112 -[[image:1657328609906-564.png]] 113 113 97 += 2. Configure LSE01 to connect to LoRaWAN network = 114 114 99 +== 2.1 How it works == 115 115 116 - 117 -= 2. Use NSE01 to communicate with IoT Server = 118 - 119 -== 2.1 How it works == 120 - 121 - 122 122 ((( 123 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 124 124 ))) 125 125 126 - 127 127 ((( 128 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 129 129 ))) 130 130 131 -[[image:image-20220708101605-2.png]] 132 132 133 -((( 134 - 135 -))) 136 136 111 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 137 137 113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 138 138 139 -== 2.2 Configure the NSE01 == 140 140 116 +[[image:1654503992078-669.png]] 141 141 142 -=== 2.2.1 Test Requirement === 143 143 119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 144 144 145 -((( 146 -To use NSE01 in your city, make sure meet below requirements: 147 -))) 148 148 149 -* Your local operator has already distributed a NB-IoT Network there. 150 -* The local NB-IoT network used the band that NSE01 supports. 151 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 122 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 152 152 153 -((( 154 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 155 -))) 124 +Each LSE01 is shipped with a sticker with the default device EUI as below: 156 156 126 +[[image:image-20220606163732-6.jpeg]] 157 157 158 - [[image:1657249419225-449.png]]128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 159 159 130 +**Add APP EUI in the application** 160 160 161 161 162 - === 2.2.2 Insert SIM card ===133 +[[image:1654504596150-405.png]] 163 163 164 -((( 165 -Insert the NB-IoT Card get from your provider. 166 -))) 167 167 168 -((( 169 -User need to take out the NB-IoT module and insert the SIM card like below: 170 -))) 171 171 137 +**Add APP KEY and DEV EUI** 172 172 173 -[[image:165 7249468462-536.png]]139 +[[image:1654504683289-357.png]] 174 174 175 175 176 176 177 - ===2.2.3 ConnectUSB–TTLtoNSE01to configure it ===143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 178 178 179 -((( 180 -((( 181 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 182 -))) 183 -))) 184 184 146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 185 185 186 - **Connection:**148 +[[image:image-20220606163915-7.png]] 187 187 188 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 189 189 190 - background-color:yellow" %)USBTTL TXD<~-~-~-~->UART_RXD151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 191 191 192 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD153 +[[image:1654504778294-788.png]] 193 193 194 194 195 -In the PC, use below serial tool settings: 196 196 197 -* Baud: (% style="color:green" %)**9600** 198 -* Data bits:** (% style="color:green" %)8(%%)** 199 -* Stop bits: (% style="color:green" %)**1** 200 -* Parity: (% style="color:green" %)**None** 201 -* Flow Control: (% style="color:green" %)**None** 157 +== 2.3 Uplink Payload == 202 202 203 -((( 204 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 205 -))) 206 206 207 - [[image:image-20220708110657-3.png]]160 +=== 2.3.1 MOD~=0(Default Mode) === 208 208 162 +LSE01 will uplink payload via LoRaWAN with below payload format: 163 + 209 209 ((( 210 - (% style="color:red" %)Note: the valid AT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]165 +Uplink payload includes in total 11 bytes. 211 211 ))) 212 212 168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 169 +|((( 170 +**Size** 213 213 172 +**(bytes)** 173 +)))|**2**|**2**|**2**|**2**|**2**|**1** 174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 175 +Temperature 214 214 215 -=== 2.2.4 Use CoAP protocol to uplink data === 177 +(Reserve, Ignore now) 178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 179 +MOD & Digital Interrupt 216 216 217 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 181 +(Optional) 182 +))) 218 218 219 219 220 -**Use below commands:** 221 221 222 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 223 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 224 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 225 225 226 -For parameter description, please refer to AT command set 227 227 228 -[[image:1657249793983-486.png]] 