Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 75.4
edited by Xiaoling
on 2022/07/09 09:02
Change comment: There is no comment for this version
To version 35.11
edited by Xiaoling
on 2022/06/14 14:06
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 -
7 -
8 8  **Table of Contents:**
9 9  
8 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,716 +13,774 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
15 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 +)))
24 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
29 +(((
30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
35 -[[image:1654503236291-817.png]]
33 +(((
34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
35 +)))
36 36  
37 +(((
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 +)))
37 37  
38 -[[image:1657327959271-447.png]]
39 39  
42 +[[image:1654503236291-817.png]]
40 40  
41 41  
42 -== 1.2 ​ Features ==
45 +[[image:1654503265560-120.png]]
43 43  
44 44  
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
48 +
49 +== 1.2 ​Features ==
50 +
51 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
53 +* Monitor Soil Moisture
54 +* Monitor Soil Temperature
55 +* Monitor Soil Conductivity
56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
61 +* 4000mAh or 8500mAh Battery for long term use
57 57  
58 58  
59 59  
60 -== 1.3  Specification ==
65 +== 1.3 Specification ==
61 61  
67 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
69 +[[image:image-20220606162220-5.png]]
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
73 +== ​1.4 Applications ==
76 76  
75 +* Smart Agriculture
77 77  
78 -(% style="color:#037691" %)**Battery:**
77 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
78 +​
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
80 +== 1.5 Firmware Change log ==
85 85  
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
83 +**LSE01 v1.0 :**  Release
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
91 91  
92 92  
87 += 2. Configure LSE01 to connect to LoRaWAN network =
93 93  
89 +== 2.1 How it works ==
94 94  
95 -== ​1.4  Applications ==
91 +(((
92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
93 +)))
96 96  
97 -* Smart Buildings & Home Automation
98 -* Logistics and Supply Chain Management
99 -* Smart Metering
100 -* Smart Agriculture
101 -* Smart Cities
102 -* Smart Factory
95 +(((
96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
97 +)))
103 103  
104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
105 -​
106 106  
107 107  
101 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
108 108  
109 -== 1.5  Pin Definitions ==
103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
110 110  
111 111  
112 -[[image:1657246476176-652.png]]
106 +[[image:1654503992078-669.png]]
113 113  
114 114  
109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
115 115  
116 -= 2.  Use NSE01 to communicate with IoT Server =
117 117  
118 -== 2.How it works ==
112 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
119 119  
114 +Each LSE01 is shipped with a sticker with the default device EUI as below:
120 120  
116 +[[image:image-20220606163732-6.jpeg]]
117 +
118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
119 +
120 +**Add APP EUI in the application**
121 +
122 +
123 +[[image:1654504596150-405.png]]
124 +
125 +
126 +
127 +**Add APP KEY and DEV EUI**
128 +
129 +[[image:1654504683289-357.png]]
130 +
131 +
132 +
133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
134 +
135 +
136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
137 +
138 +[[image:image-20220606163915-7.png]]
139 +
140 +
141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
142 +
143 +[[image:1654504778294-788.png]]
144 +
145 +
146 +
147 +== 2.3 Uplink Payload ==
148 +
149 +
150 +=== 2.3.1 MOD~=0(Default Mode) ===
151 +
152 +LSE01 will uplink payload via LoRaWAN with below payload format: 
153 +
121 121  (((
122 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
155 +Uplink payload includes in total 11 bytes.
123 123  )))
124 124  
158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
159 +|(((
160 +**Size**
125 125  
126 -(((
127 -The diagram below shows the working flow in default firmware of NSE01:
162 +**(bytes)**
163 +)))|**2**|**2**|**2**|**2**|**2**|**1**
164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
165 +Temperature
166 +
167 +(Reserve, Ignore now)
168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
169 +MOD & Digital Interrupt
170 +
171 +(Optional)
128 128  )))
129 129  
130 -[[image:image-20220708101605-2.png]]
131 131  
175 +
176 +
177 +
178 +=== 2.3.2 MOD~=1(Original value) ===
179 +
180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
181 +
182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
183 +|(((
184 +**Size**
185 +
186 +**(bytes)**
187 +)))|**2**|**2**|**2**|**2**|**2**|**1**
188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
189 +Temperature
190 +
191 +(Reserve, Ignore now)
192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
193 +MOD & Digital Interrupt
194 +
195 +(Optional)
196 +)))
197 +
198 +
199 +
200 +
201 +
202 +=== 2.3.3 Battery Info ===
203 +
132 132  (((
133 -
205 +Check the battery voltage for LSE01.
