Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 31 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,728 +1,726 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Buildings & Home Automation 98 -* Logistics and Supply Chain Management 99 -* Smart Metering 100 -* Smart Agriculture 101 -* Smart Cities 102 -* Smart Factory 103 103 104 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 105 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 108 109 - ==1.5PinDefinitions ==102 +[[image:1654503992078-669.png]] 110 110 111 111 112 - [[image:1657246476176-652.png]]105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 113 113 114 114 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 115 115 116 - =2. Use NSE01tocommunicate withIoTServer=110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 117 117 118 - ==2.1How it works ==112 +[[image:image-20220606163732-6.jpeg]] 119 119 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 120 120 121 -((( 122 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 123 -))) 116 +**Add APP EUI in the application** 124 124 125 125 126 -((( 127 -The diagram below shows the working flow in default firmware of NSE01: 128 -))) 119 +[[image:1654504596150-405.png]] 129 129 130 -[[image:image-20220708101605-2.png]] 131 131 132 -((( 133 - 134 -))) 135 135 123 +**Add APP KEY and DEV EUI** 136 136 125 +[[image:1654504683289-357.png]] 137 137 138 -== 2.2 Configure the NSE01 == 139 139 140 140 141 - ===2.2.1Test Requirement===129 +**Step 2**: Power on LSE01 142 142 143 143 144 -((( 145 -To use NSE01 in your city, make sure meet below requirements: 146 -))) 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 147 147 148 -* Your local operator has already distributed a NB-IoT Network there. 149 -* The local NB-IoT network used the band that NSE01 supports. 150 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 134 +[[image:image-20220606163915-7.png]] 151 151 152 -((( 153 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 154 -))) 155 155 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 156 156 157 -[[image:16572 49419225-449.png]]139 +[[image:1654504778294-788.png]] 158 158 159 159 160 160 161 -== =2.2.2InsertSIM card ===143 +== 2.3 Uplink Payload == 162 162 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 163 163 ((( 164 - Insertthe NB-IoT Cardgetfromyourprovider.153 +Uplink payload includes in total 11 bytes. 165 165 ))) 166 166 167 -((( 168 -User need to take out the NB-IoT module and insert the SIM card like below: 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 169 169 ))) 170 170 171 171 172 -[[image:1657249468462-536.png]] 173 173 174 +=== 2.3.2 MOD~=1(Original value) === 174 174 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 175 175 176 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 177 177 178 -((( 179 -((( 180 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 181 181 ))) 182 -))) 183 183 184 184 185 -**Connection:** 186 186 187 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND196 +=== 2.3.3 Battery Info === 188 188 189 - (% style="background-color:yellow"%)USB TTLTXD <~-~-~-~-> UART_RXD198 +Check the battery voltage for LSE01. 190 190 191 - (% style="background-color:yellow"%)USBTTLRXD <~-~-~-~-> UART_TXD200 +Ex1: 0x0B45 = 2885mV 192 192 202 +Ex2: 0x0B49 = 2889mV 193 193 194 -In the PC, use below serial tool settings: 195 195 196 -* Baud: (% style="color:green" %)**9600** 197 -* Data bits:** (% style="color:green" %)8(%%)** 198 -* Stop bits: (% style="color:green" %)**1** 199 -* Parity: (% style="color:green" %)**None** 200 -* Flow Control: (% style="color:green" %)**None** 201 201 206 +=== 2.3.4 Soil Moisture === 207 + 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 + 210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 + 212 + 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 + 215 + 216 + 217 +=== 2.3.5 Soil Temperature === 218 + 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 + 221 +**Example**: 222 + 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 + 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 + 227 + 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 202 202 ((( 203 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 204 204 ))) 205 205 206 -[[image:image-20220708110657-3.png]] 235 +((( 236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 +))) 207 207 208 208 ((( 209 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]240 +Generally, the EC value of irrigation water is less than 800uS / cm. 210 210 ))) 211 211 243 +((( 244 + 245 +))) 212 212 247 +((( 248 + 249 +))) 213 213 214 -=== 2. 