Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 31 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,721 +1,726 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Agriculture 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 - ==1.5 PinDefinitions==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 103 104 104 105 -[[image:165 7246476176-652.png]]102 +[[image:1654503992078-669.png]] 106 106 107 107 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 108 109 -= 2. Use NSE01 to communicate with IoT Server = 110 110 111 - ==2.1Howitworks==108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 112 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 113 113 114 -((( 115 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 116 -))) 112 +[[image:image-20220606163732-6.jpeg]] 117 117 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 118 119 -((( 120 -The diagram below shows the working flow in default firmware of NSE01: 121 -))) 116 +**Add APP EUI in the application** 122 122 123 -[[image:image-20220708101605-2.png]] 124 124 125 -((( 126 - 127 -))) 119 +[[image:1654504596150-405.png]] 128 128 129 129 130 130 131 - ==2.2Configurethe NSE01==123 +**Add APP KEY and DEV EUI** 132 132 125 +[[image:1654504683289-357.png]] 133 133 134 -=== 2.2.1 Test Requirement === 135 135 136 136 137 -((( 138 -To use NSE01 in your city, make sure meet below requirements: 139 -))) 129 +**Step 2**: Power on LSE01 140 140 141 -* Your local operator has already distributed a NB-IoT Network there. 142 -* The local NB-IoT network used the band that NSE01 supports. 143 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 144 144 145 -((( 146 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 147 -))) 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 148 148 134 +[[image:image-20220606163915-7.png]] 149 149 150 -[[image:1657249419225-449.png]] 151 151 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 152 152 139 +[[image:1654504778294-788.png]] 153 153 154 -=== 2.2.2 Insert SIM card === 155 155 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 156 156 ((( 157 - Insertthe NB-IoT Cardgetfromyourprovider.153 +Uplink payload includes in total 11 bytes. 158 158 ))) 159 159 160 -((( 161 -User need to take out the NB-IoT module and insert the SIM card like below: 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 162 162 ))) 163 163 164 164 165 -[[image:1657249468462-536.png]] 166 166 174 +=== 2.3.2 MOD~=1(Original value) === 167 167 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 168 168 169 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 170 170 171 -((( 172 -((( 173 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 174 174 ))) 175 -))) 176 176 177 177 178 -**Connection:** 179 179 180 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND196 +=== 2.3.3 Battery Info === 181 181 182 - (% style="background-color:yellow"%)USB TTLTXD <~-~-~-~-> UART_RXD198 +Check the battery voltage for LSE01. 183 183 184 - (% style="background-color:yellow"%)USBTTLRXD <~-~-~-~-> UART_TXD200 +Ex1: 0x0B45 = 2885mV 185 185 202 +Ex2: 0x0B49 = 2889mV 186 186 187 -In the PC, use below serial tool settings: 188 188 189 -* Baud: (% style="color:green" %)**9600** 190 -* Data bits:** (% style="color:green" %)8(%%)** 191 -* Stop bits: (% style="color:green" %)**1** 192 -* Parity: (% style="color:green" %)**None** 193 -* Flow Control: (% style="color:green" %)**None** 194 194 206 +=== 2.3.4 Soil Moisture === 207 + 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 + 210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 211 + 212 + 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 214 + 215 + 216 + 217 +=== 2.3.5 Soil Temperature === 218 + 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 220 + 221 +**Example**: 222 + 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 224 + 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 226 + 227 + 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 195 195 ((( 196 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 197 197 ))) 198 198 199 -[[image:image-20220708110657-3.png]] 235 +((( 236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 237 +))) 200 200 201 201 ((( 202 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]240 +Generally, the EC value of irrigation water is less than 800uS / cm. 203 203 ))) 204 204 243 +((( 244 + 245 +))) 205 205 247 +((( 248 + 249 +))) 206 206 207 -=== 2. 