229 229 230 230 231 - Afterconfigurethe server address and (% style="color:green" %)**reset the device**(%%) (viaAT+ATZ ), NSE01 willstart to uplink sensorvaluesto CoAP server.190 +=== 2.3.2 MOD~=1(Original value) === 232 232 233 - [[image:1657249831934-534.png]]192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 234 234 194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 195 +|((( 196 +**Size** 235 235 198 +**(bytes)** 199 +)))|**2**|**2**|**2**|**2**|**2**|**1** 200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 201 +Temperature 236 236 237 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 203 +(Reserve, Ignore now) 204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 205 +MOD & Digital Interrupt 238 238 239 -This feature is supported since firmware version v1.0.1 207 +(Optional) 208 +))) 240 240 241 241 242 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 243 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 244 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 245 245 246 -[[image:1657249864775-321.png]] 247 247 248 248 249 -[[image:1657249930215-289.png]] 250 250 251 251 216 +=== 2.3.3 Battery Info === 252 252 253 -=== 2.2.6 Use MQTT protocol to uplink data === 218 +((( 219 +Check the battery voltage for LSE01. 220 +))) 254 254 255 -This feature is supported since firmware version v110 222 +((( 223 +Ex1: 0x0B45 = 2885mV 224 +))) 256 256 226 +((( 227 +Ex2: 0x0B49 = 2889mV 228 +))) 257 257 258 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 259 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 260 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 261 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 262 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 263 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 264 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 265 265 266 -[[image:1657249978444-674.png]] 267 267 232 +=== 2.3.4 Soil Moisture === 268 268 269 -[[image:1657249990869-686.png]] 234 +((( 235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 236 +))) 270 270 238 +((( 239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 240 +))) 271 271 272 272 ((( 273 - MQTTprotocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.243 + 274 274 ))) 275 275 246 +((( 247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 248 +))) 276 276 277 277 278 -=== 2.2.7 Use TCP protocol to uplink data === 279 279 280 - Thisfeatureissupported since firmwareversion v110252 +=== 2.3.5 Soil Temperature === 281 281 254 +((( 255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 256 +))) 282 282 283 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 284 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 258 +((( 259 +**Example**: 260 +))) 285 285 286 -[[image:1657250217799-140.png]] 262 +((( 263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 264 +))) 287 287 266 +((( 267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 268 +))) 288 288 289 -[[image:1657250255956-604.png]] 290 290 291 291 272 +=== 2.3.6 Soil Conductivity (EC) === 292 292 293 -=== 2.2.8 Change Update Interval === 274 +((( 275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 276 +))) 294 294 295 -User can use below command to change the (% style="color:green" %)**uplink interval**. 278 +((( 279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 280 +))) 296 296 297 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 298 - 299 299 ((( 300 - (%style="color:red"%)**NOTE:**283 +Generally, the EC value of irrigation water is less than 800uS / cm. 301 301 ))) 302 302 303 303 ((( 304 - (%style="color:red" %)1. By default, the device will send an uplink message every 1 hour.287 + 305 305 ))) 306 306 307 - 308 - 309 -== 2.3 Uplink Payload == 310 - 311 -In this mode, uplink payload includes in total 18 bytes 312 - 313 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 314 -|=(% style="width: 60px;" %)((( 315 -**Size(bytes)** 316 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 317 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 318 - 319 319 ((( 320 - Ifwe use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.291 + 321 321 ))) 322 322 294 +=== 2.3.7 MOD === 323 323 324 - [[image:image-20220708111918-4.png]]296 +Firmware version at least v2.1 supports changing mode. 325 325 298 +For example, bytes[10]=90 326 326 327 - The payloadis ASCII string, representative same HEX:300 +mod=(bytes[10]>>7)&0x01=1. 