Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 30 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,12 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 - 7 - 8 8 **Table of Contents:** 9 9 8 +{{toc/}} 10 10 11 11 12 12 ... ... @@ -13,716 +13,769 @@ 13 13 14 14 15 15 16 -= 1. 15 += 1. Introduction = 17 17 18 -== 1.1 DDS75DistanceDetectionSensor ==17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 23 +))) 24 + 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 30 30 ))) 31 31 32 - 29 +((( 30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 ))) 34 34 35 -[[image:1654503236291-817.png]] 33 +((( 34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 35 +))) 36 36 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 +))) 37 37 38 -[[image:1657327959271-447.png]] 39 39 42 +[[image:1654503236291-817.png]] 40 40 41 41 42 - == 1.2 Features ==45 +[[image:1654503265560-120.png]] 43 43 44 44 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 + 49 +== 1.2 Features == 50 + 51 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm53 +* Monitor Soil Moisture 54 +* Monitor Soil Temperature 55 +* Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 57 57 63 +== 1.3 Specification == 58 58 65 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==67 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 71 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**73 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 75 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 76 + 76 76 78 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 81 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 85 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 87 +== 2.1 How it works == 92 92 89 +((( 90 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 91 +))) 93 93 93 +((( 94 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 95 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 99 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 101 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==104 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657246476176-652.png]]107 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 110 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 115 115 116 - =2. Use NSE01tocommunicate withIoTServer=112 +Each LSE01 is shipped with a sticker with the default device EUI as below: 117 117 118 - ==2.1How it works ==114 +[[image:image-20220606163732-6.jpeg]] 119 119 116 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 118 +**Add APP EUI in the application** 119 + 120 + 121 +[[image:1654504596150-405.png]] 122 + 123 + 124 + 125 +**Add APP KEY and DEV EUI** 126 + 127 +[[image:1654504683289-357.png]] 128 + 129 + 130 + 131 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 132 + 133 + 134 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 135 + 136 +[[image:image-20220606163915-7.png]] 137 + 138 + 139 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 140 + 141 +[[image:1654504778294-788.png]] 142 + 143 + 144 + 145 +== 2.3 Uplink Payload == 146 + 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 121 121 ((( 122 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 123 123 ))) 124 124 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 125 125 126 -((( 127 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 128 128 ))) 129 129 130 -[[image:image-20220708101605-2.png]] 131 131 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 132 132 ((( 133 - 199 +Check the battery voltage for LSE01. 134 134 ))) 135 135 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 136 136 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 137 137 138 -== 2.2 Configure the NSE01 == 139 139 140 140 141 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 142 142 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 143 143 144 144 ((( 145 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 146 146 ))) 147 147 148 - * Your local operator has already distributed a NB-IoT Network there.149 - *The local NB-IoT network used the band that NSE01 supports.150 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 151 151 152 152 ((( 153 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 154 154 ))) 155 155 156 156 157 -[[image:1657249419225-449.png]] 