2.4Use CoAP protocol to uplink data===251 +=== 2.3.7 MOD === 208 208 209 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]253 +Firmware version at least v2.1 supports changing mode. 210 210 255 +For example, bytes[10]=90 211 211 212 - **Use below commands:**257 +mod=(bytes[10]>>7)&0x01=1. 213 213 214 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 215 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 216 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 217 217 218 - For parameter description,please refer toAT commandset260 +**Downlink Command:** 219 219 220 - [[image:1657249793983-486.png]]262 +If payload = 0x0A00, workmode=0 221 221 264 +If** **payload =** **0x0A01, workmode=1 222 222 223 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 224 224 225 -[[image:1657249831934-534.png]] 226 226 268 +=== 2.3.8 Decode payload in The Things Network === 227 227 270 +While using TTN network, you can add the payload format to decode the payload. 228 228 229 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 230 230 231 - This feature is supported since firmwareversion v1.0.1273 +[[image:1654505570700-128.png]] 232 232 275 +The payload decoder function for TTN is here: 233 233 234 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 236 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 237 237 238 -[[image:1657249864775-321.png]] 239 239 240 240 241 - [[image:1657249930215-289.png]]281 +== 2.4 Uplink Interval == 242 242 283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 243 243 244 244 245 -=== 2.2.6 Use MQTT protocol to uplink data === 246 246 247 - Thisfeatureis supported sincefirmware versionv110287 +== 2.5 Downlink Payload == 248 248 289 +By default, LSE50 prints the downlink payload to console port. 249 249 250 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 256 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 291 +[[image:image-20220606165544-8.png]] 257 257 258 -[[image:1657249978444-674.png]] 259 259 294 +**Examples:** 260 260 261 -[[image:1657249990869-686.png]] 262 262 297 +* **Set TDC** 263 263 264 -((( 265 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 -))) 299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 267 267 301 +Payload: 01 00 00 1E TDC=30S 268 268 303 +Payload: 01 00 00 3C TDC=60S 269 269 270 -=== 2.2.7 Use TCP protocol to uplink data === 271 271 272 - Thisfeature issupported since firmware version v110306 +* **Reset** 273 273 308 +If payload = 0x04FF, it will reset the LSE01 274 274 275 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 277 277 278 - [[image:1657250217799-140.png]]311 +* **CFM** 279 279 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 280 280 281 -[[image:1657250255956-604.png]] 282 282 283 283 317 +== 2.6 Show Data in DataCake IoT Server == 284 284 285 - === 2.2.8ChangeUpdateInterval===319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 286 286 287 -User can use below command to change the (% style="color:green" %)**uplink interval**. 288 288 289 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 290 290 291 -((( 292 -(% style="color:red" %)**NOTE:** 293 -))) 324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 294 294 295 -((( 296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 -))) 298 298 327 +[[image:1654505857935-743.png]] 299 299 300 300 301 - ==2.3 Uplink Payload ==330 +[[image:1654505874829-548.png]] 302 302 303 - Inthis mode, uplinkpayloadincludes intal18bytes332 +Step 3: Create an account or log in Datacake. 