Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 76.1
edited by Xiaoling
on 2022/07/09 09:03
Change comment: Uploaded new attachment "1657328609906-564.png", version {1}
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -35,23 +35,23 @@
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
42 +[[image:1657245163077-232.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
44 44  
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 -* Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
50 +* Monitor Soil Moisture
51 +* Monitor Soil Temperature
52 +* Monitor Soil Conductivity
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
57 +* Ultra-Low Power consumption
58 +* AT Commands to change parameters
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
... ... @@ -65,6 +65,7 @@
65 65  * Supply Voltage: 2.1v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
72 +
68 68  (% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 70  * - B1 @H-FDD: 2100MHz
... ... @@ -75,37 +75,21 @@
75 75  * - B28 @H-FDD: 700MHz
76 76  
77 77  
78 -(% style="color:#037691" %)**Battery:**
83 +(% style="color:#037691" %)**Probe Specification:**
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
85 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
85 85  
87 +[[image:image-20220708101224-1.png]]
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 91  
92 -
93 -
94 -
95 95  == ​1.4  Applications ==
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 100  * Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
103 103  
104 104  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 105  ​
106 106  
107 -
108 -
109 109  == 1.5  Pin Definitions ==
110 110  
111 111  
... ... @@ -113,616 +113,696 @@
113 113  
114 114  
115 115  
116 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
117 117  
118 -== 2.1  How it works ==
107 +== 2.1 How it works ==
119 119  
120 -
121 121  (((
122 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
123 123  )))
124 124  
125 -
126 126  (((
127 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
128 128  )))
129 129  
130 -[[image:image-20220708101605-2.png]]
131 131  
132 -(((
133 -
134 -)))
135 135  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
136 136  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
137 137  
138 -== 2.2 ​ Configure the NSE01 ==
139 139  
124 +[[image:1654503992078-669.png]]
140 140  
141 -=== 2.2.1 Test Requirement ===
142 142  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
143 143  
144 -(((
145 -To use NSE01 in your city, make sure meet below requirements:
146 -)))
147 147  
148 -* Your local operator has already distributed a NB-IoT Network there.
149 -* The local NB-IoT network used the band that NSE01 supports.
150 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
151 151  
152 -(((
153 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
154 -)))
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
155 155  
134 +[[image:image-20220606163732-6.jpeg]]
156 156  
157 -[[image:1657249419225-449.png]]
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
158 158  
138 +**Add APP EUI in the application**
159 159  
160 160  
161 -=== 2.2.2 Insert SIM card ===
141 +[[image:1654504596150-405.png]]
162 162  
163 -(((
164 -Insert the NB-IoT Card get from your provider.
165 -)))
166 166  
167 -(((
168 -User need to take out the NB-IoT module and insert the SIM card like below:
169 -)))
170 170  
145 +**Add APP KEY and DEV EUI**
171 171  
172 -[[image:1657249468462-536.png]]
147 +[[image:1654504683289-357.png]]
173 173  
174 174  
175 175  
176 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
177 177  
178 -(((
179 -(((
180 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
181 -)))
182 -)))
183 183  
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
184 184  
185 -**Connection:**
156 +[[image:image-20220606163915-7.png]]
186 186  
187 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
188 188  
189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
190 190  
191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
161 +[[image:1654504778294-788.png]]
192 192  
193 193  
194 -In the PC, use below serial tool settings:
195 195  
196 -* Baud:  (% style="color:green" %)**9600**
197 -* Data bits:** (% style="color:green" %)8(%%)**
198 -* Stop bits: (% style="color:green" %)**1**
199 -* Parity:  (% style="color:green" %)**None**
200 -* Flow Control: (% style="color:green" %)**None**
165 +== 2.3 Uplink Payload ==
201 201  
202 -(((
203 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
204 -)))
205 205  
206 -[[image:image-20220708110657-3.png]]
168 +=== 2.3.1 MOD~=0(Default Mode) ===
207 207  
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
208 208  (((
209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
173 +Uplink payload includes in total 11 bytes.
