Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 30 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,12 +1,19 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 + 9 + 10 + 11 + 12 + 13 + 8 8 **Table of Contents:** 9 9 16 +{{toc/}} 10 10 11 11 12 12 ... ... @@ -13,716 +13,767 @@ 13 13 14 14 15 15 16 -= 1. 23 += 1. Introduction = 17 17 18 -== 1.1 DDS75DistanceDetectionSensor ==25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 32 + 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 30 30 ))) 31 31 32 - 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 ))) 34 34 35 -[[image:1654503236291-817.png]] 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 36 36 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 +))) 37 37 38 -[[image:1657327959271-447.png]] 39 39 50 +[[image:1654503236291-817.png]] 40 40 41 41 42 - == 1.2 Features ==53 +[[image:1654503265560-120.png]] 43 43 44 44 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 56 + 57 +== 1.2 Features == 58 + 59 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm61 +* Monitor Soil Moisture 62 +* Monitor Soil Temperature 63 +* Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 57 57 71 +== 1.3 Specification == 58 58 73 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==75 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 79 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**81 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 83 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 84 + 76 76 86 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 89 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 93 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 95 +== 2.1 How it works == 92 92 97 +((( 98 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 99 +))) 93 93 101 +((( 102 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 103 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 107 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 109 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==112 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657246476176-652.png]]115 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 118 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 115 115 116 - =2. Use NSE01tocommunicate withIoTServer=120 +Each LSE01 is shipped with a sticker with the default device EUI as below: 117 117 118 - ==2.1How it works ==122 +[[image:image-20220606163732-6.jpeg]] 119 119 124 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 126 +**Add APP EUI in the application** 127 + 128 + 129 +[[image:1654504596150-405.png]] 130 + 131 + 132 + 133 +**Add APP KEY and DEV EUI** 134 + 135 +[[image:1654504683289-357.png]] 136 + 137 + 138 + 139 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 140 + 141 + 142 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 143 + 144 +[[image:image-20220606163915-7.png]] 145 + 146 + 147 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 148 + 149 +[[image:1654504778294-788.png]] 150 + 151 + 152 + 153 +== 2.3 Uplink Payload == 154 + 155 + 156 +=== 2.3.1 MOD~=0(Default Mode) === 157 + 158 +LSE01 will uplink payload via LoRaWAN with below payload format: 159 + 121 121 ((( 122 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.161 +Uplink payload includes in total 11 bytes. 123 123 ))) 124 124 164 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 165 +|((( 166 +**Size** 125 125 168 +**(bytes)** 169 +)))|**2**|**2**|**2**|**2**|**2**|**1** 170 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 171 +Temperature 172 + 173 +(Reserve, Ignore now) 174 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 175 +MOD & Digital Interrupt 176 + 177 +(Optional) 178 +))) 179 + 180 +=== 2.3.2 MOD~=1(Original value) === 181 + 182 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 183 + 184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 185 +|((( 186 +**Size** 187 + 188 +**(bytes)** 189 +)))|**2**|**2**|**2**|**2**|**2**|**1** 190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 191 +Temperature 192 + 193 +(Reserve, Ignore now) 194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 195 +MOD & Digital Interrupt 196 + 197 +(Optional) 198 +))) 199 + 200 +=== 2.3.3 Battery Info === 201 + 126 126 ((( 127 - Thediagram below showstheworkingflow in defaultfirmwareofNSE01:203 +Check the battery voltage for LSE01. 