134 134  )))
135 135  
208 +(((
209 +Ex1: 0x0B45 = 2885mV
210 +)))
136 136  
212 +(((
213 +Ex2: 0x0B49 = 2889mV
214 +)))
137 137  
138 -== 2.2 ​ Configure the NSE01 ==
139 139  
140 140  
141 -=== 2.2.1 Test Requirement ===
218 +=== 2.3.4 Soil Moisture ===
142 142  
220 +(((
221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
222 +)))
143 143  
144 144  (((
145 -To use NSE01 in your city, make sure meet below requirements:
225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
146 146  )))
147 147  
148 -* Your local operator has already distributed a NB-IoT Network there.
149 -* The local NB-IoT network used the band that NSE01 supports.
150 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
228 +(((
229 +
230 +)))
151 151  
152 152  (((
153 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
154 154  )))
155 155  
156 156  
157 -[[image:1657249419225-449.png]]
158 158  
238 +=== 2.3.5 Soil Temperature ===
159 159  
240 +(((
241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
242 +)))
160 160  
161 -=== 2.2.2 Insert SIM card ===
244 +(((
245 +**Example**:
246 +)))
162 162  
163 163  (((
164 -Insert the NB-IoT Card get from your provider.
249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
165 165  )))
166 166  
167 167  (((
168 -User need to take out the NB-IoT module and insert the SIM card like below:
253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
169 169  )))
170 170  
171 171  
172 -[[image:1657249468462-536.png]]
173 173  
258 +=== 2.3.6 Soil Conductivity (EC) ===
174 174  
260 +(((
261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
262 +)))
175 175  
176 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
264 +(((
265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
266 +)))
177 177  
178 178  (((
269 +Generally, the EC value of irrigation water is less than 800uS / cm.
270 +)))
271 +
179 179  (((
180 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
273 +
181 181  )))
275 +
276 +(((
277 +
182 182  )))
183 183  
280 +=== 2.3.7 MOD ===
184 184  
185 -**Connection:**
282 +Firmware version at least v2.1 supports changing mode.
186 186  
187 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
284 +For example, bytes[10]=90
188 188  
189 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
286 +mod=(bytes[10]>>7)&0x01=1.
190 190  
191 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
192 192  
289 +**Downlink Command:**
193 193  
194 -In the PC, use below serial tool settings:
291 +If payload = 0x0A00, workmode=0
195 195  
196 -* Baud:  (% style="color:green" %)**9600**
197 -* Data bits:** (% style="color:green" %)8(%%)**
198 -* Stop bits: (% style="color:green" %)**1**
199 -* Parity:  (% style="color:green" %)**None**
200 -* Flow Control: (% style="color:green" %)**None**
293 +If** **payload =** **0x0A01, workmode=1
201 201  
295 +
296 +
297 +=== 2.3.8 ​Decode payload in The Things Network ===
298 +
299 +While using TTN network, you can add the payload format to decode the payload.
300 +
301 +
302 +[[image:1654505570700-128.png]]
303 +
202 202  (((
203 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
305 +The payload decoder function for TTN is here:
204 204  )))
205 205  
206 -[[image:image-20220708110657-3.png]]
308 +(((
309 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
310 +)))
207 207  
312 +
313 +== 2.4 Uplink Interval ==
314 +
315 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
316 +
317 +
318 +
319 +== 2.5 Downlink Payload ==
320 +
321 +By default, LSE50 prints the downlink payload to console port.
322 +
323 +[[image:image-20220606165544-8.png]]
324 +
325 +
208 208  (((
209 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
327 +**Examples:**
210 210  )))
211 211  
330 +(((
331 +
332 +)))
212 212  
334 +* (((
335 +**Set TDC**
336 +)))
213 213  
214 -=== 2.2.4 Use CoAP protocol to uplink data ===
338 +(((
339 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 +)))
215 215  
216 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
342 +(((
343 +Payload:    01 00 00 1E    TDC=30S
344 +)))
217 217  
346 +(((
347 +Payload:    01 00 00 3C    TDC=60S
348 +)))
218 218  
219 -**Use below commands:**
350 +(((
351 +
352 +)))
220 220  
221 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
354 +* (((
355 +**Reset**
356 +)))
224 224  
225 -For parameter description, please refer to AT command set
358 +(((
359 +If payload = 0x04FF, it will reset the LSE01
360 +)))
226 226  
227 -[[image:1657249793983-486.png]]
228 228  
363 +* **CFM**
229 229  
230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
365 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
231 231  
232 -[[image:1657249831934-534.png]]
233 233  
234 234  
369 +== 2.6 ​Show Data in DataCake IoT Server ==
235 235  
236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
371 +(((
372 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
373 +)))
237 237  
238 -This feature is supported since firmware version v1.0.1
375 +(((
376 +
377 +)))
239 239  
379 +(((
380 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
381 +)))
240 240  
241 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
242 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
243 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
383 +(((
384 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
385 +)))
244 244  
245 -[[image:1657249864775-321.png]]
246 246  
388 +[[image:1654505857935-743.png]]
247 247  
248 -[[image:1657249930215-289.png]]
249 249  
391 +[[image:1654505874829-548.png]]
250 250  
393 +Step 3: Create an account or log in Datacake.