210 210  )))
211 211  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
212 212  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
213 213  
214 -=== 2.2.4 Use CoAP protocol to uplink data ===
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
215 215  
216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
189 +(Optional)
190 +)))
217 217  
192 +=== 2.3.2 MOD~=1(Original value) ===
218 218  
219 -**Use below commands:**
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
220 220  
221 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
224 224  
225 -For parameter description, please refer to AT command set
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
226 226  
227 -[[image:1657249793983-486.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
228 228  
209 +(Optional)
210 +)))
229 229  
230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
212 +=== 2.3.3 Battery Info ===
231 231  
232 -[[image:1657249831934-534.png]]
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
233 233  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
234 234  
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
235 235  
236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
237 237  
238 -This feature is supported since firmware version v1.0.1
239 239  
228 +=== 2.3.4 Soil Moisture ===
240 240  
241 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
242 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
243 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
244 244  
245 -[[image:1657249864775-321.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
246 246  
238 +(((
239 +
240 +)))
247 247  
248 -[[image:1657249930215-289.png]]
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
249 249  
250 250  
251 251  
252 -=== 2.2.6 Use MQTT protocol to uplink data ===
248 +=== 2.3.5 Soil Temperature ===
253 253  
254 -This feature is supported since firmware version v110
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
255 255  
254 +(((
255 +**Example**:
256 +)))
256 256  
257 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
258 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
259 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
260 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
261 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
262 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
263 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
264 264  
265 -[[image:1657249978444-674.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
266 266  
267 267  
268 -[[image:1657249990869-686.png]]
269 269  
268 +=== 2.3.6 Soil Conductivity (EC) ===
270 270  
271 271  (((
272 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
273 273  )))
274 274  
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
275 275  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
276 276  
277 -=== 2.2.7 Use TCP protocol to uplink data ===
282 +(((
283 +
284 +)))
278 278  
279 -This feature is supported since firmware version v110
286 +(((
287 +
288 +)))
280 280  
290 +=== 2.3.7 MOD ===
281 281  
282 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
292 +Firmware version at least v2.1 supports changing mode.
284 284  
285 -[[image:1657250217799-140.png]]
294 +For example, bytes[10]=90
286 286  
296 +mod=(bytes[10]>>7)&0x01=1.
287 287  
288 -[[image:1657250255956-604.png]]
289 289  
299 +**Downlink Command:**
290 290  
301 +If payload = 0x0A00, workmode=0
291 291  
292 -=== 2.2.8 Change Update Interval ===
303 +If** **payload =** **0x0A01, workmode=1
293 293  
294 -User can use below command to change the (% style="color:green" %)**uplink interval**.
295 295  
296 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
297 297  
298 -(((
299 -(% style="color:red" %)**NOTE:**
300 -)))
307 +=== 2.3.8 ​Decode payload in The Things Network ===
301 301  
302 -(((
303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 -)))
309 +While using TTN network, you can add the payload format to decode the payload.
305 305  
306 306  
312 +[[image:1654505570700-128.png]]
307 307  
308 -== 2.3  Uplink Payload ==
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
309 309  
310 -In this mode, uplink payload includes in total 18 bytes
311 -
312 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
313 -|=(% style="width: 60px;" %)(((
314 -**Size(bytes)**
315 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
316 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
317 -
318 318  (((
319 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
320 320  )))
321 321  
322 322  
323 -[[image:image-20220708111918-4.png]]
323 +== 2.4 Uplink Interval ==
324 324  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
325 325  
326 -The payload is ASCII string, representative same HEX:
327 327  
328 -0x72403155615900640c7817075e0a8c02f900 where:
329 329  
330 -* Device ID: 0x 724031556159 = 724031556159
331 -* Version: 0x0064=100=1.0.0
329 +== 2.5 Downlink Payload ==
332 332  
333 -* BAT: 0x0c78 = 3192 mV = 3.192V
334 -* Singal: 0x17 = 23
335 -* Soil Moisture: 0x075e= 1886 = 18.86  %
336 -* Soil Temperature:0x0a8c =2700=27 °C
337 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
338 -* Interrupt: 0x00 = 0
331 +By default, LSE50 prints the downlink payload to console port.