2.4Use CoAP protocol to uplink data===251 +=== 2.3.7 MOD === 215 215 216 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]253 +Firmware version at least v2.1 supports changing mode. 217 217 255 +For example, bytes[10]=90 218 218 219 - **Use below commands:**257 +mod=(bytes[10]>>7)&0x01=1. 220 220 221 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 223 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 224 224 225 - For parameter description,please refer toAT commandset260 +**Downlink Command:** 226 226 227 - [[image:1657249793983-486.png]]262 +If payload = 0x0A00, workmode=0 228 228 264 +If** **payload =** **0x0A01, workmode=1 229 229 230 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 231 231 232 -[[image:1657249831934-534.png]] 233 233 268 +=== 2.3.8 Decode payload in The Things Network === 234 234 270 +While using TTN network, you can add the payload format to decode the payload. 235 235 236 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 237 237 238 - This feature is supported since firmwareversion v1.0.1273 +[[image:1654505570700-128.png]] 239 239 275 +The payload decoder function for TTN is here: 240 240 241 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 242 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 243 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 244 244 245 -[[image:1657249864775-321.png]] 246 246 247 247 248 - [[image:1657249930215-289.png]]281 +== 2.4 Uplink Interval == 249 249 283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 250 250 251 251 252 -=== 2.2.6 Use MQTT protocol to uplink data === 253 253 254 - Thisfeatureis supported sincefirmware versionv110287 +== 2.5 Downlink Payload == 255 255 289 +By default, LSE50 prints the downlink payload to console port. 256 256 257 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 258 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 259 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 260 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 261 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 262 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 263 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 291 +[[image:image-20220606165544-8.png]] 264 264 265 -[[image:1657249978444-674.png]] 266 266 294 +**Examples:** 267 267 268 -[[image:1657249990869-686.png]] 269 269 297 +* **Set TDC** 270 270 271 -((( 272 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 273 -))) 299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 274 274 301 +Payload: 01 00 00 1E TDC=30S 275 275 303 +Payload: 01 00 00 3C TDC=60S 276 276 277 -=== 2.2.7 Use TCP protocol to uplink data === 278 278 279 - Thisfeature issupported since firmware version v110306 +* **Reset** 280 280 308 +If payload = 0x04FF, it will reset the LSE01 281 281 282 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 283 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 284 284 285 - [[image:1657250217799-140.png]]311 +* **CFM** 286 286 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 287 287 288 -[[image:1657250255956-604.png]] 289 289 290 290 317 +== 2.6 Show Data in DataCake IoT Server == 291 291 292 - === 2.2.8ChangeUpdateInterval===319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 293 293 294 -User can use below command to change the (% style="color:green" %)**uplink interval**. 