328 328 329 -0x72403155615900640c7817075e0a8c02f900 where: 330 330 331 -* Device ID: 0x 724031556159 = 724031556159 332 -* Version: 0x0064=100=1.0.0 303 +**Downlink Command:** 333 333 334 -* BAT: 0x0c78 = 3192 mV = 3.192V 335 -* Singal: 0x17 = 23 336 -* Soil Moisture: 0x075e= 1886 = 18.86 % 337 -* Soil Temperature:0x0a8c =2700=27 °C 338 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 339 -* Interrupt: 0x00 = 0 305 +If payload = 0x0A00, workmode=0 340 340 341 - ==2.4 PayloadExplanationandSensorInterface==307 +If** **payload =** **0x0A01, workmode=1 342 342 343 343 344 -=== 2.4.1 Device ID === 345 345 346 -((( 347 -By default, the Device ID equal to the last 6 bytes of IMEI. 348 -))) 311 +=== 2.3.8 Decode payload in The Things Network === 349 349 350 -((( 351 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 352 -))) 313 +While using TTN network, you can add the payload format to decode the payload. 353 353 354 -((( 355 -**Example:** 356 -))) 357 357 316 +[[image:1654505570700-128.png]] 317 + 358 358 ((( 359 - AT+DEUI=A84041F15612319 +The payload decoder function for TTN is here: 360 360 ))) 361 361 362 362 ((( 363 -T heDeviceID is storedin a none-erase area, Upgradethe firmware or run AT+FDRwon'terase Device ID.323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 364 364 ))) 365 365 366 366 327 +== 2.4 Uplink Interval == 367 367 368 - ===2.4.2Version Info ===329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 369 369 370 -((( 371 -Specify the software version: 0x64=100, means firmware version 1.00. 372 -))) 373 373 374 -((( 375 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 376 -))) 377 377 333 +== 2.5 Downlink Payload == 378 378 335 +By default, LSE50 prints the downlink payload to console port. 379 379 380 - ===2.4.3 Battery Info ===337 +[[image:image-20220606165544-8.png]] 381 381 382 -((( 383 -Check the battery voltage for LSE01. 384 -))) 385 385 386 386 ((( 387 -Ex 1: 0x0B45 = 2885mV341 +**Examples:** 388 388 ))) 389 389 390 390 ((( 391 - Ex2:0x0B49 = 2889mV345 + 392 392 ))) 393 393 394 - 395 - 396 -=== 2.4.4 Signal Strength === 397 - 398 -((( 399 -NB-IoT Network signal Strength. 348 +* ((( 349 +**Set TDC** 400 400 ))) 401 401 402 402 ((( 403 - **Ex1:0x1d =29**353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 404 404 ))) 405 405 406 406 ((( 407 - (% style="color:blue"%)**0**(%%)-113dBmor less357 +Payload: 01 00 00 1E TDC=30S 408 408 ))) 409 409 410 410 ((( 411 - (% style="color:blue"%)**1**(%%)-111dBm361 +Payload: 01 00 00 3C TDC=60S 412 412 ))) 413 413 414 414 ((( 415 - (%style="color:blue" %)**2...30**(%%) -109dBm... -53dBm365 + 416 416 ))) 417 417 418 -((( 419 - (% style="color:blue" %)**31** (%%) -51dBm or greater368 +* ((( 369 +**Reset** 420 420 ))) 421 421 422 422 ((( 423 - (%style="color:blue"%)**99**(%%)Notknownornotdetectable373 +If payload = 0x04FF, it will reset the LSE01 424 424 ))) 425 425 426 426 377 +* **CFM** 427 427 428 - ===2.4.5oilMoisture ===379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 429 429 381 + 382 + 383 +== 2.6 Show Data in DataCake IoT Server == 384 + 430 430 ((( 431 -((( 432 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 433 433 ))) 434 -))) 435 435 436 436 ((( 437 -((( 438 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 390 + 439 439 ))) 440 -))) 441 441 442 442 ((( 443 - 394 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 444 444 ))) 445 445 446 446 ((( 447 -(% style="color: #4f81bd" %)**05DC(H)=1500(D)/100=15%.