128 128 ))) 129 129 130 -[[image:image-20220708101605-2.png]] 206 +((( 207 +Ex1: 0x0B45 = 2885mV 208 +))) 131 131 132 132 ((( 211 +Ex2: 0x0B49 = 2889mV 212 +))) 213 + 214 + 215 + 216 +=== 2.3.4 Soil Moisture === 217 + 218 +((( 219 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 220 +))) 221 + 222 +((( 223 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 224 +))) 225 + 226 +((( 133 133 134 134 ))) 135 135 230 +((( 231 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 232 +))) 136 136 137 137 138 -== 2.2 Configure the NSE01 == 139 139 236 +=== 2.3.5 Soil Temperature === 140 140 141 -=== 2.2.1 Test Requirement === 238 +((( 239 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 240 +))) 142 142 242 +((( 243 +**Example**: 244 +))) 143 143 144 144 ((( 145 - TouseNSE01inyourcity,makesureeetbelowrequirements:247 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 146 146 ))) 147 147 148 - * Your local operator has already distributed a NB-IoT Network there.149 - *ThelocalNB-IoTnetworkusedthebandthatNSE01supports.150 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.250 +((( 251 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 252 +))) 151 151 254 + 255 + 256 +=== 2.3.6 Soil Conductivity (EC) === 257 + 152 152 ((( 153 - Below figureshows our testingstructure.Here we have NB-IoTnetwork coverage by ChinaMobile, the bandthey useis B8. The NSE01 willuse CoAP((% style="color:red" %)120.24.4.116:5683)(%%)orrawUDP((%style="color:red" %)120.24.4.116:5601)(%%) orMQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((%style="color:red"%)120.24.4.116:5600)(%%)protocoltosenddatato thetest server259 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 154 154 ))) 155 155 262 +((( 263 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 264 +))) 156 156 157 -[[image:1657249419225-449.png]] 266 +((( 267 +Generally, the EC value of irrigation water is less than 800uS / cm. 268 +))) 158 158 270 +((( 271 + 272 +))) 159 159 274 +((( 275 + 276 +))) 160 160 161 -=== 2. 2.2Insert SIMcard===278 +=== 2.3.7 MOD === 162 162 280 +Firmware version at least v2.1 supports changing mode. 281 + 282 +For example, bytes[10]=90 283 + 284 +mod=(bytes[10]>>7)&0x01=1. 285 + 286 + 287 +**Downlink Command:** 288 + 289 +If payload = 0x0A00, workmode=0 290 + 291 +If** **payload =** **0x0A01, workmode=1 292 + 293 + 294 + 295 +=== 2.3.8 Decode payload in The Things Network === 296 + 297 +While using TTN network, you can add the payload format to decode the payload. 298 + 299 + 300 +[[image:1654505570700-128.png]] 301 + 163 163 ((( 164 - Insert theNB-IoT Cardgetfromyourprovider.303 +The payload decoder function for TTN is here: 165 165 ))) 166 166 167 167 ((( 168 - Userneedtotakeout theNB-IoT moduleandinsertthe SIM cardkebelow:307 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 169 169 ))) 170 170 171 171 172 - [[image:1657249468462-536.png]]311 +== 2.4 Uplink Interval == 173 173 313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 174 174 175 175 176 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 177 177 317 +== 2.5 Downlink Payload == 318 + 319 +By default, LSE50 prints the downlink payload to console port. 320 + 321 +[[image:image-20220606165544-8.png]] 322 + 323 + 178 178 ((( 325 +(% style="color:blue" %)**Examples:** 326 +))) 327 + 179 179 ((( 180 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.329 + 181 181 ))) 331 + 332 +* ((( 333 +(% style="color:blue" %)**Set TDC** 182 182 ))) 183 183 336 +((( 337 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 338 +))) 184 184 185 -**Connection:** 340 +((( 341 +Payload: 01 00 00 1E TDC=30S 342 +))) 186 186 187 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 344 +((( 345 +Payload: 01 00 00 3C TDC=60S 346 +))) 188 188 189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 348 +((( 349 + 350 +))) 190 190 191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 352 +* ((( 353 +(% style="color:blue" %)**Reset** 354 +))) 192 192 356 +((( 357 +If payload = 0x04FF, it will reset the LSE01 358 +))) 193 193 194 -In the PC, use below serial tool settings: 195 195 196 -* Baud: (% style="color:green" %)**9600** 197 -* Data bits:** (% style="color:green" %)8(%%)** 198 -* Stop bits: (% style="color:green" %)**1** 199 -* Parity: (% style="color:green" %)**None** 200 -* Flow Control: (% style="color:green" %)**None** 361 +* (% style="color:blue" %)**CFM** 201 201 363 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 + 365 + 366 + 367 +== 2.6 Show Data in DataCake IoT Server == 368 + 202 202 ((( 203 - Make sure the switch is in FLASHposition,thenpowern devicebyconnectingthejumper onNSE01. NSE01willoutputsystem info oncepoweronasbelow, we can enterthe (%style="color:green"%)**password:12345678**(%%)toaccessATmmandinput.370 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 204 204 ))) 205 205 206 -[[image:image-20220708110657-3.png]] 373 +((( 374 + 375 +))) 207 207 208 208 ((( 209 -(% style="color: red" %)Note: thevalidATCommandscanbe foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]378 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 210 210 ))) 211 211 381 +((( 382 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 383 +))) 212 212 213 213 214 - === 2.2.4 UseCoAPprotocol to uplink data ===386 +[[image:1654505857935-743.png]] 215 215 216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 217 217 389 +[[image:1654505874829-548.png]] 218 218 219 -**Use below commands:** 220 220 221 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 392 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 224 224 225 - Forparameterdescription,pleaserefertoATcommandset394 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 226 226 227 -[[image:1657249793983-486.png]] 228 228 397 +[[image:1654505905236-553.png]] 229 229 230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 231 231 232 - [[image:1657249831934-534.png]]400 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 233 233 402 +[[image:1654505925508-181.png]] 234 234 235 235 236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 237 237 238 - Thisfeatureis supported sincefirmware versionv1.0.1406 +== 2.7 Frequency Plans == 239 239 408 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 240 240 241 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 244 244 245 - [[image:1657249864775-321.png]]411 +=== 2.7.1 EU863-870 (EU868) === 246 246 413 +(% style="color:#037691" %)** Uplink:** 247 247 248 - [[image:1657249930215-289.png]]415 +868.1 - SF7BW125 to SF12BW125 249 249 417 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 250 250 419 +868.5 - SF7BW125 to SF12BW125 251 251 252 - === 2.2.6UseMQTT protocolto uplink data ===421 +867.1 - SF7BW125 to SF12BW125 253 253 254 - Thisfeatureissupported since firmware versionv110423 +867.3 - SF7BW125 to SF12BW125 255 255 425 +867.5 - SF7BW125 to SF12BW125 256 256 257 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 427 +867.7 - SF7BW125 to SF12BW125 264 264 265 - [[image:1657249978444-674.png]]429 +867.9 - SF7BW125 to SF12BW125 266 266 431 +868.8 - FSK 267 267 268 -[[image:1657249990869-686.png]] 269 269 434 +(% style="color:#037691" %)** Downlink:** 270 270 271 -((( 272 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 -))) 436 +Uplink channels 1-9 (RX1) 274 274 438 +869.525 - SF9BW125 (RX2 downlink only) 275 275 276 276 277 -=== 2.2.7 Use TCP protocol to uplink data === 278 278 279 - Thisfeatureis supported since firmware version v110442 +=== 2.7.2 US902-928(US915) === 280 280 444 +Used in USA, Canada and South America. Default use CHE=2 281 281 282 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 446 +(% style="color:#037691" %)**Uplink:** 284 284 285 - [[image:1657250217799-140.png]]448 +903.9 - SF7BW125 to SF10BW125 286 286 450 +904.1 - SF7BW125 to SF10BW125 287 287 288 - [[image:1657250255956-604.png]]452 +904.3 - SF7BW125 to SF10BW125 289 289 454 +904.5 - SF7BW125 to SF10BW125 290 290 456 +904.7 - SF7BW125 to SF10BW125 291 291 292 - === 2.2.8ChangeUpdateInterval ===458 +904.9 - SF7BW125 to SF10BW125 293 293 294 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.460 +905.1 - SF7BW125 to SF10BW125 295 295 296 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/SetUpdate Interval to600s462 +905.3 - SF7BW125 to SF10BW125 297 297 298 -((( 299 -(% style="color:red" %)**NOTE:** 300 -))) 301 301 302 -((( 303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 -))) 465 +(% style="color:#037691" %)**Downlink:** 305 305 467 +923.3 - SF7BW500 to SF12BW500 306 306 469 +923.9 - SF7BW500 to SF12BW500 307 307 308 - ==2.3UplinkPayload==471 +924.5 - SF7BW500 to SF12BW500 309 309 310 - Inthismode,uplink payload includes intotal18 bytes473 +925.1 - SF7BW500 to SF12BW500 311 311 312 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 -|=(% style="width: 60px;" %)((( 314 -**Size(bytes)** 315 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 475 +925.7 - SF7BW500 to SF12BW500 317 317 318 -((( 319 