295 295 296 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 297 297 298 -((( 299 -(% style="color:red" %)**NOTE:** 300 -))) 324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 301 301 302 -((( 303 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 304 -))) 305 305 327 +[[image:1654505857935-743.png]] 306 306 307 307 308 - ==2.3 Uplink Payload ==330 +[[image:1654505874829-548.png]] 309 309 310 - Inthis mode, uplinkpayloadincludes intal18bytes332 +Step 3: Create an account or log in Datacake. 311 311 312 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 313 -|=(% style="width: 60px;" %)((( 314 -**Size(bytes)** 315 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 316 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 334 +Step 4: Search the LSE01 and add DevEUI. 317 317 318 -((( 319 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 320 -))) 321 321 337 +[[image:1654505905236-553.png]] 322 322 323 -[[image:image-20220708111918-4.png]] 324 324 340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 325 325 326 - The payloadis ASCII string, representative same HEX:342 +[[image:1654505925508-181.png]] 327 327 328 -0x72403155615900640c7817075e0a8c02f900 where: 329 329 330 -* Device ID: 0x 724031556159 = 724031556159 331 -* Version: 0x0064=100=1.0.0 332 332 333 -* BAT: 0x0c78 = 3192 mV = 3.192V 334 -* Singal: 0x17 = 23 335 -* Soil Moisture: 0x075e= 1886 = 18.86 % 336 -* Soil Temperature:0x0a8c =2700=27 °C 337 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 338 -* Interrupt: 0x00 = 0 346 +== 2.7 Frequency Plans == 339 339 340 - ==2.4PayloadExplanationandSensorInterface==348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 341 341 342 342 343 -=== 2. 4.1DeviceID===351 +=== 2.7.1 EU863-870 (EU868) === 344 344 345 -((( 346 -By default, the Device ID equal to the last 6 bytes of IMEI. 347 -))) 353 +(% style="color:#037691" %)** Uplink:** 348 348 349 -((( 350 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 351 -))) 355 +868.1 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -**Example:** 355 -))) 357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 356 356 357 -((( 358 -AT+DEUI=A84041F15612 359 -))) 359 +868.5 - SF7BW125 to SF12BW125 360 360 361 -((( 362 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 363 -))) 361 +867.1 - SF7BW125 to SF12BW125 364 364 363 +867.3 - SF7BW125 to SF12BW125 365 365 365 +867.5 - SF7BW125 to SF12BW125 366 366 367 - ===2.4.2VersionInfo ===367 +867.7 - SF7BW125 to SF12BW125 368 368 369 -((( 370 -Specify the software version: 0x64=100, means firmware version 1.00. 371 -))) 369 +867.9 - SF7BW125 to SF12BW125 372 372 373 -((( 374 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 375 -))) 371 +868.8 - FSK 376 376 377 377 374 +(% style="color:#037691" %)** Downlink:** 378 378 379 - ===2.4.3 BatteryInfo===376 +Uplink channels 1-9 (RX1) 380 380 381 -((( 382 -Check the battery voltage for LSE01. 383 -))) 378 +869.525 - SF9BW125 (RX2 downlink only) 384 384 385 -((( 386 -Ex1: 0x0B45 = 2885mV 387 -))) 388 388 389 -((( 390 -Ex2: 0x0B49 = 2889mV 391 -))) 392 392 382 +=== 2.7.2 US902-928(US915) === 393 393 384 +Used in USA, Canada and South America. Default use CHE=2 394 394 395 - ===2.4.4 Signal Strength===386 +(% style="color:#037691" %)**Uplink:** 396 396 397 -((( 398 -NB-IoT Network signal Strength. 399 -))) 388 +903.9 - SF7BW125 to SF10BW125 400 400 401 -((( 402 -**Ex1: 0x1d = 29** 403 -))) 390 +904.1 - SF7BW125 to SF10BW125 404 404 405 -((( 406 -(% style="color:blue" %)**0**(%%) -113dBm or less 407 -))) 392 +904.3 - SF7BW125 to SF10BW125 408 408 409 -((( 410 -(% style="color:blue" %)**1**(%%) -111dBm 411 -))) 394 +904.5 - SF7BW125 to SF10BW125 412 412 413 -((( 414 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 415 -))) 396 +904.7 - SF7BW125 to SF10BW125 416 416 417 -((( 418 -(% style="color:blue" %)**31** (%%) -51dBm or greater 419 -))) 398 +904.9 - SF7BW125 to SF10BW125 420 420 421 -((( 422 -(% style="color:blue" %)**99** (%%) Not known or not detectable 423 -))) 400 +905.1 - SF7BW125 to SF10BW125 424 424 402 +905.3 - SF7BW125 to SF10BW125 425 425 426 426 427 - ===2.4.5 SoilMoisture===405 +(% style="color:#037691" %)**Downlink:** 428 428 429 -((( 430 -((( 431 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 432 -))) 433 -))) 407 +923.3 - SF7BW500 to SF12BW500 434 434 435 -((( 436 -((( 437 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 438 -))) 439 -))) 409 +923.9 - SF7BW500 to SF12BW500 440 440 441 -((( 442 - 443 -))) 411 +924.5 - SF7BW500 to SF12BW500 444 444 445 -((( 446 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 447 -))) 413 +925.1 - SF7BW500 to SF12BW500 448 448 415 +925.7 - SF7BW500 to SF12BW500 449 449 417 +926.3 - SF7BW500 to SF12BW500 450 450 451 - ===2.4.6oilTemperature===419 +926.9 - SF7BW500 to SF12BW500 452 452 453 -((( 454 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 455 -))) 421 +927.5 - SF7BW500 to SF12BW500 456 456 457 -((( 458 -**Example**: 459 -))) 423 +923.3 - SF12BW500(RX2 downlink only) 460 460 461 -((( 462 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 463 -))) 464 464 465 -((( 466 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 467 -))) 468 468 427 +=== 2.7.3 CN470-510 (CN470) === 469 469 429 +Used in China, Default use CHE=1 470 470 471 - ===2.4.7 SoilConductivity(EC)===431 +(% style="color:#037691" %)**Uplink:** 472 472 473 -((( 474 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 475 -))) 433 +486.3 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 479 -))) 435 +486.5 - SF7BW125 to SF12BW125 480 480 481 -((( 482 -Generally, the EC value of irrigation water is less than 800uS / cm. 483 -))) 437 +486.7 - SF7BW125 to SF12BW125 484 484 485 -((( 486 - 487 -))) 439 +486.9 - SF7BW125 to SF12BW125 488 488 489 -((( 490 - 491 -))) 441 +487.1 - SF7BW125 to SF12BW125 492 492 493 - === 2.4.8DigitalInterrupt===443 +487.3 - SF7BW125 to SF12BW125 494 494 495 -((( 496 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 497 -))) 445 +487.5 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -The command is: 501 -))) 447 +487.7 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 505 -))) 506 506 450 +(% style="color:#037691" %)**Downlink:** 507 507 508 -((( 509 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 510 -))) 452 +506.7 - SF7BW125 to SF12BW125 511 511 454 +506.9 - SF7BW125 to SF12BW125 512 512 513 -((( 514 -Example: 515 -))) 456 +507.1 - SF7BW125 to SF12BW125 516 516 517 -((( 518 -0x(00): Normal uplink packet. 519 -))) 458 +507.3 - SF7BW125 to SF12BW125 520 520 521 -((( 522 -0x(01): Interrupt Uplink Packet. 523 -))) 460 +507.5 - SF7BW125 to SF12BW125 524 524 462 +507.7 - SF7BW125 to SF12BW125 525 525 464 +507.9 - SF7BW125 to SF12BW125 526 526 527 - === 2.4.9+5VOutput===466 +508.1 - SF7BW125 to SF12BW125 528 528 529 -((( 530 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 531 -))) 468 +505.3 - SF12BW125 (RX2 downlink only) 532 532 533 533 534 -((( 535 -The 5V output time can be controlled by AT Command. 536 -))) 537 537 538 -((( 539 -(% style="color:blue" %)**AT+5VT=1000** 540 -))) 472 +=== 2.7.4 AU915-928(AU915) === 541 541 542 -((( 543 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 544 -))) 474 +Default use CHE=2 545 545 476 +(% style="color:#037691" %)**Uplink:** 546 546 478 +916.8 - SF7BW125 to SF12BW125 547 547 548 - ==2.5DownlinkPayload ==480 +917.0 - SF7BW125 to SF12BW125 549 549 550 - Bydefault,NSE01prints the downlinkpayload to console port.482 +917.2 - SF7BW125 to SF12BW125 551 551 552 - [[image:image-20220708133731-5.png]]484 +917.4 - SF7BW125 to SF12BW125 553 553 486 +917.6 - SF7BW125 to SF12BW125 554 554 555 -((( 556 -(% style="color:blue" %)**Examples:** 557 -))) 488 +917.8 - SF7BW125 to SF12BW125 558 558 559 -((( 560 - 561 -))) 490 +918.0 - SF7BW125 to SF12BW125 562 562 563 -* ((( 564 -(% style="color:blue" %)**Set TDC** 565 -))) 492 +918.2 - SF7BW125 to SF12BW125 566 566 567 -((( 568 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 569 -))) 570 570 571 -((( 572 -Payload: 01 00 00 1E TDC=30S 573 -))) 495 +(% style="color:#037691" %)**Downlink:** 574 574 575 -((( 576 -Payload: 01 00 00 3C TDC=60S 577 -))) 497 +923.3 - SF7BW500 to SF12BW500 578 578 579 -((( 580 - 581 -))) 499 +923.9 - SF7BW500 to SF12BW500 582 582 583 -* ((( 584 -(% style="color:blue" %)**Reset** 585 -))) 501 +924.5 - SF7BW500 to SF12BW500 586 586 587 -((( 588 -If payload = 0x04FF, it will reset the NSE01 589 -))) 503 +925.1 - SF7BW500 to SF12BW500 590 590 505 +925.7 - SF7BW500 to SF12BW500 591 591 592 - *(%style="color:blue"%)**INTMOD**507 +926.3 - SF7BW500 to SF12BW500 593 593 594 -((( 595 -Downlink Payload: 06000003, Set AT+INTMOD=3 596 -))) 509 +926.9 - SF7BW500 to SF12BW500 597 597 511 +927.5 - SF7BW500 to SF12BW500 598 598 513 +923.3 - SF12BW500(RX2 downlink only) 599 599 600 -== 2.6 LED Indicator == 601 601 602 -((( 603 -The NSE01 has an internal LED which is to show the status of different state. 