158 158 232 +=== 2.3.5 Soil Temperature === 159 159 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 160 160 161 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 162 162 163 163 ((( 164 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 165 165 ))) 166 166 167 167 ((( 168 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 169 169 ))) 170 170 171 171 172 -[[image:1657249468462-536.png]] 173 173 252 +=== 2.3.6 Soil Conductivity (EC) === 174 174 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 175 175 176 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 177 177 178 178 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 179 179 ((( 180 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 181 181 ))) 269 + 270 +((( 271 + 182 182 ))) 183 183 274 +=== 2.3.7 MOD === 184 184 185 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 186 186 187 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 188 188 189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 190 190 191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 192 192 283 +**Downlink Command:** 193 193 194 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 195 195 196 -* Baud: (% style="color:green" %)**9600** 197 -* Data bits:** (% style="color:green" %)8(%%)** 198 -* Stop bits: (% style="color:green" %)**1** 199 -* Parity: (% style="color:green" %)**None** 200 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 201 201 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 202 202 ((( 203 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 204 204 ))) 205 205 206 -[[image:image-20220708110657-3.png]] 302 +((( 303 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 304 +))) 207 207 306 + 307 +== 2.4 Uplink Interval == 308 + 309 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 310 + 311 + 312 + 313 +== 2.5 Downlink Payload == 314 + 315 +By default, LSE50 prints the downlink payload to console port. 316 + 317 +[[image:image-20220606165544-8.png]] 318 + 319 + 208 208 ((( 209 - (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]321 +**Examples:** 210 210 ))) 211 211 324 +((( 325 + 326 +))) 212 212 328 +* ((( 329 +**Set TDC** 330 +))) 213 213 214 -=== 2.2.4 Use CoAP protocol to uplink data === 332 +((( 333 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 334 +))) 215 215 216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 336 +((( 337 +Payload: 01 00 00 1E TDC=30S 338 +))) 217 217 340 +((( 341 +Payload: 01 00 00 3C TDC=60S 342 +))) 218 218 219 -**Use below commands:** 344 +((( 345 + 346 +))) 220 220 221 -* ( % style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAPserver address and port223 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path348 +* ((( 349 +**Reset** 350 +))) 224 224 225 -For parameter description, please refer to AT command set 352 +((( 353 +If payload = 0x04FF, it will reset the LSE01 354 +))) 226 226 227 -[[image:1657249793983-486.png]] 228 228 357 +* **CFM** 229 229 230 - After configure the server address and(% style="color:green"%)**resetthe device**(%%) (viaAT+ATZ ), NSE01will starttouplinksensor valuestoCoAP server.359 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 231 231 232 -[[image:1657249831934-534.png]] 233 233 234 234 363 +== 2.6 Show Data in DataCake IoT Server == 235 235 236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 365 +((( 366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 367 +))) 237 237 238 -This feature is supported since firmware version v1.0.1 369 +((( 370 + 371 +))) 239 239 373 +((( 374 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 375 +))) 240 240 241 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink242 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601**~/~/tosetUDPserveraddressandport243 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary377 +((( 378 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 379 +))) 244 244 245 -[[image:1657249864775-321.png]] 246 246 382 +[[image:1654505857935-743.png]] 247 247 248 -[[image:1657249930215-289.png]] 249 249 385 +[[image:1654505874829-548.png]] 250 250 251 251 252 - ===2.2.6 UseMQTTprotocoltouplinkdata===388 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 253 253 254 - Thisfeatureis supportedsincefirmwareversion