**398 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 448 448 ))) 449 449 450 450 402 +[[image:1654505857935-743.png]] 451 451 452 -=== 2.4.6 Soil Temperature === 453 453 454 -((( 455 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 456 -))) 405 +[[image:1654505874829-548.png]] 457 457 458 -((( 459 -**Example**: 460 -))) 461 461 462 -((( 463 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 464 -))) 408 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 465 465 466 -((( 467 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 468 -))) 410 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 469 469 470 470 413 +[[image:1654505905236-553.png]] 471 471 472 -=== 2.4.7 Soil Conductivity (EC) === 473 473 474 -((( 475 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 476 -))) 416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 477 477 478 -((( 479 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 480 -))) 418 +[[image:1654505925508-181.png]] 481 481 482 -((( 483 -Generally, the EC value of irrigation water is less than 800uS / cm. 484 -))) 485 485 486 -((( 487 - 488 -))) 489 489 490 -((( 491 - 492 -))) 422 +== 2.7 Frequency Plans == 493 493 494 - ===2.4.8Digital Interrupt===424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 495 495 496 -((( 497 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 498 -))) 499 499 500 -((( 501 -The command is: 502 -))) 427 +=== 2.7.1 EU863-870 (EU868) === 503 503 504 -((( 505 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 506 -))) 429 +(% style="color:#037691" %)** Uplink:** 507 507 431 +868.1 - SF7BW125 to SF12BW125 508 508 509 -((( 510 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 511 -))) 433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 512 512 435 +868.5 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -Example: 516 -))) 437 +867.1 - SF7BW125 to SF12BW125 517 517 518 -((( 519 -0x(00): Normal uplink packet. 520 -))) 439 +867.3 - SF7BW125 to SF12BW125 521 521 522 -((( 523 -0x(01): Interrupt Uplink Packet. 524 -))) 441 +867.5 - SF7BW125 to SF12BW125 525 525 443 +867.7 - SF7BW125 to SF12BW125 526 526 445 +867.9 - SF7BW125 to SF12BW125 527 527 528 - === 2.4.9+5V Output ===447 +868.8 - FSK 529 529 530 -((( 531 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 532 -))) 533 533 450 +(% style="color:#037691" %)** Downlink:** 534 534 535 -((( 536 -The 5V output time can be controlled by AT Command. 537 -))) 452 +Uplink channels 1-9 (RX1) 538 538 539 -((( 540 -(% style="color:blue" %)**AT+5VT=1000** 541 -))) 454 +869.525 - SF9BW125 (RX2 downlink only) 542 542 543 -((( 544 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 545 -))) 546 546 547 547 458 +=== 2.7.2 US902-928(US915) === 548 548 549 - ==2.5 DownlinkPayload ==460 +Used in USA, Canada and South America. Default use CHE=2 550 550 551 - Bydefault, NSE01 prints the downlinkpayload to console port.462 +(% style="color:#037691" %)**Uplink:** 552 552 553 - [[image:image-20220708133731-5.png]]464 +903.9 - SF7BW125 to SF10BW125 554 554 466 +904.1 - SF7BW125 to SF10BW125 555 555 556 -((( 557 -(% style="color:blue" %)**Examples:** 558 -))) 468 +904.3 - SF7BW125 to SF10BW125 559 559 560 -((( 561 - 562 -))) 470 +904.5 - SF7BW125 to SF10BW125 563 563 564 -* ((( 565 -(% style="color:blue" %)**Set TDC** 566 -))) 472 +904.7 - SF7BW125 to SF10BW125 567 567 568 -((( 569 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 570 -))) 474 +904.9 - SF7BW125 to SF10BW125 571 571 572 -((( 573 -Payload: 01 00 00 1E TDC=30S 574 -))) 476 +905.1 - SF7BW125 to SF10BW125 575 575 576 -((( 577 -Payload: 01 00 00 3C TDC=60S 578 -))) 478 +905.3 - SF7BW125 to SF10BW125 579 579 580 -((( 581 - 582 -))) 583 583 584 -* ((( 585 -(% style="color:blue" %)**Reset** 586 -))) 481 +(% style="color:#037691" %)**Downlink:** 587 587 588 -((( 589 -If payload = 0x04FF, it will reset the NSE01 590 -))) 483 +923.3 - SF7BW500 to SF12BW500 591 591 485 +923.9 - SF7BW500 to SF12BW500 592 592 593 - *(%style="color:blue"%)**INTMOD**487 +924.5 - SF7BW500 to SF12BW500 594 594 595 -((( 596 -Downlink Payload: 06000003, Set AT+INTMOD=3 597 -))) 489 +925.1 - SF7BW500 to SF12BW500 598 598 491 +925.7 - SF7BW500 to SF12BW500 599 599 493 +926.3 - SF7BW500 to SF12BW500 600 600 601 - ==2.6LEDIndicator==495 +926.9 - SF7BW500 to SF12BW500 602 602 603 -((( 604 -The NSE01 has an internal LED which is to show the status of different state. 497 +927.5 - SF7BW500 to SF12BW500 605 605 499 +923.3 - SF12BW500(RX2 downlink only) 606 606 607 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 608 -* Then the LED will be on for 1 second means device is boot normally. 