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 -))) 477 +926.3 - SF7BW500 to SF12BW500 321 321 479 +926.9 - SF7BW500 to SF12BW500 322 322 323 - [[image:image-20220708111918-4.png]]481 +927.5 - SF7BW500 to SF12BW500 324 324 483 +923.3 - SF12BW500(RX2 downlink only) 325 325 326 -The payload is ASCII string, representative same HEX: 327 327 328 -0x72403155615900640c7817075e0a8c02f900 where: 329 329 330 -* Device ID: 0x 724031556159 = 724031556159 331 -* Version: 0x0064=100=1.0.0 487 +=== 2.7.3 CN470-510 (CN470) === 332 332 333 -* BAT: 0x0c78 = 3192 mV = 3.192V 334 -* Singal: 0x17 = 23 335 -* Soil Moisture: 0x075e= 1886 = 18.86 % 336 -* Soil Temperature:0x0a8c =2700=27 °C 337 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 -* Interrupt: 0x00 = 0 489 +Used in China, Default use CHE=1 339 339 340 - ==2.4 PayloadExplanationand Sensor Interface ==491 +(% style="color:#037691" %)**Uplink:** 341 341 493 +486.3 - SF7BW125 to SF12BW125 342 342 343 - === 2.4.1DeviceID===495 +486.5 - SF7BW125 to SF12BW125 344 344 345 -((( 346 -By default, the Device ID equal to the last 6 bytes of IMEI. 347 -))) 497 +486.7 - SF7BW125 to SF12BW125 348 348 349 -((( 350 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 -))) 499 +486.9 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -**Example:** 355 -))) 501 +487.1 - SF7BW125 to SF12BW125 356 356 357 -((( 358 -AT+DEUI=A84041F15612 359 -))) 503 +487.3 - SF7BW125 to SF12BW125 360 360 361 -((( 362 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 -))) 505 +487.5 - SF7BW125 to SF12BW125 364 364 507 +487.7 - SF7BW125 to SF12BW125 365 365 366 366 367 - ===2.4.2 VersionInfo ===510 +(% style="color:#037691" %)**Downlink:** 368 368 369 -((( 370 -Specify the software version: 0x64=100, means firmware version 1.00. 371 -))) 512 +506.7 - SF7BW125 to SF12BW125 372 372 373 -((( 374 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 -))) 514 +506.9 - SF7BW125 to SF12BW125 376 376 516 +507.1 - SF7BW125 to SF12BW125 377 377 518 +507.3 - SF7BW125 to SF12BW125 378 378 379 - === 2.4.3BatteryInfo===520 +507.5 - SF7BW125 to SF12BW125 380 380 381 -((( 382 -Check the battery voltage for LSE01. 383 -))) 522 +507.7 - SF7BW125 to SF12BW125 384 384 385 -((( 386 -Ex1: 0x0B45 = 2885mV 387 -))) 524 +507.9 - SF7BW125 to SF12BW125 388 388 389 -((( 390 -Ex2: 0x0B49 = 2889mV 391 -))) 526 +508.1 - SF7BW125 to SF12BW125 392 392 528 +505.3 - SF12BW125 (RX2 downlink only) 393 393 394 394 395 -=== 2.4.4 Signal Strength === 396 396 397 -((( 398 -NB-IoT Network signal Strength. 399 -))) 532 +=== 2.7.4 AU915-928(AU915) === 400 400 401 -((( 402 -**Ex1: 0x1d = 29** 403 -))) 534 +Default use CHE=2 404 404 405 -((( 406 -(% style="color:blue" %)**0**(%%) -113dBm or less 407 -))) 536 +(% style="color:#037691" %)**Uplink:** 408 408 409 -((( 410 -(% style="color:blue" %)**1**(%%) -111dBm 411 -))) 538 +916.8 - SF7BW125 to SF12BW125 412 412 413 -((( 414 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 -))) 540 +917.0 - SF7BW125 to SF12BW125 416 416 417 -((( 418 -(% style="color:blue" %)**31** (%%) -51dBm or greater 419 -))) 542 +917.2 - SF7BW125 to SF12BW125 420 420 421 -((( 422 -(% style="color:blue" %)**99** (%%) Not known or not detectable 423 -))) 544 +917.4 - SF7BW125 to SF12BW125 424 424 546 +917.6 - SF7BW125 to SF12BW125 425 425 548 +917.8 - SF7BW125 to SF12BW125 426 426 427 - ===2.4.5SoilMoisture ===550 +918.0 - SF7BW125 to SF12BW125 428 428 429 -((( 430 -((( 431 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 -))) 433 -))) 552 +918.2 - SF7BW125 to SF12BW125 434 434 435 -((( 436 -((( 437 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 -))) 439 -))) 440 440 441 -((( 442 - 443 -))) 555 +(% style="color:#037691" %)**Downlink:** 444 444 445 -((( 446 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 -))) 557 +923.3 - SF7BW500 to SF12BW500 448 448 559 +923.9 - SF7BW500 to SF12BW500 449 449 561 +924.5 - SF7BW500 to SF12BW500 450 450 451 - ===2.4.6SoilTemperature===563 +925.1 - SF7BW500 to SF12BW500 452 452 453 -((( 454 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 -))) 565 +925.7 - SF7BW500 to SF12BW500 456 456 457 -((( 458 -**Example**: 459 -))) 567 +926.3 - SF7BW500 to SF12BW500 460 460 461 -((( 462 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 -))) 569 +926.9 - SF7BW500 to SF12BW500 464 464 465 -((( 466 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 -))) 571 +927.5 - SF7BW500 to SF12BW500 468 468 573 +923.3 - SF12BW500(RX2 downlink only) 