v110390 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 255 255 256 256 257 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 393 +[[image:1654505905236-553.png]] 264 264 265 -[[image:1657249978444-674.png]] 266 266 396 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 267 267 268 -[[image:165 7249990869-686.png]]398 +[[image:1654505925508-181.png]] 269 269 270 270 271 -((( 272 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 -))) 274 274 402 +== 2.7 Frequency Plans == 275 275 404 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 276 276 277 -=== 2.2.7 Use TCP protocol to uplink data === 278 278 279 - Thisfeatureissupportedsince firmware version v110407 +=== 2.7.1 EU863-870 (EU868) === 280 280 409 +(% style="color:#037691" %)** Uplink:** 281 281 282 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 411 +868.1 - SF7BW125 to SF12BW125 284 284 285 - [[image:1657250217799-140.png]]413 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 286 286 415 +868.5 - SF7BW125 to SF12BW125 287 287 288 - [[image:1657250255956-604.png]]417 +867.1 - SF7BW125 to SF12BW125 289 289 419 +867.3 - SF7BW125 to SF12BW125 290 290 421 +867.5 - SF7BW125 to SF12BW125 291 291 292 - === 2.2.8ChangeUpdateInterval ===423 +867.7 - SF7BW125 to SF12BW125 293 293 294 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.425 +867.9 - SF7BW125 to SF12BW125 295 295 296 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/Set Update Interval to 600s427 +868.8 - FSK 297 297 298 -((( 299 -(% style="color:red" %)**NOTE:** 300 -))) 301 301 302 -((( 303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 -))) 430 +(% style="color:#037691" %)** Downlink:** 305 305 432 +Uplink channels 1-9 (RX1) 306 306 434 +869.525 - SF9BW125 (RX2 downlink only) 307 307 308 -== 2.3 Uplink Payload == 309 309 310 -In this mode, uplink payload includes in total 18 bytes 311 311 312 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 -|=(% style="width: 60px;" %)((( 314 -**Size(bytes)** 315 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 438 +=== 2.7.2 US902-928(US915) === 317 317 318 -((( 319 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 -))) 440 +Used in USA, Canada and South America. Default use CHE=2 321 321 442 +(% style="color:#037691" %)**Uplink:** 322 322 323 - [[image:image-20220708111918-4.png]]444 +903.9 - SF7BW125 to SF10BW125 324 324 446 +904.1 - SF7BW125 to SF10BW125 325 325 326 - Thepayloadis ASCIIstring,representative same HEX:448 +904.3 - SF7BW125 to SF10BW125 327 327 328 -0 x72403155615900640c7817075e0a8c02f900 where:450 +904.5 - SF7BW125 to SF10BW125 329 329 330 -* Device ID: 0x 724031556159 = 724031556159 331 -* Version: 0x0064=100=1.0.0 452 +904.7 - SF7BW125 to SF10BW125 332 332 333 -* BAT: 0x0c78 = 3192 mV = 3.192V 334 -* Singal: 0x17 = 23 335 -* Soil Moisture: 0x075e= 1886 = 18.86 % 336 -* Soil Temperature:0x0a8c =2700=27 °C 337 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 -* Interrupt: 0x00 = 0 454 +904.9 - SF7BW125 to SF10BW125 339 339 340 - == 2.4PayloadExplanation andSensorInterface==456 +905.1 - SF7BW125 to SF10BW125 341 341 458 +905.3 - SF7BW125 to SF10BW125 342 342 343 -=== 2.4.1 Device ID === 344 344 345 -((( 346 -By default, the Device ID equal to the last 6 bytes of IMEI. 347 -))) 461 +(% style="color:#037691" %)**Downlink:** 348 348 349 -((( 350 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 -))) 463 +923.3 - SF7BW500 to SF12BW500 352 352 353 -((( 354 -**Example:** 355 -))) 465 +923.9 - SF7BW500 to SF12BW500 356 356 357 -((( 358 -AT+DEUI=A84041F15612 359 -))) 467 +924.5 - SF7BW500 to SF12BW500 360 360 361 -((( 362 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 -))) 469 +925.1 - SF7BW500 to SF12BW500 364 364 471 +925.7 - SF7BW500 to SF12BW500 365 365 473 +926.3 - SF7BW500 to SF12BW500 366 366 367 - ===2.4.2VersionInfo===475 +926.9 - SF7BW500 to SF12BW500 368 368 369 -((( 370 -Specify the software version: 0x64=100, means firmware version 1.00. 371 -))) 477 +927.5 - SF7BW500 to SF12BW500 372 372 373 -((( 374 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 -))) 479 +923.3 - SF12BW500(RX2 downlink only) 376 376 377 377 378 378 379 -=== 2. 4.3BatteryInfo===483 +=== 2.7.3 CN470-510 (CN470) === 380 380 381 -((( 382 -Check the battery voltage for LSE01. 