609 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 610 -* For each uplink probe, LED will be on for 500ms. 611 -))) 612 612 613 613 503 +=== 2.7.3 CN470-510 (CN470) === 614 614 505 +Used in China, Default use CHE=1 615 615 616 - ==2.7 InstallationinSoil ==507 +(% style="color:#037691" %)**Uplink:** 617 617 618 - __**Measurementthesoilsurface**__509 +486.3 - SF7BW125 to SF12BW125 619 619 620 -((( 621 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 622 -))) 511 +486.5 - SF7BW125 to SF12BW125 623 623 624 - [[image:1657259653666-883.png]]513 +486.7 - SF7BW125 to SF12BW125 625 625 515 +486.9 - SF7BW125 to SF12BW125 626 626 627 -((( 628 - 517 +487.1 - SF7BW125 to SF12BW125 629 629 630 -((( 631 -Dig a hole with diameter > 20CM. 632 -))) 519 +487.3 - SF7BW125 to SF12BW125 633 633 634 -((( 635 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 636 -))) 637 -))) 521 +487.5 - SF7BW125 to SF12BW125 638 638 639 - [[image:1654506665940-119.png]]523 +487.7 - SF7BW125 to SF12BW125 640 640 641 -((( 642 - 643 -))) 644 644 526 +(% style="color:#037691" %)**Downlink:** 645 645 646 - == 2.8FirmwareChange Log==528 +506.7 - SF7BW125 to SF12BW125 647 647 530 +506.9 - SF7BW125 to SF12BW125 648 648 649 - DownloadURL&FirmwareChange log532 +507.1 - SF7BW125 to SF12BW125 650 650 651 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]534 +507.3 - SF7BW125 to SF12BW125 652 652 536 +507.5 - SF7BW125 to SF12BW125 653 653 654 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]538 +507.7 - SF7BW125 to SF12BW125 655 655 540 +507.9 - SF7BW125 to SF12BW125 656 656 542 +508.1 - SF7BW125 to SF12BW125 657 657 658 - == 2.9BatteryAnalysis==544 +505.3 - SF12BW125 (RX2 downlink only) 659 659 660 -=== 2.9.1 Battery Type === 661 661 662 662 548 +=== 2.7.4 AU915-928(AU915) === 549 + 550 +Default use CHE=2 551 + 552 +(% style="color:#037691" %)**Uplink:** 553 + 554 +916.8 - SF7BW125 to SF12BW125 555 + 556 +917.0 - SF7BW125 to SF12BW125 557 + 558 +917.2 - SF7BW125 to SF12BW125 559 + 560 +917.4 - SF7BW125 to SF12BW125 561 + 562 +917.6 - SF7BW125 to SF12BW125 563 + 564 +917.8 - SF7BW125 to SF12BW125 565 + 566 +918.0 - SF7BW125 to SF12BW125 567 + 568 +918.2 - SF7BW125 to SF12BW125 569 + 570 + 571 +(% style="color:#037691" %)**Downlink:** 572 + 573 +923.3 - SF7BW500 to SF12BW500 574 + 575 +923.9 - SF7BW500 to SF12BW500 576 + 577 +924.5 - SF7BW500 to SF12BW500 578 + 579 +925.1 - SF7BW500 to SF12BW500 580 + 581 +925.7 - SF7BW500 to SF12BW500 582 + 583 +926.3 - SF7BW500 to SF12BW500 584 + 585 +926.9 - SF7BW500 to SF12BW500 586 + 587 +927.5 - SF7BW500 to SF12BW500 588 + 589 +923.3 - SF12BW500(RX2 downlink only) 590 + 591 + 592 + 593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 594 + 595 +(% style="color:#037691" %)**Default Uplink channel:** 596 + 597 +923.2 - SF7BW125 to SF10BW125 598 + 599 +923.4 - SF7BW125 to SF10BW125 600 + 601 + 602 +(% style="color:#037691" %)**Additional Uplink Channel**: 603 + 604 +(OTAA mode, channel added by JoinAccept message) 605 + 606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 607 + 608 +922.2 - SF7BW125 to SF10BW125 609 + 610 +922.4 - SF7BW125 to SF10BW125 611 + 612 +922.6 - SF7BW125 to SF10BW125 613 + 614 +922.8 - SF7BW125 to SF10BW125 615 + 616 +923.0 - SF7BW125 to SF10BW125 617 + 618 +922.0 - SF7BW125 to SF10BW125 619 + 620 + 621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 622 + 623 +923.6 - SF7BW125 to SF10BW125 624 + 625 +923.8 - SF7BW125 to SF10BW125 626 + 627 +924.0 - SF7BW125 to SF10BW125 628 + 629 +924.2 - SF7BW125 to SF10BW125 630 + 631 +924.4 - SF7BW125 to SF10BW125 632 + 633 +924.6 - SF7BW125 to SF10BW125 634 + 635 + 636 +(% style="color:#037691" %)** Downlink:** 637 + 638 +Uplink channels 1-8 (RX1) 639 + 640 +923.2 - SF10BW125 (RX2) 641 + 642 + 643 + 644 +=== 2.7.6 KR920-923 (KR920) === 645 + 646 +Default channel: 647 + 648 +922.1 - SF7BW125 to SF12BW125 649 + 650 +922.3 - SF7BW125 to SF12BW125 651 + 652 +922.5 - SF7BW125 to SF12BW125 653 + 654 + 655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 656 + 657 +922.1 - SF7BW125 to SF12BW125 658 + 659 +922.3 - SF7BW125 to SF12BW125 660 + 661 +922.5 - SF7BW125 to SF12BW125 662 + 663 +922.7 - SF7BW125 to SF12BW125 664 + 665 +922.9 - SF7BW125 to SF12BW125 666 + 667 +923.1 - SF7BW125 to SF12BW125 668 + 669 +923.3 - SF7BW125 to SF12BW125 670 + 671 + 672 +(% style="color:#037691" %)**Downlink:** 673 + 674 +Uplink channels 1-7(RX1) 675 + 676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 677 + 678 + 679 + 680 +=== 2.7.7 IN865-867 (IN865) === 681 + 682 +(% style="color:#037691" %)** Uplink:** 683 + 684 +865.0625 - SF7BW125 to SF12BW125 685 + 686 +865.4025 - SF7BW125 to SF12BW125 687 + 688 +865.9850 - SF7BW125 to SF12BW125 689 + 690 + 691 +(% style="color:#037691" %) **Downlink:** 692 + 693 +Uplink channels 1-3 (RX1) 694 + 695 +866.550 - SF10BW125 (RX2) 696 + 697 + 698 + 699 + 700 +== 2.8 LED Indicator == 701 + 702 +The LSE01 has an internal LED which is to show the status of different state. 