251 251  
252 -=== 2.2.6 Use MQTT protocol to uplink data ===
395 +Step 4: Search the LSE01 and add DevEUI.
253 253  
254 -This feature is supported since firmware version v110
255 255  
398 +[[image:1654505905236-553.png]]
256 256  
257 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
258 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
259 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
260 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
261 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
262 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
263 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
264 264  
265 -[[image:1657249978444-674.png]]
401 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
266 266  
403 +[[image:1654505925508-181.png]]
267 267  
268 -[[image:1657249990869-686.png]]
269 269  
270 270  
271 -(((
272 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
273 -)))
407 +== 2.7 Frequency Plans ==
274 274  
409 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
275 275  
276 276  
277 -=== 2.2.7 Use TCP protocol to uplink data ===
412 +=== 2.7.1 EU863-870 (EU868) ===
278 278  
279 -This feature is supported since firmware version v110
414 +(% style="color:#037691" %)** Uplink:**
280 280  
416 +868.1 - SF7BW125 to SF12BW125
281 281  
282 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
418 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
284 284  
285 -[[image:1657250217799-140.png]]
420 +868.5 - SF7BW125 to SF12BW125
286 286  
422 +867.1 - SF7BW125 to SF12BW125
287 287  
288 -[[image:1657250255956-604.png]]
424 +867.3 - SF7BW125 to SF12BW125
289 289  
426 +867.5 - SF7BW125 to SF12BW125
290 290  
428 +867.7 - SF7BW125 to SF12BW125
291 291  
292 -=== 2.2.8 Change Update Interval ===
430 +867.9 - SF7BW125 to SF12BW125
293 293  
294 -User can use below command to change the (% style="color:green" %)**uplink interval**.
432 +868.8 - FSK
295 295  
296 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
297 297  
298 -(((
299 -(% style="color:red" %)**NOTE:**
300 -)))
435 +(% style="color:#037691" %)** Downlink:**
301 301  
302 -(((
303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
304 -)))
437 +Uplink channels 1-9 (RX1)
305 305  
439 +869.525 - SF9BW125 (RX2 downlink only)
306 306  
307 307  
308 -== 2.3  Uplink Payload ==
309 309  
310 -In this mode, uplink payload includes in total 18 bytes
443 +=== 2.7.2 US902-928(US915) ===
311 311  
312 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
313 -|=(% style="width: 60px;" %)(((
314 -**Size(bytes)**
315 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
316 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
445 +Used in USA, Canada and South America. Default use CHE=2
317 317  
318 -(((
319 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
320 -)))
447 +(% style="color:#037691" %)**Uplink:**
321 321  
449 +903.9 - SF7BW125 to SF10BW125
322 322  
323 -[[image:image-20220708111918-4.png]]
451 +904.1 - SF7BW125 to SF10BW125
324 324  
453 +904.3 - SF7BW125 to SF10BW125
325 325  
326 -The payload is ASCII string, representative same HEX:
455 +904.5 - SF7BW125 to SF10BW125
327 327  
328 -0x72403155615900640c7817075e0a8c02f900 where:
457 +904.7 - SF7BW125 to SF10BW125
329 329  
330 -* Device ID: 0x 724031556159 = 724031556159
331 -* Version: 0x0064=100=1.0.0
459 +904.9 - SF7BW125 to SF10BW125
332 332  
333 -* BAT: 0x0c78 = 3192 mV = 3.192V
334 -* Singal: 0x17 = 23
335 -* Soil Moisture: 0x075e= 1886 = 18.86  %
336 -* Soil Temperature:0x0a8c =2700=27 °C
337 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
338 -* Interrupt: 0x00 = 0
461 +905.1 - SF7BW125 to SF10BW125
339 339  
340 -== 2. Payload Explanation and Sensor Interface ==
463 +905.3 - SF7BW125 to SF10BW125
341 341  
342 342  
343 -=== 2.4.1  Device ID ===
466 +(% style="color:#037691" %)**Downlink:**
344 344  
345 -(((
346 -By default, the Device ID equal to the last 6 bytes of IMEI.