383 -))) 485 +Used in China, Default use CHE=1 384 384 385 -((( 386 -Ex1: 0x0B45 = 2885mV 387 -))) 487 +(% style="color:#037691" %)**Uplink:** 388 388 389 -((( 390 -Ex2: 0x0B49 = 2889mV 391 -))) 489 +486.3 - SF7BW125 to SF12BW125 392 392 491 +486.5 - SF7BW125 to SF12BW125 393 393 493 +486.7 - SF7BW125 to SF12BW125 394 394 395 - === 2.4.4SignalStrength===495 +486.9 - SF7BW125 to SF12BW125 396 396 397 -((( 398 -NB-IoT Network signal Strength. 399 -))) 497 +487.1 - SF7BW125 to SF12BW125 400 400 401 -((( 402 -**Ex1: 0x1d = 29** 403 -))) 499 +487.3 - SF7BW125 to SF12BW125 404 404 405 -((( 406 -(% style="color:blue" %)**0**(%%) -113dBm or less 407 -))) 501 +487.5 - SF7BW125 to SF12BW125 408 408 409 -((( 410 -(% style="color:blue" %)**1**(%%) -111dBm 411 -))) 503 +487.7 - SF7BW125 to SF12BW125 412 412 413 -((( 414 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 -))) 416 416 417 -((( 418 -(% style="color:blue" %)**31** (%%) -51dBm or greater 419 -))) 506 +(% style="color:#037691" %)**Downlink:** 420 420 421 -((( 422 -(% style="color:blue" %)**99** (%%) Not known or not detectable 423 -))) 508 +506.7 - SF7BW125 to SF12BW125 424 424 510 +506.9 - SF7BW125 to SF12BW125 425 425 512 +507.1 - SF7BW125 to SF12BW125 426 426 427 - ===2.4.5SoilMoisture ===514 +507.3 - SF7BW125 to SF12BW125 428 428 429 -((( 430 -((( 431 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 -))) 433 -))) 516 +507.5 - SF7BW125 to SF12BW125 434 434 435 -((( 436 -((( 437 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 -))) 439 -))) 518 +507.7 - SF7BW125 to SF12BW125 440 440 441 -((( 442 - 443 -))) 520 +507.9 - SF7BW125 to SF12BW125 444 444 445 -((( 446 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 -))) 522 +508.1 - SF7BW125 to SF12BW125 448 448 524 +505.3 - SF12BW125 (RX2 downlink only) 449 449 450 450 451 -=== 2.4.6 Soil Temperature === 452 452 453 -((( 454 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 -))) 528 +=== 2.7.4 AU915-928(AU915) === 456 456 457 -((( 458 -**Example**: 459 -))) 530 +Default use CHE=2 460 460 461 -((( 462 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 -))) 532 +(% style="color:#037691" %)**Uplink:** 464 464 465 -((( 466 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 -))) 534 +916.8 - SF7BW125 to SF12BW125 468 468 536 +917.0 - SF7BW125 to SF12BW125 469 469 538 +917.2 - SF7BW125 to SF12BW125 470 470 471 - === 2.4.7SoilConductivity(EC) ===540 +917.4 - SF7BW125 to SF12BW125 472 472 473 -((( 474 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 -))) 542 +917.6 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 -))) 544 +917.8 - SF7BW125 to SF12BW125 480 480 481 -((( 482 -Generally, the EC value of irrigation water is less than 800uS / cm. 483 -))) 546 +918.0 - SF7BW125 to SF12BW125 484 484 485 -((( 486 - 487 -))) 548 +918.2 - SF7BW125 to SF12BW125 488 488 489 -((( 490 - 491 -))) 492 492 493 - ===2.4.8 DigitalInterrupt===551 +(% style="color:#037691" %)**Downlink:** 494 494 495 -((( 496 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 -))) 553 +923.3 - SF7BW500 to SF12BW500 498 498 499 -((( 500 -The command is: 501 -))) 555 +923.9 - SF7BW500 to SF12BW500 502 502 503 -((( 504 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 -))) 557 +924.5 - SF7BW500 to SF12BW500 506 506 559 +925.1 - SF7BW500 to SF12BW500 507 507 508 -((( 509 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 -))) 561 +925.7 - SF7BW500 to SF12BW500 511 511 563 +926.3 - SF7BW500 to SF12BW500 512 512 513 -((( 514 -Example: 515 -))) 565 +926.9 - SF7BW500 to SF12BW500 516 516 517 -((( 518 -0x(00): Normal uplink packet. 519 -))) 567 +927.5 - SF7BW500 to SF12BW500 520 520 521 -((( 522 -0x(01): Interrupt Uplink Packet. 523 -))) 569 +923.3 - SF12BW500(RX2 downlink only) 524 524 525 525 526 526 527 -=== 2. 4.9+5VOutput===573 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 528 528 529 -((( 530 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 -))) 575 +(% style="color:#037691" %)**Default Uplink channel:** 532 532 577 +923.2 - SF7BW125 to SF10BW125 533 533 534 -((( 535 -The 5V output time can be controlled by AT Command. 