469 469 470 470 471 -=== 2.4.7 Soil Conductivity (EC) === 472 472 473 -((( 474 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 -))) 577 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 476 476 477 -((( 478 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 -))) 579 +(% style="color:#037691" %)**Default Uplink channel:** 480 480 481 -((( 482 -Generally, the EC value of irrigation water is less than 800uS / cm. 483 -))) 581 +923.2 - SF7BW125 to SF10BW125 484 484 485 -((( 486 - 487 -))) 583 +923.4 - SF7BW125 to SF10BW125 488 488 489 -((( 490 - 491 -))) 492 492 493 -= ==2.4.8 DigitalInterrupt===586 +(% style="color:#037691" %)**Additional Uplink Channel**: 494 494 495 -((( 496 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 -))) 588 +(OTAA mode, channel added by JoinAccept message) 498 498 499 -((( 500 -The command is: 501 -))) 590 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 502 502 503 -((( 504 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 -))) 592 +922.2 - SF7BW125 to SF10BW125 506 506 594 +922.4 - SF7BW125 to SF10BW125 507 507 508 -((( 509 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 -))) 596 +922.6 - SF7BW125 to SF10BW125 511 511 598 +922.8 - SF7BW125 to SF10BW125 512 512 513 -((( 514 -Example: 515 -))) 600 +923.0 - SF7BW125 to SF10BW125 516 516 517 -((( 518 -0x(00): Normal uplink packet. 519 -))) 602 +922.0 - SF7BW125 to SF10BW125 520 520 521 -((( 522 -0x(01): Interrupt Uplink Packet. 523 -))) 524 524 605 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 525 525 607 +923.6 - SF7BW125 to SF10BW125 526 526 527 - ===2.4.9+5VOutput===609 +923.8 - SF7BW125 to SF10BW125 528 528 529 -((( 530 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 -))) 611 +924.0 - SF7BW125 to SF10BW125 532 532 613 +924.2 - SF7BW125 to SF10BW125 533 533 534 -((( 535 -The 5V output time can be controlled by AT Command. 536 -))) 615 +924.4 - SF7BW125 to SF10BW125 537 537 538 -((( 539 -(% style="color:blue" %)**AT+5VT=1000** 540 -))) 617 +924.6 - SF7BW125 to SF10BW125 541 541 542 -((( 543 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 -))) 545 545 620 +(% style="color:#037691" %)** Downlink:** 546 546 622 +Uplink channels 1-8 (RX1) 547 547 548 - ==2.5DownlinkPayload==624 +923.2 - SF10BW125 (RX2) 549 549 550 -By default, NSE01 prints the downlink payload to console port. 551 551 552 -[[image:image-20220708133731-5.png]] 553 553 628 +=== 2.7.6 KR920-923 (KR920) === 554 554 555 -((( 556 -(% style="color:blue" %)**Examples:** 557 -))) 630 +Default channel: 558 558 559 -((( 560 - 561 -))) 632 +922.1 - SF7BW125 to SF12BW125 562 562 563 -* ((( 564 -(% style="color:blue" %)**Set TDC** 565 -))) 634 +922.3 - SF7BW125 to SF12BW125 566 566 567 -((( 568 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 -))) 636 +922.5 - SF7BW125 to SF12BW125 570 570 571 -((( 572 -Payload: 01 00 00 1E TDC=30S 573 -))) 574 574 575 -((( 576 -Payload: 01 00 00 3C TDC=60S 577 -))) 639 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 578 578 579 -((( 580 - 581 -))) 641 +922.1 - SF7BW125 to SF12BW125 582 582 583 -* ((( 584 -(% style="color:blue" %)**Reset** 585 -))) 643 +922.3 - SF7BW125 to SF12BW125 586 586 587 -((( 588 -If payload = 0x04FF, it will reset the NSE01 589 -))) 645 +922.5 - SF7BW125 to SF12BW125 590 590 647 +922.7 - SF7BW125 to SF12BW125 591 591 592 - *(%style="color:blue"%)**INTMOD**649 +922.9 - SF7BW125 to SF12BW125 593 593 594 -((( 595 -Downlink Payload: 06000003, Set AT+INTMOD=3 596 -))) 651 +923.1 - SF7BW125 to SF12BW125 597 597 653 +923.3 - SF7BW125 to SF12BW125 598 598 599 599 600 - ==2.6LEDIndicator ==656 +(% style="color:#037691" %)**Downlink:** 601 601 602 -((( 603 -The NSE01 has an internal LED which is to show the status of different state. 658 +Uplink channels 1-7(RX1) 604 604 660 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 605 605 606 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 -* Then the LED will be on for 1 second means device is boot normally. 