347 -)))
468 +923.3 - SF7BW500 to SF12BW500
348 348  
349 -(((
350 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
351 -)))
470 +923.9 - SF7BW500 to SF12BW500
352 352  
353 -(((
354 -**Example:**
355 -)))
472 +924.5 - SF7BW500 to SF12BW500
356 356  
357 -(((
358 -AT+DEUI=A84041F15612
359 -)))
474 +925.1 - SF7BW500 to SF12BW500
360 360  
361 -(((
362 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
363 -)))
476 +925.7 - SF7BW500 to SF12BW500
364 364  
478 +926.3 - SF7BW500 to SF12BW500
365 365  
480 +926.9 - SF7BW500 to SF12BW500
366 366  
367 -=== 2.4.2  Version Info ===
482 +927.5 - SF7BW500 to SF12BW500
368 368  
369 -(((
370 -Specify the software version: 0x64=100, means firmware version 1.00.
371 -)))
484 +923.3 - SF12BW500(RX2 downlink only)
372 372  
373 -(((
374 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
375 -)))
376 376  
377 377  
488 +=== 2.7.3 CN470-510 (CN470) ===
378 378  
379 -=== 2.4.3  Battery Info ===
490 +Used in China, Default use CHE=1
380 380  
381 -(((
382 -Check the battery voltage for LSE01.
383 -)))
492 +(% style="color:#037691" %)**Uplink:**
384 384  
385 -(((
386 -Ex1: 0x0B45 = 2885mV
387 -)))
494 +486.3 - SF7BW125 to SF12BW125
388 388  
389 -(((
390 -Ex2: 0x0B49 = 2889mV
391 -)))
496 +486.5 - SF7BW125 to SF12BW125
392 392  
498 +486.7 - SF7BW125 to SF12BW125
393 393  
500 +486.9 - SF7BW125 to SF12BW125
394 394  
395 -=== 2.4. Signal Strength ===
502 +487.1 - SF7BW125 to SF12BW125
396 396  
397 -(((
398 -NB-IoT Network signal Strength.
399 -)))
504 +487.3 - SF7BW125 to SF12BW125
400 400  
401 -(((
402 -**Ex1: 0x1d = 29**
403 -)))
506 +487.5 - SF7BW125 to SF12BW125
404 404  
405 -(((
406 -(% style="color:blue" %)**0**(%%)  -113dBm or less
407 -)))
508 +487.7 - SF7BW125 to SF12BW125
408 408  
409 -(((
410 -(% style="color:blue" %)**1**(%%)  -111dBm
411 -)))
412 412  
413 -(((
414 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
415 -)))
511 +(% style="color:#037691" %)**Downlink:**
416 416  
417 -(((
418 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
419 -)))
513 +506.7 - SF7BW125 to SF12BW125
420 420  
421 -(((
422 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
423 -)))
515 +506.9 - SF7BW125 to SF12BW125
424 424  
517 +507.1 - SF7BW125 to SF12BW125
425 425  
519 +507.3 - SF7BW125 to SF12BW125
426 426  
427 -=== 2.4.5  Soil Moisture ===
521 +507.5 - SF7BW125 to SF12BW125
428 428  
429 -(((
430 -(((
431 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
432 -)))
433 -)))
523 +507.7 - SF7BW125 to SF12BW125
434 434  
435 -(((
436 -(((
437 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
438 -)))
439 -)))
525 +507.9 - SF7BW125 to SF12BW125
440 440  
441 -(((
442 -
443 -)))
527 +508.1 - SF7BW125 to SF12BW125
444 444  
445 -(((
446 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
447 -)))
529 +505.3 - SF12BW125 (RX2 downlink only)
448 448  
449 449  
450 450  
451 -=== 2.4. Soil Temperature ===
533 +=== 2.7.4 AU915-928(AU915) ===
452 452  
453 -(((
454 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
455 -)))
535 +Default use CHE=2
456 456  
457 -(((
458 -**Example**:
459 -)))
537 +(% style="color:#037691" %)**Uplink:**
460 460  
461 -(((
462 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
463 -)))
539 +916.8 - SF7BW125 to SF12BW125
464 464  
465 -(((
466 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
467 -)))
541 +917.0 - SF7BW125 to SF12BW125
468 468  
543 +917.2 - SF7BW125 to SF12BW125
469 469  
545 +917.4 - SF7BW125 to SF12BW125
470 470  
471 -=== 2.4.7  Soil Conductivity (EC) ===
547 +917.6 - SF7BW125 to SF12BW125
472 472  
473 -(((
474 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
475 -)))
549 +917.8 - SF7BW125 to SF12BW125
476 476  
477 -(((
478 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
479 -)))
551 +918.0 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -Generally, the EC value of irrigation water is less than 800uS / cm.