536 -))) 579 +923.4 - SF7BW125 to SF10BW125 537 537 538 -((( 539 -(% style="color:blue" %)**AT+5VT=1000** 540 -))) 541 541 542 -((( 543 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 -))) 582 +(% style="color:#037691" %)**Additional Uplink Channel**: 545 545 584 +(OTAA mode, channel added by JoinAccept message) 546 546 586 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 547 547 548 - ==2.5DownlinkPayload ==588 +922.2 - SF7BW125 to SF10BW125 549 549 550 - Bydefault,NSE01prints the downlinkpayload to console port.590 +922.4 - SF7BW125 to SF10BW125 551 551 552 - [[image:image-20220708133731-5.png]]592 +922.6 - SF7BW125 to SF10BW125 553 553 594 +922.8 - SF7BW125 to SF10BW125 554 554 555 -((( 556 -(% style="color:blue" %)**Examples:** 557 -))) 596 +923.0 - SF7BW125 to SF10BW125 558 558 559 -((( 560 - 561 -))) 598 +922.0 - SF7BW125 to SF10BW125 562 562 563 -* ((( 564 -(% style="color:blue" %)**Set TDC** 565 -))) 566 566 567 -((( 568 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 -))) 601 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 570 570 571 -((( 572 -Payload: 01 00 00 1E TDC=30S 573 -))) 603 +923.6 - SF7BW125 to SF10BW125 574 574 575 -((( 576 -Payload: 01 00 00 3C TDC=60S 577 -))) 605 +923.8 - SF7BW125 to SF10BW125 578 578 579 -((( 580 - 581 -))) 607 +924.0 - SF7BW125 to SF10BW125 582 582 583 -* ((( 584 -(% style="color:blue" %)**Reset** 585 -))) 609 +924.2 - SF7BW125 to SF10BW125 586 586 587 -((( 588 -If payload = 0x04FF, it will reset the NSE01 589 -))) 611 +924.4 - SF7BW125 to SF10BW125 590 590 613 +924.6 - SF7BW125 to SF10BW125 591 591 592 -* (% style="color:blue" %)**INTMOD** 593 593 594 -((( 595 -Downlink Payload: 06000003, Set AT+INTMOD=3 596 -))) 616 +(% style="color:#037691" %)** Downlink:** 597 597 618 +Uplink channels 1-8 (RX1) 598 598 620 +923.2 - SF10BW125 (RX2) 599 599 600 -== 2.6 LED Indicator == 601 601 602 -((( 603 -The NSE01 has an internal LED which is to show the status of different state. 604 604 624 +=== 2.7.6 KR920-923 (KR920) === 605 605 606 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 -* Then the LED will be on for 1 second means device is boot normally. 608 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 -* For each uplink probe, LED will be on for 500ms. 610 -))) 626 +Default channel: 611 611 628 +922.1 - SF7BW125 to SF12BW125 612 612 630 +922.3 - SF7BW125 to SF12BW125 613 613 632 +922.5 - SF7BW125 to SF12BW125 614 614 615 -== 2.7 Installation in Soil == 616 616 617 - __**Measurementthesoilsurface**__635 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 618 618 619 -((( 620 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 -))) 637 +922.1 - SF7BW125 to SF12BW125 622 622 623 - [[image:1657259653666-883.png]]639 +922.3 - SF7BW125 to SF12BW125 624 624 641 +922.5 - SF7BW125 to SF12BW125 625 625 626 -((( 627 - 643 +922.7 - SF7BW125 to SF12BW125 628 628 629 -((( 630 -Dig a hole with diameter > 20CM. 631 -))) 645 +922.9 - SF7BW125 to SF12BW125 632 632 633 -((( 634 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 -))) 636 -))) 647 +923.1 - SF7BW125 to SF12BW125 637 637 638 - [[image:1654506665940-119.png]]649 +923.3 - SF7BW125 to SF12BW125 639 639 640 -((( 641 - 642 -))) 643 643 652 +(% style="color:#037691" %)**Downlink:** 644 644 645 - == 2.8 FirmwareChangeLog ==654 +Uplink channels 1-7(RX1) 646 646 656 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 647 647 648 -Download URL & Firmware Change log 649 649 650 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]] 651 651 660 +=== 2.7.7 IN865-867 (IN865) === 652 652 653 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]662 +(% style="color:#037691" %)** Uplink:** 654 654 664 +865.0625 - SF7BW125 to SF12BW125 655 655 666 +865.4025 - SF7BW125 to SF12BW125 656 656 657 - == 2.9BatteryAnalysis ==668 +865.9850 - SF7BW125 to SF12BW125 658 658 659 -=== 2.9.1 Battery Type === 660 660 671 +(% style="color:#037691" %) **Downlink:** 661 661 673 +Uplink channels 1-3 (RX1) 674 + 675 +866.550 - SF10BW125 (RX2) 676 + 677 + 678 + 679 + 680 +== 2.8 LED Indicator == 681 + 682 +The LSE01 has an internal LED which is to show the status of different state. 683 + 684 +* Blink once when device power on. 685 +* Solid ON for 5 seconds once device successful Join the network. 686 +* Blink once when device transmit a packet. 