608 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 -* For each uplink probe, LED will be on for 500ms. 610 -))) 611 611 612 612 664 +=== 2.7.7 IN865-867 (IN865) === 613 613 666 +(% style="color:#037691" %)** Uplink:** 614 614 615 - == 2.7InstallationinSoil ==668 +865.0625 - SF7BW125 to SF12BW125 616 616 617 - __**Measurementthesoilsurface**__670 +865.4025 - SF7BW125 to SF12BW125 618 618 619 -((( 620 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 -))) 672 +865.9850 - SF7BW125 to SF12BW125 622 622 623 -[[image:1657259653666-883.png]] 624 624 675 +(% style="color:#037691" %) **Downlink:** 625 625 626 -((( 627 - 677 +Uplink channels 1-3 (RX1) 628 628 629 -((( 630 -Dig a hole with diameter > 20CM. 631 -))) 679 +866.550 - SF10BW125 (RX2) 632 632 633 -((( 634 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 -))) 636 -))) 637 637 638 -[[image:1654506665940-119.png]] 639 639 640 -((( 641 - 642 -))) 643 643 684 +== 2.8 LED Indicator == 644 644 645 - ==2.8FirmwareChangeLog ==686 +The LSE01 has an internal LED which is to show the status of different state. 646 646 688 +* Blink once when device power on. 689 +* Solid ON for 5 seconds once device successful Join the network. 690 +* Blink once when device transmit a packet. 647 647 648 -Download URL & Firmware Change log 649 649 650 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]693 +== 2.9 Installation in Soil == 651 651 695 +**Measurement the soil surface** 652 652 653 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 654 654 698 +[[image:1654506634463-199.png]] 655 655 700 +((( 701 +((( 702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 703 +))) 704 +))) 656 656 657 -== 2.9 Battery Analysis == 658 658 659 -=== 2.9.1 Battery Type === 660 660 708 +[[image:1654506665940-119.png]] 661 661 662 662 ((( 663 - The NSE01 batteryisacombination of an 8500mAhLi/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeablebattery typewitha lowdischarge rate (<2% per year). This type of battery is commonly used in IoT devices such as watermeter.711 +Dig a hole with diameter > 20CM. 664 664 ))) 665 665 666 - 667 667 ((( 668 - The batteryis designedto lastforseveralyearsdependsonthe actuallyuse environment andupdateinterval.715 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 669 669 ))) 670 670 671 671 719 +== 2.10 Firmware Change Log == 720 + 672 672 ((( 673 - The battery relateddocumentsasbelow:722 +**Firmware download link:** 674 674 ))) 675 675 676 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]677 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]725 +((( 726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 727 +))) 679 679 680 680 ((( 681 - [[image:image-20220708140453-6.png]]730 + 682 682 ))) 683 683 733 +((( 734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 735 +))) 684 684 737 +((( 738 + 739 +))) 685 685 686 -=== 2.9.2 Power consumption Analyze === 741 +((( 742 +**V1.0.** 743 +))) 687 687 688 688 ((( 689 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.746 +Release 690 690 ))) 691 691 692 692 750 +== 2.11 Battery Analysis == 751 + 752 +=== 2.11.1 Battery Type === 753 + 693 693 ((( 694 - Instruction touse as below:755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 695 695 ))) 696 696 697 697 ((( 698 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]759 +The battery is designed to last for more than 5 years for the LSN50. 699 699 ))) 700 700 701 - 702 702 ((( 703 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 763 +((( 764 +The battery-related documents are as below: 704 704 ))) 766 +))) 705 705 706 706 * ((( 707 - Product Model769 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 708 708 ))) 709 709 * ((( 710 - UplinkInterval772 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 711 711 ))) 712 712 * ((( 713 - WorkingMode775 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 714 714 ))) 715 715 716 -((( 717 -And the Life expectation in difference case will be shown on the right. 718 -))) 778 + [[image:image-20220610172436-1.png]] 719 719 720 -[[image:image-20220708141352-7.jpeg]] 721 721 722 722 782 +=== 2.11.2 Battery Note === 723 723 724 -=== 2.9.3 Battery Note === 725 - 726 726 ((( 727 727 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) ... ... @@ -729,176 +729,302 @@ 729 729 730 730 731 731 732 -=== 2. 