304 304 305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 -|=(% style="width: 60px;" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 334 +Step 4: Search the LSE01 and add DevEUI. 310 310 311 -((( 312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 -))) 314 314 337 +[[image:1654505905236-553.png]] 315 315 316 -[[image:image-20220708111918-4.png]] 317 317 340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 318 318 319 - The payloadis ASCII string, representative same HEX:342 +[[image:1654505925508-181.png]] 320 320 321 -0x72403155615900640c7817075e0a8c02f900 where: 322 322 323 -* Device ID: 0x 724031556159 = 724031556159 324 -* Version: 0x0064=100=1.0.0 325 325 326 -* BAT: 0x0c78 = 3192 mV = 3.192V 327 -* Singal: 0x17 = 23 328 -* Soil Moisture: 0x075e= 1886 = 18.86 % 329 -* Soil Temperature:0x0a8c =2700=27 °C 330 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 331 -* Interrupt: 0x00 = 0 346 +== 2.7 Frequency Plans == 332 332 333 - ==2.4PayloadExplanationandSensorInterface==348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 334 334 335 335 336 -=== 2. 4.1DeviceID===351 +=== 2.7.1 EU863-870 (EU868) === 337 337 338 -((( 339 -By default, the Device ID equal to the last 6 bytes of IMEI. 340 -))) 353 +(% style="color:#037691" %)** Uplink:** 341 341 342 -((( 343 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 344 -))) 355 +868.1 - SF7BW125 to SF12BW125 345 345 346 -((( 347 -**Example:** 348 -))) 357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 349 349 350 -((( 351 -AT+DEUI=A84041F15612 352 -))) 359 +868.5 - SF7BW125 to SF12BW125 353 353 354 -((( 355 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 -))) 361 +867.1 - SF7BW125 to SF12BW125 357 357 363 +867.3 - SF7BW125 to SF12BW125 358 358 365 +867.5 - SF7BW125 to SF12BW125 359 359 360 - ===2.4.2VersionInfo ===367 +867.7 - SF7BW125 to SF12BW125 361 361 362 -((( 363 -Specify the software version: 0x64=100, means firmware version 1.00. 364 -))) 369 +867.9 - SF7BW125 to SF12BW125 365 365 366 -((( 367 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 -))) 371 +868.8 - FSK 369 369 370 370 374 +(% style="color:#037691" %)** Downlink:** 371 371 372 - ===2.4.3 BatteryInfo===376 +Uplink channels 1-9 (RX1) 373 373 374 -((( 375 -Check the battery voltage for LSE01. 376 -))) 378 +869.525 - SF9BW125 (RX2 downlink only) 377 377 378 -((( 379 -Ex1: 0x0B45 = 2885mV 380 -))) 381 381 382 -((( 383 -Ex2: 0x0B49 = 2889mV 384 -))) 385 385 382 +=== 2.7.2 US902-928(US915) === 386 386 384 +Used in USA, Canada and South America. Default use CHE=2 387 387 388 - ===2.4.4 Signal Strength===386 +(% style="color:#037691" %)**Uplink:** 389 389 390 -((( 391 -NB-IoT Network signal Strength. 392 -))) 388 +903.9 - SF7BW125 to SF10BW125 393 393 394 -((( 395 -**Ex1: 0x1d = 29** 396 -))) 390 +904.1 - SF7BW125 to SF10BW125 397 397 398 -((( 399 -(% style="color:blue" %)**0**(%%) -113dBm or less 400 -))) 392 +904.3 - SF7BW125 to SF10BW125 401 401 402 -((( 403 -(% style="color:blue" %)**1**(%%) -111dBm 404 -))) 394 +904.5 - SF7BW125 to SF10BW125 405 405 406 -((( 407 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 408 -))) 396 +904.7 - SF7BW125 to SF10BW125 409 409 410 -((( 411 -(% style="color:blue" %)**31** (%%) -51dBm or greater 412 -))) 398 +904.9 - SF7BW125 to SF10BW125 413 413 414 -((( 415 -(% style="color:blue" %)**99** (%%) Not known or not detectable 416 -))) 400 +905.1 - SF7BW125 to SF10BW125 417 417 402 +905.3 - SF7BW125 to SF10BW125 418 418 419 419 420 - ===2.4.5 SoilMoisture===405 +(% style="color:#037691" %)**Downlink:** 421 421 422 -((( 423 -((( 424 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 425 -))) 426 -))) 407 +923.3 - SF7BW500 to SF12BW500 427 427 428 -((( 429 -((( 430 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 