687 + 688 +== 2.9 Installation in Soil == 689 + 690 +**Measurement the soil surface** 691 + 692 + 693 +[[image:1654506634463-199.png]] 694 + 662 662 ((( 663 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 +((( 697 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 664 ))) 699 +))) 665 665 666 666 702 +[[image:1654506665940-119.png]] 703 + 667 667 ((( 668 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.705 +Dig a hole with diameter > 20CM. 669 669 ))) 670 670 708 +((( 709 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 710 +))) 671 671 712 + 713 +== 2.10 Firmware Change Log == 714 + 672 672 ((( 673 - The battery relateddocumentsasbelow:716 +**Firmware download link:** 674 674 ))) 675 675 676 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]677 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]719 +((( 720 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 721 +))) 679 679 680 680 ((( 681 - [[image:image-20220708140453-6.png]]724 + 682 682 ))) 683 683 727 +((( 728 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 729 +))) 684 684 731 +((( 732 + 733 +))) 685 685 686 -=== 2.9.2 Power consumption Analyze === 735 +((( 736 +**V1.0.** 737 +))) 687 687 688 688 ((( 689 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.740 +Release 690 690 ))) 691 691 692 692 744 +== 2.11 Battery Analysis == 745 + 746 +=== 2.11.1 Battery Type === 747 + 693 693 ((( 694 - Instruction touse as below:749 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 695 695 ))) 696 696 697 697 ((( 698 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]753 +The battery is designed to last for more than 5 years for the LSN50. 699 699 ))) 700 700 701 - 702 702 ((( 703 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 757 +((( 758 +The battery-related documents are as below: 704 704 ))) 760 +))) 705 705 706 706 * ((( 707 - ProductModel763 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 708 708 ))) 709 709 * ((( 710 - UplinkInterval766 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 711 711 ))) 712 712 * ((( 713 - WorkingMode769 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 714 714 ))) 715 715 716 -((( 717 -And the Life expectation in difference case will be shown on the right. 718 -))) 772 + [[image:image-20220610172436-1.png]] 719 719 720 -[[image:image-20220708141352-7.jpeg]] 721 721 722 722 776 +=== 2.11.2 Battery Note === 723 723 724 -=== 2.9.3 Battery Note === 725 - 726 726 ((( 727 727 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) ... ... @@ -729,176 +729,303 @@ 729 729 730 730 731 731 732 -=== 2. 9.4Replace the battery ===784 +=== 2.11.3 Replace the battery === 733 733 734 734 ((( 735 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).787 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 736 736 ))) 737 737 738 - 739 - 740 -= 3. Access NB-IoT Module = 741 - 742 742 ((( 743 - Userscan directly accesstheATcommand set of theNB-IoTmodule.791 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 744 744 ))) 745 745 746 746 ((( 747 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]795 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 748 748 ))) 749 749 750 -[[image:1657261278785-153.png]] 751 751 752 752 800 += 3. Using the AT Commands = 753 753 754 -= 4.UsingtheAT Commands =802 +== 3.1 Access AT Commands == 755 755 756 -== 4.1 Access AT Commands == 757 757 758 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]805 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 759 759 807 +[[image:1654501986557-872.png||height="391" width="800"]] 760 760 761 -AT+<CMD>? : Help on <CMD> 762 762 763 - AT+<CMD>: Run<CMD>810 +Or if you have below board, use below connection: 764 764 765 -AT+<CMD>=<value> : Set the value 766 766 767 - AT+<CMD>=?:Get the value813 +[[image:1654502005655-729.png||height="503" width="801"]] 768 768 769 769 816 + 817 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 818 + 819 + 820 + [[image:1654502050864-459.png||height="564" width="806"]] 821 + 822 + 823 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 824 + 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 827 + 828 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 829 + 830 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 831 + 832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 833 + 834 + 770 770 (% style="color:#037691" %)**General