9.4Replace the battery ===790 +=== 2.11.3 Replace the battery === 733 733 734 734 ((( 735 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).793 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 736 736 ))) 737 737 738 - 739 - 740 -= 3. Access NB-IoT Module = 741 - 742 742 ((( 743 - Userscan directly accesstheATcommand set of theNB-IoTmodule.797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 744 744 ))) 745 745 746 746 ((( 747 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 748 748 ))) 749 749 750 -[[image:1657261278785-153.png]] 751 751 752 752 806 += 3. Using the AT Commands = 753 753 754 -= 4.UsingtheAT Commands =808 +== 3.1 Access AT Commands == 755 755 756 -== 4.1 Access AT Commands == 757 757 758 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 759 759 813 +[[image:1654501986557-872.png||height="391" width="800"]] 760 760 761 -AT+<CMD>? : Help on <CMD> 762 762 763 - AT+<CMD>: Run<CMD>816 +Or if you have below board, use below connection: 764 764 765 -AT+<CMD>=<value> : Set the value 766 766 767 - AT+<CMD>=?:Get the value819 +[[image:1654502005655-729.png||height="503" width="801"]] 768 768 769 769 822 + 823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 824 + 825 + 826 + [[image:1654502050864-459.png||height="564" width="806"]] 827 + 828 + 829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 830 + 831 + 832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 833 + 834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 835 + 836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 837 + 838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 839 + 840 + 770 770 (% style="color:#037691" %)**General Commands**(%%) 771 771 772 -AT 843 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 773 773 774 -AT? 845 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 775 775 776 -ATZ 847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 777 777 778 -AT+TDC 849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 779 779 780 -AT+CFG : Print all configurations 781 781 782 - AT+CFGMOD: Workingmode selection852 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 783 783 784 -AT+I NTMOD:Setthe trigger interruptmode854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 785 785 786 -AT+ 5VTSetextend the timeof5V power856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 787 787 788 -AT+P ROChooseagreement858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 789 789 790 -AT+ WEIGREGet weightorsetweight to 0860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 791 791 792 -AT+ WEIGAPGet or SettheGapValue of weight862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 793 793 794 -AT+ RXDL: Extendthe sendingandreceivingtime864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 795 795 796 -AT+ CNTFACGettcountingparameters866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 797 797 798 -AT+ SERVADDR:ServerAddress868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 799 799 870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 800 800 801 -(% style="color:# 037691" %)**COAPManagement**872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 802 802 803 -AT+ URIsourceparameters874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 804 804 876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 805 805 806 -(% style="color:# 037691" %)**UDPManagement**878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 807 807 808 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 809 809 882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 810 810 811 -(% style="color:# 037691" %)**MQTTManagement**884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 812 812 813 -AT+CLIENT : Get or Set MQTT client 814 814 815 - AT+UNAMEGetSetMQTT Username887 +(% style="color:#037691" %)**LoRa Network Management** 816 816 817 -AT+ PWDGetor SetMQTT password889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 818 818 819 -AT+ PUBTOPICGetorSetMQTTpublishtopic891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 820 820 821 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 822 822 895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 823 823 824 -(% style="color:# 037691" %)**Information**897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 825 825 826 -AT+F DRctoryDataReset899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 827 827 828 -AT+ PWORDSerialAccessPassword901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 829 829 903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 830 830 905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 831 831 832 -= 5.FAQ=907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 833 833 834 -= =5.1HowtoUpgradeFirmware==909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 835 835 911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 836 836 913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 918 + 919 + 920 +(% style="color:#037691" %)**Information** 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 929 + 930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 933 + 934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 935 + 936 + 937 += 4. FAQ = 938 + 939 +== 4.1 How to change the LoRa Frequency Bands/Region? == 940 + 837 837 ((( 838 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 943 +When downloading the images, choose the required image file for download. 