339 339  
340 -== 2.4  Payload Explanation and Sensor Interface ==
333 +[[image:image-20220606165544-8.png]]
341 341  
342 342  
343 -=== 2.4.1  Device ID ===
344 -
345 345  (((
346 -By default, the Device ID equal to the last 6 bytes of IMEI.
337 +(% style="color:blue" %)**Examples:**
347 347  )))
348 348  
349 349  (((
350 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
341 +
351 351  )))
352 352  
353 -(((
354 -**Example:**
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
355 355  )))
356 356  
357 357  (((
358 -AT+DEUI=A84041F15612
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
359 359  )))
360 360  
361 361  (((
362 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
353 +Payload:    01 00 00 1E    TDC=30S
363 363  )))
364 364  
365 -
366 -
367 -=== 2.4.2  Version Info ===
368 -
369 369  (((
370 -Specify the software version: 0x64=100, means firmware version 1.00.
357 +Payload:    01 00 00 3C    TDC=60S
371 371  )))
372 372  
373 373  (((
374 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
361 +
375 375  )))
376 376  
377 -
378 -
379 -=== 2.4.3  Battery Info ===
380 -
381 -(((
382 -Check the battery voltage for LSE01.
364 +* (((
365 +(% style="color:blue" %)**Reset**
383 383  )))
384 384  
385 385  (((
386 -Ex1: 0x0B45 = 2885mV
369 +If payload = 0x04FF, it will reset the LSE01
387 387  )))
388 388  
389 -(((
390 -Ex2: 0x0B49 = 2889mV
391 -)))
392 392  
373 +* (% style="color:blue" %)**CFM**
393 393  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
394 394  
395 -=== 2.4.4  Signal Strength ===
396 396  
397 -(((
398 -NB-IoT Network signal Strength.
399 -)))
400 400  
401 -(((
402 -**Ex1: 0x1d = 29**
403 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
404 404  
405 405  (((
406 -(% style="color:blue" %)**0**(%%)  -113dBm or less
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
407 407  )))
408 408  
409 409  (((
410 -(% style="color:blue" %)**1**(%%)  -111dBm
386 +
411 411  )))
412 412  
413 413  (((
414 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
390 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
415 415  )))
416 416  
417 417  (((
418 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
394 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
419 419  )))
420 420  
421 -(((
422 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
423 -)))
424 424  
398 +[[image:1654505857935-743.png]]
425 425  
426 426  
427 -=== 2.4.5  Soil Moisture ===
401 +[[image:1654505874829-548.png]]
428 428  
429 -(((
430 -(((
431 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
432 -)))
433 -)))
434 434  
435 -(((
436 -(((
437 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
438 -)))
439 -)))
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
440 440  
441 -(((
442 -
443 -)))
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
444 444  
445 -(((
446 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
447 -)))
448 448  
409 +[[image:1654505905236-553.png]]
449 449  
450 450  
451 -=== 2.4.6  Soil Temperature ===
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
452 452  
453 -(((
454 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
455 -)))
414 +[[image:1654505925508-181.png]]
456 456  
457 -(((
458 -**Example**:
459 -)))
460 460  
461 -(((
462 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
463 -)))
464 464  
465 -(((
466 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
467 -)))
418 +== 2.7 Frequency Plans ==
468 468  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
469 469  
470 470  
471 -=== 2.4.7  Soil Conductivity (EC) ===
423 +=== 2.7.1 EU863-870 (EU868) ===
472 472  
473 -(((
474 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
475 -)))
425 +(% style="color:#037691" %)** Uplink:**
476 476  
477 -(((
478 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
479 -)))
427 +868.1 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -Generally, the EC value of irrigation water is less than 800uS / cm.