431 -))) 432 -))) 409 +923.9 - SF7BW500 to SF12BW500 433 433 434 -((( 435 - 436 -))) 411 +924.5 - SF7BW500 to SF12BW500 437 437 438 -((( 439 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 440 -))) 413 +925.1 - SF7BW500 to SF12BW500 441 441 415 +925.7 - SF7BW500 to SF12BW500 442 442 417 +926.3 - SF7BW500 to SF12BW500 443 443 444 - ===2.4.6oilTemperature===419 +926.9 - SF7BW500 to SF12BW500 445 445 446 -((( 447 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 448 -))) 421 +927.5 - SF7BW500 to SF12BW500 449 449 450 -((( 451 -**Example**: 452 -))) 423 +923.3 - SF12BW500(RX2 downlink only) 453 453 454 -((( 455 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 456 -))) 457 457 458 -((( 459 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 460 -))) 461 461 427 +=== 2.7.3 CN470-510 (CN470) === 462 462 429 +Used in China, Default use CHE=1 463 463 464 - ===2.4.7 SoilConductivity(EC)===431 +(% style="color:#037691" %)**Uplink:** 465 465 466 -((( 467 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 468 -))) 433 +486.3 - SF7BW125 to SF12BW125 469 469 470 -((( 471 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 472 -))) 435 +486.5 - SF7BW125 to SF12BW125 473 473 474 -((( 475 -Generally, the EC value of irrigation water is less than 800uS / cm. 476 -))) 437 +486.7 - SF7BW125 to SF12BW125 477 477 478 -((( 479 - 480 -))) 439 +486.9 - SF7BW125 to SF12BW125 481 481 482 -((( 483 - 484 -))) 441 +487.1 - SF7BW125 to SF12BW125 485 485 486 - === 2.4.8DigitalInterrupt===443 +487.3 - SF7BW125 to SF12BW125 487 487 488 -((( 489 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 -))) 445 +487.5 - SF7BW125 to SF12BW125 491 491 492 -((( 493 -The command is: 494 -))) 447 +487.7 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 -))) 499 499 450 +(% style="color:#037691" %)**Downlink:** 500 500 501 -((( 502 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 503 -))) 452 +506.7 - SF7BW125 to SF12BW125 504 504 454 +506.9 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -Example: 508 -))) 456 +507.1 - SF7BW125 to SF12BW125 509 509 510 -((( 511 -0x(00): Normal uplink packet. 512 -))) 458 +507.3 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -0x(01): Interrupt Uplink Packet. 516 -))) 460 +507.5 - SF7BW125 to SF12BW125 517 517 462 +507.7 - SF7BW125 to SF12BW125 518 518 464 +507.9 - SF7BW125 to SF12BW125 519 519 520 - === 2.4.9+5VOutput===466 +508.1 - SF7BW125 to SF12BW125 521 521 522 -((( 523 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 -))) 468 +505.3 - SF12BW125 (RX2 downlink only) 525 525 526 526 527 -((( 528 -The 5V output time can be controlled by AT Command. 529 -))) 530 530 531 -((( 532 -(% style="color:blue" %)**AT+5VT=1000** 533 -))) 472 +=== 2.7.4 AU915-928(AU915) === 534 534 535 -((( 536 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 537 -))) 474 +Default use CHE=2 538 538 476 +(% style="color:#037691" %)**Uplink:** 539 539 478 +916.8 - SF7BW125 to SF12BW125 540 540 541 - ==2.5DownlinkPayload ==480 +917.0 - SF7BW125 to SF12BW125 542 542 543 - Bydefault,NSE01prints the downlinkpayload to console port.482 +917.2 - SF7BW125 to SF12BW125 544 544 545 - [[image:image-20220708133731-5.png]]484 +917.4 - SF7BW125 to SF12BW125 546 546 486 +917.6 - SF7BW125 to SF12BW125 547 547 548 -((( 549 -(% style="color:blue" %)**Examples:** 550 -))) 488 +917.8 - SF7BW125 to SF12BW125 551 551 552 -((( 553 - 554 -))) 490 +918.0 - SF7BW125 to SF12BW125 555 555 556 -* ((( 557 -(% style="color:blue" %)**Set TDC** 558 -))) 492 +918.2 - SF7BW125 to SF12BW125 559 559 560 -((( 561 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 562 -))) 563 563 564 -((( 565 -Payload: 01 00 00 1E TDC=30S 566 -))) 495 +(% style="color:#037691" %)**Downlink:** 567 567 568 -((( 569 -Payload: 01 00 00 3C TDC=60S 570 -))) 497 +923.3 - SF7BW500 to SF12BW500 571 571 572 -((( 573 - 574 -))) 499 +923.9 - SF7BW500 to SF12BW500 