604 604 517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 605 605 606 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 607 -* Then the LED will be on for 1 second means device is boot normally. 608 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 609 -* For each uplink probe, LED will be on for 500ms. 610 -))) 519 +(% style="color:#037691" %)**Default Uplink channel:** 611 611 521 +923.2 - SF7BW125 to SF10BW125 612 612 523 +923.4 - SF7BW125 to SF10BW125 613 613 614 614 615 - ==2.7 Installation inSoil==526 +(% style="color:#037691" %)**Additional Uplink Channel**: 616 616 617 - __**Measurementthesoilsurface**__528 +(OTAA mode, channel added by JoinAccept message) 618 618 619 -((( 620 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 621 -))) 530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 622 622 623 - [[image:1657259653666-883.png]]532 +922.2 - SF7BW125 to SF10BW125 624 624 534 +922.4 - SF7BW125 to SF10BW125 625 625 626 -((( 627 - 536 +922.6 - SF7BW125 to SF10BW125 628 628 629 -((( 630 -Dig a hole with diameter > 20CM. 631 -))) 538 +922.8 - SF7BW125 to SF10BW125 632 632 633 -((( 634 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 635 -))) 636 -))) 540 +923.0 - SF7BW125 to SF10BW125 637 637 638 - [[image:1654506665940-119.png]]542 +922.0 - SF7BW125 to SF10BW125 639 639 640 -((( 641 - 642 -))) 643 643 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 644 644 645 - ==2.8FirmwareChange Log==547 +923.6 - SF7BW125 to SF10BW125 646 646 549 +923.8 - SF7BW125 to SF10BW125 647 647 648 - DownloadURL&FirmwareChange log551 +924.0 - SF7BW125 to SF10BW125 649 649 650 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]553 +924.2 - SF7BW125 to SF10BW125 651 651 555 +924.4 - SF7BW125 to SF10BW125 652 652 653 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]557 +924.6 - SF7BW125 to SF10BW125 654 654 655 655 560 +(% style="color:#037691" %)** Downlink:** 656 656 657 - ==2.9 Battery Analysis==562 +Uplink channels 1-8 (RX1) 658 658 659 - ===2.9.1BatteryType ===564 +923.2 - SF10BW125 (RX2) 660 660 661 661 567 + 568 +=== 2.7.6 KR920-923 (KR920) === 569 + 570 +Default channel: 571 + 572 +922.1 - SF7BW125 to SF12BW125 573 + 574 +922.3 - SF7BW125 to SF12BW125 575 + 576 +922.5 - SF7BW125 to SF12BW125 577 + 578 + 579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 580 + 581 +922.1 - SF7BW125 to SF12BW125 582 + 583 +922.3 - SF7BW125 to SF12BW125 584 + 585 +922.5 - SF7BW125 to SF12BW125 586 + 587 +922.7 - SF7BW125 to SF12BW125 588 + 589 +922.9 - SF7BW125 to SF12BW125 590 + 591 +923.1 - SF7BW125 to SF12BW125 592 + 593 +923.3 - SF7BW125 to SF12BW125 594 + 595 + 596 +(% style="color:#037691" %)**Downlink:** 597 + 598 +Uplink channels 1-7(RX1) 599 + 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 662 662 ((( 663 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 664 664 ))) 645 +))) 665 665 666 666 648 +[[image:1654506665940-119.png]] 649 + 667 667 ((( 668 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.651 +Dig a hole with diameter > 20CM. 669 669 ))) 670 670 654 +((( 655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 656 +))) 671 671 658 + 659 +== 2.10 Firmware Change Log == 660 + 672 672 ((( 673 - The battery relateddocumentsasbelow:662 +**Firmware download link:** 674 674 ))) 675 675 676 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]677 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]678 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]665 +((( 666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 667 +))) 679 679 680 680 ((( 681 - [[image:image-20220708140453-6.png]]670 + 682 682 ))) 683 683 673 +((( 674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 675 +))) 684 684 677 +((( 678 + 679 +))) 685 685 686 -=== 2.9.2 Power consumption Analyze === 681 +((( 682 +**V1.0.