839 839 ))) 840 840 841 841 ((( 842 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]947 + 843 843 ))) 844 844 845 845 ((( 846 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 847 847 ))) 848 848 954 +((( 955 + 956 +))) 849 849 958 +((( 959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 960 +))) 850 850 851 -== 5.2 Can I calibrate NSE01 to different soil types? == 962 +((( 963 + 964 +))) 852 852 853 853 ((( 854 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 855 855 ))) 856 856 970 +[[image:image-20220606154726-3.png]] 857 857 858 -= 6. Trouble Shooting = 859 859 860 - ==6.1 Connection problemwhenuploadingfirmware==973 +When you use the TTN network, the US915 frequency bands use are: 861 861 975 +* 903.9 - SF7BW125 to SF10BW125 976 +* 904.1 - SF7BW125 to SF10BW125 977 +* 904.3 - SF7BW125 to SF10BW125 978 +* 904.5 - SF7BW125 to SF10BW125 979 +* 904.7 - SF7BW125 to SF10BW125 980 +* 904.9 - SF7BW125 to SF10BW125 981 +* 905.1 - SF7BW125 to SF10BW125 982 +* 905.3 - SF7BW125 to SF10BW125 983 +* 904.6 - SF8BW500 862 862 863 863 ((( 864 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 987 + 988 +* (% style="color:#037691" %)**AT+CHE=2** 989 +* (% style="color:#037691" %)**ATZ** 865 865 ))) 866 866 867 -(% class="wikigeneratedid" %) 868 868 ((( 869 869 994 + 995 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 870 870 ))) 871 871 998 +((( 999 + 1000 +))) 872 872 873 -== 6.2 AT Command input doesn't work == 1002 +((( 1003 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1004 +))) 874 874 1006 +[[image:image-20220606154825-4.png]] 1007 + 1008 + 1009 +== 4.2 Can I calibrate LSE01 to different soil types? == 1010 + 1011 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1012 + 1013 + 1014 += 5. Trouble Shooting = 1015 + 1016 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1017 + 1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1019 + 1020 + 1021 +== 5.2 AT Command input doesn't work == 1022 + 875 875 ((( 876 876 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1025 +))) 877 877 878 - 1027 + 1028 +== 5.3 Device rejoin in at the second uplink packet == 1029 + 1030 +(% style="color:#4f81bd" %)**Issue describe as below:** 1031 + 1032 +[[image:1654500909990-784.png]] 1033 + 1034 + 1035 +(% style="color:#4f81bd" %)**Cause for this issue:** 1036 + 1037 +((( 1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 879 879 ))) 880 880 881 881 882 - =7. OrderInfo=1042 +(% style="color:#4f81bd" %)**Solution: ** 883 883 1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 884 884 885 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1046 +[[image:1654500929571-736.png||height="458" width="832"]] 886 886 887 887 1049 += 6. Order Info = 1050 + 1051 + 1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1053 + 1054 + 1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1056 + 1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1063 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1065 + 1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1067 + 1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1070 + 888 888 (% class="wikigeneratedid" %) 889 889 ((( 890 890 891 891 ))) 892 892 893 -= 8.1076 += 7. Packing Info = 894 894 895 895 ((( 896 896 897 897 898 898 (% style="color:#037691" %)**Package Includes**: 1082 +))) 899 899 900 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1901 - *Externalantennax 11084 +* ((( 1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 902 902 ))) 903 903 904 904 ((( ... ... @@ -905,19 +905,24 @@ 905 905 906 906 907 907 (% style="color:#037691" %)**Dimension and weight**: 1092 +))) 908 908 909 -* Size: 195 x 125 x 55 mm910 - * Weight:420g1094 +* ((( 1095 +Device Size: cm 911 911 ))) 1097 +* ((( 1098 +Device Weight: g 1099 +))) 1100 +* ((( 1101 +Package Size / pcs : cm 1102 +))) 1103 +* ((( 1104 +Weight / pcs : g 912 912 913 -((( 914 914 915 - 916 - 917 - 918 918 ))) 919 919 920 -= 9.1109 += 8. Support = 921 921 922 922 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 923 923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content