483 -)))
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
484 484  
485 -(((
486 -
487 -)))
431 +868.5 - SF7BW125 to SF12BW125
488 488  
489 -(((
490 -
491 -)))
433 +867.1 - SF7BW125 to SF12BW125
492 492  
493 -=== 2.4.8  Digital Interrupt ===
435 +867.3 - SF7BW125 to SF12BW125
494 494  
495 -(((
496 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
497 -)))
437 +867.5 - SF7BW125 to SF12BW125
498 498  
499 -(((
500 -The command is:
501 -)))
439 +867.7 - SF7BW125 to SF12BW125
502 502  
503 -(((
504 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
505 -)))
441 +867.9 - SF7BW125 to SF12BW125
506 506  
443 +868.8 - FSK
507 507  
508 -(((
509 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
510 -)))
511 511  
446 +(% style="color:#037691" %)** Downlink:**
512 512  
513 -(((
514 -Example:
515 -)))
448 +Uplink channels 1-9 (RX1)
516 516  
517 -(((
518 -0x(00): Normal uplink packet.
519 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
520 520  
521 -(((
522 -0x(01): Interrupt Uplink Packet.
523 -)))
524 524  
525 525  
454 +=== 2.7.2 US902-928(US915) ===
526 526  
527 -=== 2.4.9  ​+5V Output ===
456 +Used in USA, Canada and South America. Default use CHE=2
528 528  
529 -(((
530 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
531 -)))
458 +(% style="color:#037691" %)**Uplink:**
532 532  
460 +903.9 - SF7BW125 to SF10BW125
533 533  
534 -(((
535 -The 5V output time can be controlled by AT Command.
536 -)))
462 +904.1 - SF7BW125 to SF10BW125
537 537  
538 -(((
539 -(% style="color:blue" %)**AT+5VT=1000**
540 -)))
464 +904.3 - SF7BW125 to SF10BW125
541 541  
542 -(((
543 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
544 -)))
466 +904.5 - SF7BW125 to SF10BW125
545 545  
468 +904.7 - SF7BW125 to SF10BW125
546 546  
470 +904.9 - SF7BW125 to SF10BW125
547 547  
548 -== 2.5  Downlink Payload ==
472 +905.1 - SF7BW125 to SF10BW125
549 549  
550 -By default, NSE01 prints the downlink payload to console port.
474 +905.3 - SF7BW125 to SF10BW125
551 551  
552 -[[image:image-20220708133731-5.png]]
553 553  
477 +(% style="color:#037691" %)**Downlink:**
554 554  
555 -(((
556 -(% style="color:blue" %)**Examples:**
557 -)))
479 +923.3 - SF7BW500 to SF12BW500
558 558  
559 -(((
560 -
561 -)))
481 +923.9 - SF7BW500 to SF12BW500
562 562  
563 -* (((
564 -(% style="color:blue" %)**Set TDC**
565 -)))
483 +924.5 - SF7BW500 to SF12BW500
566 566  
567 -(((
568 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
569 -)))
485 +925.1 - SF7BW500 to SF12BW500
570 570  
571 -(((
572 -Payload:    01 00 00 1E    TDC=30S
573 -)))
487 +925.7 - SF7BW500 to SF12BW500
574 574  
575 -(((
576 -Payload:    01 00 00 3C    TDC=60S
577 -)))
489 +926.3 - SF7BW500 to SF12BW500
578 578  
579 -(((
580 -
581 -)))
491 +926.9 - SF7BW500 to SF12BW500
582 582  
583 -* (((
584 -(% style="color:blue" %)**Reset**
585 -)))
493 +927.5 - SF7BW500 to SF12BW500
586 586  
587 -(((
588 -If payload = 0x04FF, it will reset the NSE01
589 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
590 590  
591 591  
592 -* (% style="color:blue" %)**INTMOD**
593 593  
594 -(((
595 -Downlink Payload: 06000003, Set AT+INTMOD=3
596 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
597 597  
501 +Used in China, Default use CHE=1
598 598  
503 +(% style="color:#037691" %)**Uplink:**
599 599  
600 -== 2.6  ​LED Indicator ==
505 +486.3 - SF7BW125 to SF12BW125
601 601  
602 -(((
603 -The NSE01 has an internal LED which is to show the status of different state.