** 683 +))) 687 687 688 688 ((( 689 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.686 +Release 690 690 ))) 691 691 692 692 690 +== 2.11 Battery Analysis == 691 + 692 +=== 2.11.1 Battery Type === 693 + 693 693 ((( 694 - Instruction touse as below:695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 695 695 ))) 696 696 697 697 ((( 698 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]699 +The battery is designed to last for more than 5 years for the LSN50. 699 699 ))) 700 700 701 - 702 702 ((( 703 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 +((( 704 +The battery-related documents are as below: 704 704 ))) 706 +))) 705 705 706 706 * ((( 707 - ProductModel709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 708 708 ))) 709 709 * ((( 710 - UplinkInterval712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 711 711 ))) 712 712 * ((( 713 - WorkingMode715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 714 714 ))) 715 715 716 -((( 717 -And the Life expectation in difference case will be shown on the right. 718 -))) 718 + [[image:image-20220606171726-9.png]] 719 719 720 -[[image:image-20220708141352-7.jpeg]] 721 721 722 722 722 +=== 2.11.2 Battery Note === 723 723 724 -=== 2.9.3 Battery Note === 725 - 726 726 ((( 727 727 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 728 728 ))) ... ... @@ -729,176 +729,303 @@ 729 729 730 730 731 731 732 -=== 2. 9.4Replace the battery ===730 +=== 2.11.3 Replace the battery === 733 733 734 734 ((( 735 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 736 736 ))) 737 737 738 - 739 - 740 -= 3. Access NB-IoT Module = 741 - 742 742 ((( 743 - Userscan directly accesstheATcommand set of theNB-IoTmodule.737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 744 744 ))) 745 745 746 746 ((( 747 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 748 748 ))) 749 749 750 -[[image:1657261278785-153.png]] 751 751 752 752 746 += 3. Using the AT Commands = 753 753 754 -= 4.UsingtheAT Commands =748 +== 3.1 Access AT Commands == 755 755 756 -== 4.1 Access AT Commands == 757 757 758 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 759 759 753 +[[image:1654501986557-872.png||height="391" width="800"]] 760 760 761 -AT+<CMD>? : Help on <CMD> 762 762 763 - AT+<CMD>: Run<CMD>756 +Or if you have below board, use below connection: 764 764 765 -AT+<CMD>=<value> : Set the value 766 766 767 - AT+<CMD>=?:Get the value759 +[[image:1654502005655-729.png||height="503" width="801"]] 768 768 769 769 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 770 770 (% style="color:#037691" %)**General Commands**(%%) 771 771 772 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 773 773 774 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 775 775 776 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 777 777 778 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 779 779 780 -AT+CFG : Print all configurations 781 781 782 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 783 783 784 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 785 785 786 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 787 787 788 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 789 789 790 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 791 791 792 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 793 793 794 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 795 795 796 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 797 797 798 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 799 799 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 800 800 801 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 802 802 803 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 804 804 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 805 805 806 