703 + 704 +* Blink once when device power on. 705 +* Solid ON for 5 seconds once device successful Join the network. 706 +* Blink once when device transmit a packet. 707 + 708 +== 2.9 Installation in Soil == 709 + 710 +**Measurement the soil surface** 711 + 712 + 713 +[[image:1654506634463-199.png]] 714 + 663 663 ((( 664 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 716 +((( 717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 665 665 ))) 719 +))) 666 666 667 667 722 + 723 +[[image:1654506665940-119.png]] 724 + 668 668 ((( 669 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.726 +Dig a hole with diameter > 20CM. 670 670 ))) 671 671 729 +((( 730 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 731 +))) 672 672 733 + 734 +== 2.10 Firmware Change Log == 735 + 673 673 ((( 674 - The battery relateddocumentsasbelow:737 +**Firmware download link:** 675 675 ))) 676 676 677 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]679 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]740 +((( 741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 742 +))) 680 680 681 681 ((( 682 - [[image:image-20220708140453-6.png]]745 + 683 683 ))) 684 684 748 +((( 749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 750 +))) 685 685 752 +((( 753 + 754 +))) 686 686 687 -=== 2.9.2 Power consumption Analyze === 756 +((( 757 +**V1.0.** 758 +))) 688 688 689 689 ((( 690 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.761 +Release 691 691 ))) 692 692 693 693 765 +== 2.11 Battery Analysis == 766 + 767 +=== 2.11.1 Battery Type === 768 + 694 694 ((( 695 - Instruction touse as below:770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 696 ))) 697 697 698 698 ((( 699 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]774 +The battery is designed to last for more than 5 years for the LSN50. 700 700 ))) 701 701 702 - 703 703 ((( 704 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 778 +((( 779 +The battery-related documents are as below: 705 705 ))) 781 +))) 706 706 707 707 * ((( 708 - ProductModel784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 709 709 ))) 710 710 * ((( 711 - UplinkInterval787 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 712 712 ))) 713 713 * ((( 714 - WorkingMode790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 715 715 ))) 716 716 717 -((( 718 -And the Life expectation in difference case will be shown on the right. 719 -))) 793 + [[image:image-20220610172436-1.png]] 720 720 721 -[[image:image-20220708141352-7.jpeg]] 722 722 723 723 797 +=== 2.11.2 Battery Note === 724 724 725 -=== 2.9.3 Battery Note === 726 - 727 727 ((( 728 728 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 729 729 ))) ... ... @@ -730,176 +730,298 @@ 730 730 731 731 732 732 733 -=== 2. 9.4Replace the battery ===805 +=== 2.11.3 Replace the battery === 734 734 735 735 ((( 736 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).808 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 737 737 ))) 738 738 739 - 740 - 741 -= 3. Access NB-IoT Module = 742 - 743 743 ((( 744 - Userscan directly accesstheATcommand set of theNB-IoTmodule.812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 745 745 ))) 746 746 747 747 ((( 748 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 749 749 ))) 750 750 751 -[[image:1657261278785-153.png]] 752 752 753 753 821 += 3. Using the AT Commands = 754 754 755 -= 4.UsingtheAT Commands =823 +== 3.1 Access AT Commands == 756 756 757 -== 4.1 Access AT Commands == 758 758 759 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 760 760 828 +[[image:1654501986557-872.png||height="391" width="800"]] 761 761 762 -AT+<CMD>? : Help on <CMD> 763 763 764 - AT+<CMD>: Run<CMD>831 +Or if you have below board, use