507 +486.5 - SF7BW125 to SF12BW125
604 604  
509 +486.7 - SF7BW125 to SF12BW125
605 605  
606 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
607 -* Then the LED will be on for 1 second means device is boot normally.
608 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
609 -* For each uplink probe, LED will be on for 500ms.
610 -)))
511 +486.9 - SF7BW125 to SF12BW125
611 611  
513 +487.1 - SF7BW125 to SF12BW125
612 612  
515 +487.3 - SF7BW125 to SF12BW125
613 613  
517 +487.5 - SF7BW125 to SF12BW125
614 614  
615 -== 2.7  Installation in Soil ==
519 +487.7 - SF7BW125 to SF12BW125
616 616  
617 -__**Measurement the soil surface**__
618 618  
619 -(((
620 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
621 -)))
522 +(% style="color:#037691" %)**Downlink:**
622 622  
623 -[[image:1657259653666-883.png]]
524 +506.7 - SF7BW125 to SF12BW125
624 624  
526 +506.9 - SF7BW125 to SF12BW125
625 625  
626 -(((
627 -
528 +507.1 - SF7BW125 to SF12BW125
628 628  
629 -(((
630 -Dig a hole with diameter > 20CM.
631 -)))
530 +507.3 - SF7BW125 to SF12BW125
632 632  
633 -(((
634 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
635 -)))
636 -)))
532 +507.5 - SF7BW125 to SF12BW125
637 637  
638 -[[image:1654506665940-119.png]]
534 +507.7 - SF7BW125 to SF12BW125
639 639  
640 -(((
641 -
642 -)))
536 +507.9 - SF7BW125 to SF12BW125
643 643  
538 +508.1 - SF7BW125 to SF12BW125
644 644  
645 -== 2. Firmware Change Log ==
540 +505.3 - SF12BW125 (RX2 downlink only)
646 646  
647 647  
648 -Download URL & Firmware Change log
649 649  
650 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
544 +=== 2.7.4 AU915-928(AU915) ===
651 651  
546 +Default use CHE=2
652 652  
653 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
548 +(% style="color:#037691" %)**Uplink:**
654 654  
550 +916.8 - SF7BW125 to SF12BW125
655 655  
552 +917.0 - SF7BW125 to SF12BW125
656 656  
657 -== 2.9  Battery Analysis ==
554 +917.2 - SF7BW125 to SF12BW125
658 658  
659 -=== 2.9.1  Battery Type ===
556 +917.4 - SF7BW125 to SF12BW125
660 660  
558 +917.6 - SF7BW125 to SF12BW125
661 661  
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
662 662  (((
663 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
664 664  )))
715 +)))
665 665  
666 666  
718 +
719 +[[image:1654506665940-119.png]]
720 +
667 667  (((
668 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
669 669  )))
670 670  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
671 671  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
672 672  (((
673 -The battery related documents as below:
733 +**Firmware download link:**
674 674  )))
675 675  
676 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
677 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
679 679  
680 680  (((
681 -[[image:image-20220708140453-6.png]]
741 +
682 682  )))
683 683  
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
684 684  
748 +(((
749 +
750 +)))
685 685  
686 -=== 2.9.2  Power consumption Analyze ===
752 +(((
753 +**V1.0.**
754 +)))
687 687  
688 688  (((
689 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
690 690  )))
691 691  
692 692  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
693 693  (((
694 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 695  )))
696 696  
697 697  (((
698 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
699 699  )))
700 700  
701 -
702 702  (((
703 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
704 704  )))
777 +)))
705 705  
706 706  * (((
707 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
708 708  )))
709 709  * (((
710 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
711 711  )))
712 712  * (((
713 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
714 714  )))
715 715  
716 -(((
717 -And the Life expectation in difference case will be shown on the right.