483 -)))
553 +918.2 - SF7BW125 to SF12BW125
484 484  
485 -(((
486 -
487 -)))
488 488  
489 -(((
490 -
491 -)))
556 +(% style="color:#037691" %)**Downlink:**
492 492  
493 -=== 2.4.8  Digital Interrupt ===
558 +923.3 - SF7BW500 to SF12BW500
494 494  
495 -(((
496 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
497 -)))
560 +923.9 - SF7BW500 to SF12BW500
498 498  
499 -(((
500 -The command is:
501 -)))
562 +924.5 - SF7BW500 to SF12BW500
502 502  
503 -(((
504 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
505 -)))
564 +925.1 - SF7BW500 to SF12BW500
506 506  
566 +925.7 - SF7BW500 to SF12BW500
507 507  
508 -(((
509 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
510 -)))
568 +926.3 - SF7BW500 to SF12BW500
511 511  
570 +926.9 - SF7BW500 to SF12BW500
512 512  
513 -(((
514 -Example:
515 -)))
572 +927.5 - SF7BW500 to SF12BW500
516 516  
517 -(((
518 -0x(00): Normal uplink packet.
519 -)))
574 +923.3 - SF12BW500(RX2 downlink only)
520 520  
521 -(((
522 -0x(01): Interrupt Uplink Packet.
523 -)))
524 524  
525 525  
578 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
526 526  
527 -=== 2.4.9  ​+5V Output ===
580 +(% style="color:#037691" %)**Default Uplink channel:**
528 528  
529 -(((
530 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
531 -)))
582 +923.2 - SF7BW125 to SF10BW125
532 532  
584 +923.4 - SF7BW125 to SF10BW125
533 533  
534 -(((
535 -The 5V output time can be controlled by AT Command.
536 -)))
537 537  
538 -(((
539 -(% style="color:blue" %)**AT+5VT=1000**
540 -)))
587 +(% style="color:#037691" %)**Additional Uplink Channel**:
541 541  
542 -(((
543 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
544 -)))
589 +(OTAA mode, channel added by JoinAccept message)
545 545  
591 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
546 546  
593 +922.2 - SF7BW125 to SF10BW125
547 547  
548 -== 2.5  Downlink Payload ==
595 +922.4 - SF7BW125 to SF10BW125
549 549  
550 -By default, NSE01 prints the downlink payload to console port.
597 +922.6 - SF7BW125 to SF10BW125
551 551  
552 -[[image:image-20220708133731-5.png]]
599 +922.8 - SF7BW125 to SF10BW125
553 553  
601 +923.0 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -(% style="color:blue" %)**Examples:**
557 -)))
603 +922.0 - SF7BW125 to SF10BW125
558 558  
559 -(((
560 -
561 -)))
562 562  
563 -* (((
564 -(% style="color:blue" %)**Set TDC**
565 -)))
606 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
566 566  
567 -(((
568 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
569 -)))
608 +923.6 - SF7BW125 to SF10BW125
570 570  
571 -(((
572 -Payload:    01 00 00 1E    TDC=30S
573 -)))
610 +923.8 - SF7BW125 to SF10BW125
574 574  
575 -(((
576 -Payload:    01 00 00 3C    TDC=60S
577 -)))
612 +924.0 - SF7BW125 to SF10BW125
578 578  
579 -(((
580 -
581 -)))
614 +924.2 - SF7BW125 to SF10BW125
582 582  
583 -* (((
584 -(% style="color:blue" %)**Reset**
585 -)))
616 +924.4 - SF7BW125 to SF10BW125
586 586  
587 -(((
588 -If payload = 0x04FF, it will reset the NSE01
589 -)))
618 +924.6 - SF7BW125 to SF10BW125
590 590  
591 591  
592 -* (% style="color:blue" %)**INTMOD**
621 +(% style="color:#037691" %)** Downlink:**
593 593  
594 -(((
595 -Downlink Payload: 06000003, Set AT+INTMOD=3
596 -)))
623 +Uplink channels 1-8 (RX1)
597 597  
625 +923.2 - SF10BW125 (RX2)
598 598  
599 599  
600 -== 2.6  ​LED Indicator ==
601 601  
602 -(((
603 -The NSE01 has an internal LED which is to show the status of different state.
629 +=== 2.7.6 KR920-923 (KR920) ===
604 604  
631 +Default channel:
605 605  
606 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
607 -* Then the LED will be on for 1 second means device is boot normally.