below connection: 765 765 766 -AT+<CMD>=<value> : Set the value 767 767 768 - AT+<CMD>=?:Get the value834 +[[image:1654502005655-729.png||height="503" width="801"]] 769 769 770 770 837 + 838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 839 + 840 + 841 + [[image:1654502050864-459.png||height="564" width="806"]] 842 + 843 + 844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 845 + 846 + 847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 848 + 849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 850 + 851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 852 + 853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 854 + 855 + 771 771 (% style="color:#037691" %)**General Commands**(%%) 772 772 773 -AT 858 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 774 774 775 -AT? 860 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 776 776 777 -ATZ 862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 778 778 779 -AT+TDC 864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 780 780 781 -AT+CFG : Print all configurations 782 782 783 - AT+CFGMOD: Workingmode selection867 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 784 784 785 -AT+I NTMOD:Setthe trigger interruptmode869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 786 786 787 -AT+ 5VTSetextend the timeof5V power871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 788 788 789 -AT+P ROChooseagreement873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 790 790 791 -AT+ WEIGREGet weightorsetweight to 0875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 792 792 793 -AT+ WEIGAPGet or SettheGapValue of weight877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 794 794 795 -AT+ RXDL: Extendthe sendingandreceivingtime879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 796 796 797 -AT+ CNTFACGettcountingparameters881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 798 798 799 -AT+ SERVADDR:ServerAddress883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 800 800 885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 801 801 802 -(% style="color:# 037691" %)**COAPManagement**887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 803 803 804 -AT+ URIsourceparameters889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 805 805 891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 806 806 807 -(% style="color:# 037691" %)**UDPManagement**893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 808 808 809 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 810 810 897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 811 811 812 -(% style="color:# 037691" %)**MQTTManagement**899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 813 813 814 -AT+CLIENT : Get or Set MQTT client 815 815 816 - AT+UNAMEGetSetMQTT Username902 +(% style="color:#037691" %)**LoRa Network Management** 817 817 818 -AT+ PWDGetor SetMQTT password904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 819 819 820 -AT+ PUBTOPICGetorSetMQTTpublishtopic906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 821 821 822 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 823 823 910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 824 824 825 -(% style="color:# 037691" %)**Information**912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 826 826 827 -AT+F DRctoryDataReset914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 828 828 829 -AT+ PWORDSerialAccessPassword916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 830 830 918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 831 831 920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 832 832 833 -= 5.FAQ=922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 834 834 835 -= =5.1HowtoUpgradeFirmware==924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 836 836 926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 837 837 928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 929 + 930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 933 + 934 + 935 +(% style="color:#037691" %)**Information** 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 944 + 945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 946 + 947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 948 + 949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 950 + 951 + 952 += 4. FAQ = 953 + 954 +== 4.1 How to change the LoRa Frequency Bands/Region? == 955 + 838 838 ((( 839 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 958 +When downloading the images, choose the required image file for download. 