718 -)))
789 + [[image:image-20220610172436-1.png]]
719 719  
720 -[[image:image-20220708141352-7.jpeg]]
721 721  
722 722  
793 +=== 2.11.2 ​Battery Note ===
723 723  
724 -=== 2.9.3  ​Battery Note ===
725 -
726 726  (((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
... ... @@ -729,176 +729,302 @@
729 729  
730 730  
731 731  
732 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
733 733  
734 734  (((
735 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 736  )))
737 737  
738 -
739 -
740 -= 3. ​ Access NB-IoT Module =
741 -
742 742  (((
743 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
744 744  )))
745 745  
746 746  (((
747 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
748 748  )))
749 749  
750 -[[image:1657261278785-153.png]]
751 751  
752 752  
817 += 3. ​Using the AT Commands =
753 753  
754 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
755 755  
756 -== 4.1  Access AT Commands ==
757 757  
758 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
759 759  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
760 760  
761 -AT+<CMD>?  : Help on <CMD>
762 762  
763 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
764 764  
765 -AT+<CMD>=<value> : Set the value
766 766  
767 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
768 768  
769 769  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
770 770  (% style="color:#037691" %)**General Commands**(%%)      
771 771  
772 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
773 773  
774 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
775 775  
776 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
777 777  
778 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
779 779  
780 -AT+CFG  : Print all configurations
781 781  
782 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
783 783  
784 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
785 785  
786 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
787 787  
788 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
789 789  
790 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
791 791  
792 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
793 793  
794 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
795 795  
796 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
797 797  
798 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
799 799  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
800 800  
801 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
802 802  
803 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
804 804  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
805 805  
806 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
807 807  
808 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
809 809  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
810 810  
811 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
812 812  
813 -AT+CLIENT               : Get or Set MQTT client
814 814  
815 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
816 816  
817 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
818 818  
819 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
820 820  
821 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
822 822  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
823 823  
824 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
825 825  
826 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
827 827  
828 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
829 829  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
830 830  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
831 831  
832 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
833 833  
834 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
835 835  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
836 836  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
837 837  (((
838 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
839 839  )))
840 840  
841 841  (((
842 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
843 843  )))
844 844  
845 845  (((
846 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
847 847  )))
848 848  
965 +(((
966 +
967 +)))
849 849  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
850 850  
851 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
852 852  
853 853  (((
854 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
855 855  )))
856 856  
981 +[[image:image-20220606154726-3.png]]
857 857  
858 -= 6.  Trouble Shooting =
859 859  
860 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
861 861  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
862 862  
863 863  (((
864 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
865 865  )))
866 866  
867 -(% class="wikigeneratedid" %)
868 868  (((
869 869  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
870 870  )))
871 871  
1009 +(((
1010 +
1011 +)))
872 872  
873 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
874 874  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
875 875  (((
876 876  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
877 877  
878 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
879 879  )))
880 880  
881 881  
882 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
883 883  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
884 884  
885 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
886 886  
887 887  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
888 888  (% class="wikigeneratedid" %)
889 889  (((
890 890  
891 891  )))
892 892  
893 -= 8.  Packing Info =
1087 += 7. Packing Info =
894 894  
895 895  (((
896 896  
897 897  
898 898  (% style="color:#037691" %)**Package Includes**:
1093 +)))
899 899  
900 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
901 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
902 902  )))
903 903  
904 904  (((
... ... @@ -905,19 +905,24 @@
905 905  
906 906  
907 907  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
908 908  
909 -* Size: 195 x 125 x 55 mm
910 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
911 911  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
912 912  
913 -(((
914 914  
915 -
916 -
917 -
918 918  )))
919 919  
920 -= 9.  Support =
1120 += 8. Support =
921 921  
922 922  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
923 923  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
1657328609906-564.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content