608 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
609 -* For each uplink probe, LED will be on for 500ms.
610 -)))
633 +922.1 - SF7BW125 to SF12BW125
611 611  
635 +922.3 - SF7BW125 to SF12BW125
612 612  
637 +922.5 - SF7BW125 to SF12BW125
613 613  
614 614  
615 -== 2.7  Installation in Soil ==
640 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
616 616  
617 -__**Measurement the soil surface**__
642 +922.1 - SF7BW125 to SF12BW125
618 618  
619 -(((
620 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
621 -)))
644 +922.3 - SF7BW125 to SF12BW125
622 622  
623 -[[image:1657259653666-883.png]]
646 +922.5 - SF7BW125 to SF12BW125
624 624  
648 +922.7 - SF7BW125 to SF12BW125
625 625  
626 -(((
627 -
650 +922.9 - SF7BW125 to SF12BW125
628 628  
629 -(((
630 -Dig a hole with diameter > 20CM.
631 -)))
652 +923.1 - SF7BW125 to SF12BW125
632 632  
633 -(((
634 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
635 -)))
636 -)))
654 +923.3 - SF7BW125 to SF12BW125
637 637  
638 -[[image:1654506665940-119.png]]
639 639  
640 -(((
641 -
642 -)))
657 +(% style="color:#037691" %)**Downlink:**
643 643  
659 +Uplink channels 1-7(RX1)
644 644  
645 -== 2. Firmware Change Log ==
661 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
646 646  
647 647  
648 -Download URL & Firmware Change log
649 649  
650 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
665 +=== 2.7.7 IN865-867 (IN865) ===
651 651  
667 +(% style="color:#037691" %)** Uplink:**
652 652  
653 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
669 +865.0625 - SF7BW125 to SF12BW125
654 654  
671 +865.4025 - SF7BW125 to SF12BW125
655 655  
673 +865.9850 - SF7BW125 to SF12BW125
656 656  
657 -== 2.9  ​Battery Analysis ==
658 658  
659 -=== 2.9.1  ​Battery Type ===
676 +(% style="color:#037691" %) **Downlink:**
660 660  
678 +Uplink channels 1-3 (RX1)
661 661  
680 +866.550 - SF10BW125 (RX2)
681 +
682 +
683 +
684 +
685 +== 2.8 LED Indicator ==
686 +
687 +The LSE01 has an internal LED which is to show the status of different state.
688 +
689 +* Blink once when device power on.
690 +* Solid ON for 5 seconds once device successful Join the network.
691 +* Blink once when device transmit a packet.
692 +
693 +== 2.9 Installation in Soil ==
694 +
695 +**Measurement the soil surface**
696 +
697 +
698 +[[image:1654506634463-199.png]] ​
699 +
662 662  (((
663 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
701 +(((
702 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
664 664  )))
704 +)))
665 665  
666 666  
707 +[[image:1654506665940-119.png]]
708 +
667 667  (((
668 -The battery is designed to last for several years depends on the actually use environment and update interval. 
710 +Dig a hole with diameter > 20CM.
669 669  )))
670 670  
713 +(((
714 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
715 +)))
671 671  
717 +
718 +== 2.10 ​Firmware Change Log ==
719 +
672 672  (((
673 -The battery related documents as below:
721 +**Firmware download link:**
674 674  )))
675 675  
676 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
677 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
678 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
724 +(((
725 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
726 +)))
679 679  
680 680  (((
681 -[[image:image-20220708140453-6.png]]
729 +
682 682  )))
683 683  
732 +(((
733 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
734 +)))
684 684  
736 +(((
737 +
738 +)))
685 685  
686 -=== 2.9.2  Power consumption Analyze ===
740 +(((
741 +**V1.0.**
742 +)))
687 687  
688 688  (((
689 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
745 +Release
690 690  )))
691 691  
692 692  
749 +== 2.11 ​Battery Analysis ==
750 +
751 +=== 2.11.1 ​Battery Type ===
752 +
693 693  (((
694 -Instruction to use as below:
754 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
695 695  )))
696 696  
697 697  (((
698 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
758 +The battery is designed to last for more than 5 years for the LSN50.
699 699  )))
700 700  
701 -
702 702  (((
703 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
762 +(((
763 +The battery-related documents are as below:
704 704  )))
765 +)))
705 705  
706 706  * (((
707 -Product Model
768 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
708 708  )))
709 709  * (((
710 -Uplink Interval
771 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
711 711  )))
712 712  * (((
713 -Working Mode
774 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
714 714  )))
715 715  
716 -(((
717 -And the Life expectation in difference case will be shown on the right.