Commands**(%%) 771 771 772 -AT 837 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 773 773 774 -AT? 839 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 775 775 776 -ATZ 841 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 777 777 778 -AT+TDC 843 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 779 779 780 -AT+CFG : Print all configurations 781 781 782 - AT+CFGMOD: Workingmode selection846 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 783 783 784 -AT+I NTMOD:Setthe trigger interruptmode848 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 785 785 786 -AT+ 5VTSetextend the timeof5V power850 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 787 787 788 -AT+P ROChooseagreement852 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 789 789 790 -AT+ WEIGREGet weightorsetweight to 0854 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 791 791 792 -AT+ WEIGAPGet or SettheGapValue of weight856 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 793 793 794 -AT+ RXDL: Extendthe sendingandreceivingtime858 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 795 795 796 -AT+ CNTFACGettcountingparameters860 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 797 797 798 -AT+ SERVADDR:ServerAddress862 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 799 799 864 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 800 800 801 -(% style="color:# 037691" %)**COAPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 802 802 803 -AT+ URIsourceparameters868 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 804 804 870 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 805 805 806 -(% style="color:# 037691" %)**UDPManagement**872 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 807 807 808 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)874 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 809 809 876 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 810 810 811 -(% style="color:# 037691" %)**MQTTManagement**878 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 812 812 813 -AT+CLIENT : Get or Set MQTT client 814 814 815 - AT+UNAMEGetSetMQTT Username881 +(% style="color:#037691" %)**LoRa Network Management** 816 816 817 -AT+ PWDGetor SetMQTT password883 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 818 818 819 -AT+ PUBTOPICGetorSetMQTTpublishtopic885 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 820 820 821 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic887 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 822 822 889 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 823 823 824 -(% style="color:# 037691" %)**Information**891 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 825 825 826 -AT+F DRctoryDataReset893 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 827 827 828 -AT+ PWORDSerialAccessPassword895 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 829 829 897 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 830 830 899 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 831 831 832 -= 5.FAQ=901 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 833 833 834 -= =5.1HowtoUpgradeFirmware==903 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 835 835 905 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 836 836 907 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 912 + 913 + 914 +(% style="color:#037691" %)**Information** 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 927 + 928 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 929 + 930 + 931 += 4. FAQ = 932 + 933 +== 4.1 How to change the LoRa Frequency Bands/Region? == 934 + 837 837 ((( 838 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 936 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 937 +When downloading the images, choose the required image file for download. 