575 575 576 -* ((( 577 -(% style="color:blue" %)**Reset** 578 -))) 501 +924.5 - SF7BW500 to SF12BW500 579 579 580 -((( 581 -If payload = 0x04FF, it will reset the NSE01 582 -))) 503 +925.1 - SF7BW500 to SF12BW500 583 583 505 +925.7 - SF7BW500 to SF12BW500 584 584 585 - *(%style="color:blue"%)**INTMOD**507 +926.3 - SF7BW500 to SF12BW500 586 586 587 -((( 588 -Downlink Payload: 06000003, Set AT+INTMOD=3 589 -))) 509 +926.9 - SF7BW500 to SF12BW500 590 590 511 +927.5 - SF7BW500 to SF12BW500 591 591 513 +923.3 - SF12BW500(RX2 downlink only) 592 592 593 -== 2.6 LED Indicator == 594 594 595 -((( 596 -The NSE01 has an internal LED which is to show the status of different state. 597 597 517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 598 598 599 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 600 -* Then the LED will be on for 1 second means device is boot normally. 601 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 602 -* For each uplink probe, LED will be on for 500ms. 603 -))) 519 +(% style="color:#037691" %)**Default Uplink channel:** 604 604 521 +923.2 - SF7BW125 to SF10BW125 605 605 523 +923.4 - SF7BW125 to SF10BW125 606 606 607 607 608 - ==2.7 Installation inSoil==526 +(% style="color:#037691" %)**Additional Uplink Channel**: 609 609 610 - __**Measurementthesoilsurface**__528 +(OTAA mode, channel added by JoinAccept message) 611 611 612 -((( 613 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 614 -))) 530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 615 615 616 - [[image:1657259653666-883.png]]532 +922.2 - SF7BW125 to SF10BW125 617 617 534 +922.4 - SF7BW125 to SF10BW125 618 618 619 -((( 620 - 536 +922.6 - SF7BW125 to SF10BW125 621 621 622 -((( 623 -Dig a hole with diameter > 20CM. 624 -))) 538 +922.8 - SF7BW125 to SF10BW125 625 625 626 -((( 627 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 628 -))) 629 -))) 540 +923.0 - SF7BW125 to SF10BW125 630 630 631 - [[image:1654506665940-119.png]]542 +922.0 - SF7BW125 to SF10BW125 632 632 633 -((( 634 - 635 -))) 636 636 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 637 637 638 - ==2.8FirmwareChange Log==547 +923.6 - SF7BW125 to SF10BW125 639 639 549 +923.8 - SF7BW125 to SF10BW125 640 640 641 - DownloadURL&FirmwareChange log551 +924.0 - SF7BW125 to SF10BW125 642 642 643 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]553 +924.2 - SF7BW125 to SF10BW125 644 644 555 +924.4 - SF7BW125 to SF10BW125 645 645 646 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]557 +924.6 - SF7BW125 to SF10BW125 647 647 648 648 560 +(% style="color:#037691" %)** Downlink:** 649 649 650 - ==2.9 Battery Analysis==562 +Uplink channels 1-8 (RX1) 651 651 652 - ===2.9.1BatteryType ===564 +923.2 - SF10BW125 (RX2) 653 653 654 654 567 + 568 +=== 2.7.6 KR920-923 (KR920) === 569 + 570 +Default channel: 571 + 572 +922.1 - SF7BW125 to SF12BW125 573 + 574 +922.3 - SF7BW125 to SF12BW125 575 + 576 +922.5 - SF7BW125 to SF12BW125 577 + 578 + 579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 580 + 581 +922.1 - SF7BW125 to SF12BW125 582 + 583 +922.3 - SF7BW125 to SF12BW125 584 + 585 +922.5 - SF7BW125 to SF12BW125 586 + 587 +922.7 - SF7BW125 to SF12BW125 588 + 589 +922.9 - SF7BW125 to SF12BW125 590 + 591 +923.1 - SF7BW125 to SF12BW125 592 + 593 +923.3 - SF7BW125 to SF12BW125 594 + 595 + 596 +(% style="color:#037691" %)**Downlink:** 597 + 598 +Uplink channels 1-7(RX1) 599 + 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 655 655 ((( 656 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 657 ))) 645 +))) 658 658 659 659 648 +[[image:1654506665940-119.png]] 649 + 660 660 ((( 661 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.651 +Dig a hole with diameter > 20CM. 662 662 ))) 663 663 654 +((( 655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 656 +))) 664 664 658 + 659 +== 2.10 Firmware Change Log == 660 + 665 665 ((( 666 - The battery relateddocumentsasbelow:662 +**Firmware download link:** 667 667 ))) 668 668 669 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]670 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]671 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]665 +((( 666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 667 +))) 672 672 673 673 ((( 674 - [[image:image-20220708140453-6.png]]670 + 675 675 ))) 676 676 673 +((( 674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 675 +))) 677 677 677 +((( 678 + 679 +))) 678 678 679 -=== 2.9.2 Power consumption Analyze === 681 +((( 682 +**V1.0.