718 -)))
777 + [[image:image-20220610172436-1.png]]
719 719  
720 -[[image:image-20220708141352-7.jpeg]]
721 721  
722 722  
781 +=== 2.11.2 ​Battery Note ===
723 723  
724 -=== 2.9.3  ​Battery Note ===
725 -
726 726  (((
727 727  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
728 728  )))
... ... @@ -729,176 +729,303 @@
729 729  
730 730  
731 731  
732 -=== 2.9. Replace the battery ===
789 +=== 2.11.3 Replace the battery ===
733 733  
734 734  (((
735 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
792 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
736 736  )))
737 737  
738 -
739 -
740 -= 3. ​ Access NB-IoT Module =
741 -
742 742  (((
743 -Users can directly access the AT command set of the NB-IoT module.
796 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
744 744  )))
745 745  
746 746  (((
747 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
800 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
748 748  )))
749 749  
750 -[[image:1657261278785-153.png]]
751 751  
752 752  
805 += 3. ​Using the AT Commands =
753 753  
754 -= 4.  Using the AT Commands =
807 +== 3.1 Access AT Commands ==
755 755  
756 -== 4.1  Access AT Commands ==
757 757  
758 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
810 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
759 759  
812 +[[image:1654501986557-872.png||height="391" width="800"]]
760 760  
761 -AT+<CMD>?  : Help on <CMD>
762 762  
763 -AT+<CMD>         : Run <CMD>
815 +Or if you have below board, use below connection:
764 764  
765 -AT+<CMD>=<value> : Set the value
766 766  
767 -AT+<CMD>=?  : Get the value
818 +[[image:1654502005655-729.png||height="503" width="801"]]
768 768  
769 769  
821 +
822 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
823 +
824 +
825 + [[image:1654502050864-459.png||height="564" width="806"]]
826 +
827 +
828 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
829 +
830 +
831 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
832 +
833 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
834 +
835 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
836 +
837 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
838 +
839 +
770 770  (% style="color:#037691" %)**General Commands**(%%)      
771 771  
772 -AT  : Attention       
842 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
773 773  
774 -AT?  : Short Help     
844 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
775 775  
776 -ATZ  : MCU Reset    
846 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
777 777  
778 -AT+TDC  : Application Data Transmission Interval
848 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
779 779  
780 -AT+CFG  : Print all configurations
781 781  
782 -AT+CFGMOD           : Working mode selection
851 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
783 783  
784 -AT+INTMOD            : Set the trigger interrupt mode
853 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
785 785  
786 -AT+5VT  : Set extend the time of 5V power  
855 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
787 787  
788 -AT+PRO  : Choose agreement
857 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
789 789  
790 -AT+WEIGRE  : Get weight or set weight to 0
859 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
791 791  
792 -AT+WEIGAP  : Get or Set the GapValue of weight
861 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
793 793  
794 -AT+RXDL  : Extend the sending and receiving time
863 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
795 795  
796 -AT+CNTFAC  : Get or set counting parameters
865 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
797 797  
798 -AT+SERVADDR  : Server Address
867 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
799 799  
869 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
800 800  
801 -(% style="color:#037691" %)**COAP Management**      
871 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
802 802  
803 -AT+URI            : Resource parameters
873 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
804 804  
875 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
805 805  
806 -(% style="color:#037691" %)**UDP Management**
877 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
807 807  
808 -AT+CFM          : Upload confirmation mode (only valid for UDP)
879 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
809 809  
881 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
810 810  
811 -(% style="color:#037691" %)**MQTT Management**
883 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
812 812  
813 -AT+CLIENT               : Get or Set MQTT client
814 814  
815 -AT+UNAME  : Get or Set MQTT Username
886 +(% style="color:#037691" %)**LoRa Network Management**
816 816  
817 -AT+PWD                  : Get or Set MQTT password
888 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
818 818  
819 -AT+PUBTOPI : Get or Set MQTT publish topic
890 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
820 820  
821 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
892 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
822 822  
894 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
823 823  
824 -(% style="color:#037691" %)**Information**          
896 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
825 825  
826 -AT+FDR  : Factory Data Reset
898 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
827 827  
828 -AT+PWOR : Serial Access Password
900 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
829 829  
902 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
830 830  
904 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
831 831  
832 -= ​5.  FAQ =
906 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
833 833  
834 -== 5.1 How to Upgrade Firmware ==
908 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
835 835  