840 840 ))) 841 841 842 842 ((( 843 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]962 + 844 844 ))) 845 845 846 846 ((( 847 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 848 848 ))) 849 849 969 +((( 970 + 971 +))) 850 850 973 +((( 974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 975 +))) 851 851 852 -== 5.2 Can I calibrate NSE01 to different soil types? == 977 +((( 978 + 979 +))) 853 853 854 854 ((( 855 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 856 856 ))) 857 857 985 +[[image:image-20220606154726-3.png]] 858 858 859 -= 6. Trouble Shooting = 860 860 861 - ==6.1 Connection problemwhenuploadingfirmware==988 +When you use the TTN network, the US915 frequency bands use are: 862 862 990 +* 903.9 - SF7BW125 to SF10BW125 991 +* 904.1 - SF7BW125 to SF10BW125 992 +* 904.3 - SF7BW125 to SF10BW125 993 +* 904.5 - SF7BW125 to SF10BW125 994 +* 904.7 - SF7BW125 to SF10BW125 995 +* 904.9 - SF7BW125 to SF10BW125 996 +* 905.1 - SF7BW125 to SF10BW125 997 +* 905.3 - SF7BW125 to SF10BW125 998 +* 904.6 - SF8BW500 863 863 864 864 ((( 865 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1002 + 1003 +* (% style="color:#037691" %)**AT+CHE=2** 1004 +* (% style="color:#037691" %)**ATZ** 866 866 ))) 867 867 868 -(% class="wikigeneratedid" %) 869 869 ((( 870 870 1009 + 1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 871 871 ))) 872 872 1013 +((( 1014 + 1015 +))) 873 873 874 -== 6.2 AT Command input doesn't work == 1017 +((( 1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1019 +))) 875 875 1021 +[[image:image-20220606154825-4.png]] 1022 + 1023 + 1024 + 1025 += 5. Trouble Shooting = 1026 + 1027 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1028 + 1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1030 + 1031 + 1032 +== 5.2 AT Command input doesn’t work == 1033 + 876 876 ((( 877 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1036 +))) 878 878 879 - 1038 + 1039 +== 5.3 Device rejoin in at the second uplink packet == 1040 + 1041 +(% style="color:#4f81bd" %)**Issue describe as below:** 1042 + 1043 +[[image:1654500909990-784.png]] 1044 + 1045 + 1046 +(% style="color:#4f81bd" %)**Cause for this issue:** 1047 + 1048 +((( 1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 880 880 ))) 881 881 882 882 883 - =7. OrderInfo=1053 +(% style="color:#4f81bd" %)**Solution: ** 884 884 1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 885 885 886 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1057 +[[image:1654500929571-736.png||height="458" width="832"]] 887 887 888 888 1060 += 6. Order Info = 1061 + 1062 + 1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1064 + 1065 + 1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1067 + 1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1074 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1076 + 1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1078 + 1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1081 + 889 889 (% class="wikigeneratedid" %) 890 890 ((( 891 891 892 892 ))) 893 893 894 -= 8.1087 += 7. Packing Info = 895 895 896 896 ((( 897 897 898 898 899 899 (% style="color:#037691" %)**Package Includes**: 1093 +))) 900 900 901 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1902 - *Externalantennax 11095 +* ((( 1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 903 903 ))) 904 904 905 905 ((( ... ... @@ -906,19 +906,24 @@ 906 906 907 907 908 908 (% style="color:#037691" %)**Dimension and weight**: 1103 +))) 909 909 910 -* Size: 195 x 125 x 55 mm911 - * Weight:420g1105 +* ((( 1106 +Device Size: cm 912 912 ))) 1108 +* ((( 1109 +Device Weight: g 1110 +))) 1111 +* ((( 1112 +Package Size / pcs : cm 1113 +))) 1114 +* ((( 1115 +Weight / pcs : g 913 913 914 -((( 915 915 916 - 917 - 918 - 919 919 ))) 920 920 921 -= 9.1120 += 8. Support = 922 922 923 923 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 924 924 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content