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 807 807 808 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 809 809 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 810 810 811 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 812 812 813 -AT+CLIENT : Get or Set MQTT client 814 814 815 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 816 816 817 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 818 818 819 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 820 820 821 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 822 822 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 823 823 824 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 825 825 826 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 827 827 828 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 829 829 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 830 830 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 831 831 832 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 833 833 834 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 835 835 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 836 836 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 837 837 ((( 838 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 839 839 ))) 840 840 841 841 ((( 842 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 843 843 ))) 844 844 845 845 ((( 846 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 847 847 ))) 848 848 894 +((( 895 + 896 +))) 849 849 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 850 850 851 -== 5.2 Can I calibrate NSE01 to different soil types? == 902 +((( 903 + 904 +))) 852 852 853 853 ((( 854 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 855 855 ))) 856 856 910 +[[image:image-20220606154726-3.png]] 857 857 858 -= 6. Trouble Shooting = 859 859 860 - ==6.1 Connection problemwhenuploadingfirmware==913 +When you use the TTN network, the US915 frequency bands use are: 861 861 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 862 862 863 863 ((( 864 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 865 865 ))) 866 866 867 -(% class=" wikigeneratedid" %)929 +(% class="box infomessage" %) 868 868 ((( 931 +**AT+CHE=2** 932 +))) 933 + 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 938 + 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 942 + 943 +((( 869 869 870 870 ))) 871 871 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 872 872 873 - == 6.2 AT Commandinput doesn't work ==951 +[[image:image-20220606154825-4.png]] 874 874 953 + 954 + 955 += 5. Trouble Shooting = 956 + 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 + 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 875 875 ((( 876 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 877 877 878 - 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 879 879 ))) 880 880 881 881 882 - =7. OrderInfo=983 +(% style="color:#4f81bd" %)**Solution: ** 883 883 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 884 884 885 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**987 +[[image:1654500929571-736.png||height="458" width="832"]] 886 886 887 887 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 888 888 (% class="wikigeneratedid" %) 889 889 ((( 890 890 891 891 ))) 892 892 893 -= 8.1017 += 7. Packing Info = 894 894 895 895 ((( 896 896 897 897 898 898 (% style="color:#037691" %)**Package Includes**: 1023 +))) 899 899 900 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1901 - *Externalantennax 11025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 902 902 ))) 903 903 904 904 ((( ... ... @@ -905,19 +905,30 @@ 905 905 906 906 907 907 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 908 908 909 -* Size: 195 x 125 x 55 mm910 - * Weight:420g1035 +* ((( 1036 +Device Size: cm 911 911 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 912 912 913 -((( 914 - 915 915 916 - 917 917 918 918 ))) 919 919 920 -= 9.1051 += 8. Support = 921 921 922 922 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 923 923 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content