910 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
836 836  
912 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
913 +
914 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
915 +
916 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
917 +
918 +
919 +(% style="color:#037691" %)**Information** 
920 +
921 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
922 +
923 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
924 +
925 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
926 +
927 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
928 +
929 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
930 +
931 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
932 +
933 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
934 +
935 +
936 += ​4. FAQ =
937 +
938 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
939 +
837 837  (((
838 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
941 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
942 +When downloading the images, choose the required image file for download. ​
839 839  )))
840 840  
841 841  (((
842 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
946 +
843 843  )))
844 844  
845 845  (((
846 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
950 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
847 847  )))
848 848  
953 +(((
954 +
955 +)))
849 849  
957 +(((
958 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
959 +)))
850 850  
851 -== 5.2  Can I calibrate NSE01 to different soil types? ==
961 +(((
962 +
963 +)))
852 852  
853 853  (((
854 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
966 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
855 855  )))
856 856  
969 +[[image:image-20220606154726-3.png]]
857 857  
858 -= 6.  Trouble Shooting =
859 859  
860 -== 6.1  ​Connection problem when uploading firmware ==
972 +When you use the TTN network, the US915 frequency bands use are:
861 861  
974 +* 903.9 - SF7BW125 to SF10BW125
975 +* 904.1 - SF7BW125 to SF10BW125
976 +* 904.3 - SF7BW125 to SF10BW125
977 +* 904.5 - SF7BW125 to SF10BW125
978 +* 904.7 - SF7BW125 to SF10BW125
979 +* 904.9 - SF7BW125 to SF10BW125
980 +* 905.1 - SF7BW125 to SF10BW125
981 +* 905.3 - SF7BW125 to SF10BW125
982 +* 904.6 - SF8BW500
862 862  
863 863  (((
864 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
985 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
865 865  )))
866 866  
867 -(% class="wikigeneratedid" %)
988 +(% class="box infomessage" %)
868 868  (((
990 +**AT+CHE=2**
991 +)))
992 +
993 +(% class="box infomessage" %)
994 +(((
995 +**ATZ**
996 +)))
997 +
998 +(((
999 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1000 +)))
1001 +
1002 +(((
869 869  
870 870  )))
871 871  
1006 +(((
1007 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1008 +)))
872 872  
873 -== 6.2  AT Command input doesn't work ==
1010 +[[image:image-20220606154825-4.png]]
874 874  
1012 +
1013 +
1014 += 5. Trouble Shooting =
1015 +
1016 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1017 +
1018 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1019 +
1020 +
1021 +== 5.2 AT Command input doesn’t work ==
1022 +
875 875  (((
876 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1024 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1025 +)))
877 877  
878 -
1027 +
1028 +== 5.3 Device rejoin in at the second uplink packet ==
1029 +
1030 +(% style="color:#4f81bd" %)**Issue describe as below:**
1031 +
1032 +[[image:1654500909990-784.png]]
1033 +
1034 +
1035 +(% style="color:#4f81bd" %)**Cause for this issue:**
1036 +
1037 +(((
1038 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
879 879  )))
880 880  
881 881  
882 -= 7. ​ Order Info =
1042 +(% style="color:#4f81bd" %)**Solution: **
883 883  
1044 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
884 884  
885 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1046 +[[image:1654500929571-736.png||height="458" width="832"]]
886 886  
887 887  
1049 += 6. ​Order Info =
1050 +
1051 +
1052 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1053 +
1054 +
1055 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1056 +
1057 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1058 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1059 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1060 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1061 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1062 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1063 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1064 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1065 +
1066 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1067 +
1068 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1069 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1070 +
888 888  (% class="wikigeneratedid" %)
889 889  (((
890 890  
891 891  )))
892 892  
893 -= 8.  Packing Info =
1076 += 7. Packing Info =
894 894  
895 895  (((
896 896  
897 897  
898 898  (% style="color:#037691" %)**Package Includes**:
1082 +)))
899 899  
900 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
901 -* External antenna x 1
1084 +* (((
1085 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
902 902  )))
903 903  
904 904  (((
... ... @@ -905,19 +905,24 @@
905 905  
906 906  
907 907  (% style="color:#037691" %)**Dimension and weight**:
1092 +)))
908 908  
909 -* Size: 195 x 125 x 55 mm
910 -* Weight:   420g
1094 +* (((
1095 +Device Size: cm
911 911  )))
1097 +* (((
1098 +Device Weight: g
1099 +)))
1100 +* (((
1101 +Package Size / pcs : cm
1102 +)))
1103 +* (((
1104 +Weight / pcs : g
912 912  
913 -(((
914 914  
915 -
916 -
917 -
918 918  )))
919 919  
920 -= 9.  Support =
1109 += 8. Support =
921 921  
922 922  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
923 923  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content