839 839 ))) 840 840 841 841 ((( 842 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]941 + 843 843 ))) 844 844 845 845 ((( 846 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.945 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 847 847 ))) 848 848 948 +((( 949 + 950 +))) 849 849 952 +((( 953 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 954 +))) 850 850 851 -== 5.2 Can I calibrate NSE01 to different soil types? == 956 +((( 957 + 958 +))) 852 852 853 853 ((( 854 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].961 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 855 855 ))) 856 856 964 +[[image:image-20220606154726-3.png]] 857 857 858 -= 6. Trouble Shooting = 859 859 860 - ==6.1 Connection problemwhenuploadingfirmware==967 +When you use the TTN network, the US915 frequency bands use are: 861 861 969 +* 903.9 - SF7BW125 to SF10BW125 970 +* 904.1 - SF7BW125 to SF10BW125 971 +* 904.3 - SF7BW125 to SF10BW125 972 +* 904.5 - SF7BW125 to SF10BW125 973 +* 904.7 - SF7BW125 to SF10BW125 974 +* 904.9 - SF7BW125 to SF10BW125 975 +* 905.1 - SF7BW125 to SF10BW125 976 +* 905.3 - SF7BW125 to SF10BW125 977 +* 904.6 - SF8BW500 862 862 863 863 ((( 864 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]980 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 865 865 ))) 866 866 867 -(% class=" wikigeneratedid" %)983 +(% class="box infomessage" %) 868 868 ((( 985 +**AT+CHE=2** 986 +))) 987 + 988 +(% class="box infomessage" %) 989 +((( 990 +**ATZ** 991 +))) 992 + 993 +((( 994 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 995 +))) 996 + 997 +((( 869 869 870 870 ))) 871 871 1001 +((( 1002 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1003 +))) 872 872 873 - == 6.2 AT Commandinput doesn't work ==1005 +[[image:image-20220606154825-4.png]] 874 874 1007 + 1008 + 1009 += 5. Trouble Shooting = 1010 + 1011 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1012 + 1013 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1014 + 1015 + 1016 +== 5.2 AT Command input doesn’t work == 1017 + 875 875 ((( 876 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1019 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1020 +))) 877 877 878 - 1022 + 1023 +== 5.3 Device rejoin in at the second uplink packet == 1024 + 1025 +(% style="color:#4f81bd" %)**Issue describe as below:** 1026 + 1027 +[[image:1654500909990-784.png]] 1028 + 1029 + 1030 +(% style="color:#4f81bd" %)**Cause for this issue:** 1031 + 1032 +((( 1033 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 879 879 ))) 880 880 881 881 882 - =7. OrderInfo=1037 +(% style="color:#4f81bd" %)**Solution: ** 883 883 1039 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 884 884 885 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1041 +[[image:1654500929571-736.png||height="458" width="832"]] 886 886 887 887 1044 += 6. Order Info = 1045 + 1046 + 1047 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1048 + 1049 + 1050 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1051 + 1052 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1053 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1054 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1055 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1056 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1057 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1058 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1059 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1060 + 1061 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1062 + 1063 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1064 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1065 + 888 888 (% class="wikigeneratedid" %) 889 889 ((( 890 890 891 891 ))) 892 892 893 -= 8.1071 += 7. Packing Info = 894 894 895 895 ((( 896 896 897 897 898 898 (% style="color:#037691" %)**Package Includes**: 1077 +))) 899 899 900 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1901 - *Externalantennax 11079 +* ((( 1080 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 902 902 ))) 903 903 904 904 ((( ... ... @@ -905,19 +905,24 @@ 905 905 906 906 907 907 (% style="color:#037691" %)**Dimension and weight**: 1087 +))) 908 908 909 -* Size: 195 x 125 x 55 mm910 - * Weight:420g1089 +* ((( 1090 +Device Size: cm 911 911 ))) 1092 +* ((( 1093 +Device Weight: g 1094 +))) 1095 +* ((( 1096 +Package Size / pcs : cm 1097 +))) 1098 +* ((( 1099 +Weight / pcs : g 912 912 913 -((( 914 914 915 - 916 - 917 - 918 918 ))) 919 919 920 -= 9.1104 += 8. Support = 921 921 922 922 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 923 923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content