** 683 +))) 680 680 681 681 ((( 682 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.686 +Release 683 683 ))) 684 684 685 685 690 +== 2.11 Battery Analysis == 691 + 692 +=== 2.11.1 Battery Type === 693 + 686 686 ((( 687 - Instruction touse as below:695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 688 688 ))) 689 689 690 690 ((( 691 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]699 +The battery is designed to last for more than 5 years for the LSN50. 692 692 ))) 693 693 694 - 695 695 ((( 696 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 703 +((( 704 +The battery-related documents are as below: 697 697 ))) 706 +))) 698 698 699 699 * ((( 700 - ProductModel709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 701 701 ))) 702 702 * ((( 703 - UplinkInterval712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 704 704 ))) 705 705 * ((( 706 - WorkingMode715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 707 707 ))) 708 708 709 -((( 710 -And the Life expectation in difference case will be shown on the right. 711 -))) 718 + [[image:image-20220606171726-9.png]] 712 712 713 -[[image:image-20220708141352-7.jpeg]] 714 714 715 715 722 +=== 2.11.2 Battery Note === 716 716 717 -=== 2.9.3 Battery Note === 718 - 719 719 ((( 720 720 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 721 721 ))) ... ... @@ -722,176 +722,303 @@ 722 722 723 723 724 724 725 -=== 2. 9.4Replace the battery ===730 +=== 2.11.3 Replace the battery === 726 726 727 727 ((( 728 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 729 729 ))) 730 730 731 - 732 - 733 -= 3. Access NB-IoT Module = 734 - 735 735 ((( 736 - Userscan directly accesstheATcommand set of theNB-IoTmodule.737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 737 737 ))) 738 738 739 739 ((( 740 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 741 741 ))) 742 742 743 -[[image:1657261278785-153.png]] 744 744 745 745 746 += 3. Using the AT Commands = 746 746 747 -= 4.UsingtheAT Commands =748 +== 3.1 Access AT Commands == 748 748 749 -== 4.1 Access AT Commands == 750 750 751 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 752 752 753 +[[image:1654501986557-872.png||height="391" width="800"]] 753 753 754 -AT+<CMD>? : Help on <CMD> 755 755 756 - AT+<CMD>: Run<CMD>756 +Or if you have below board, use below connection: 757 757 758 -AT+<CMD>=<value> : Set the value 759 759 760 - AT+<CMD>=?:Get the value759 +[[image:1654502005655-729.png||height="503" width="801"]] 761 761 762 762 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 763 763 (% style="color:#037691" %)**General Commands**(%%) 764 764 765 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 766 766 767 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 768 768 769 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 770 770 771 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 772 772 773 -AT+CFG : Print all configurations 774 774 775 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 776 776 777 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 778 778 779 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 780 780 781 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 782 782 783 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 784 784 785 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 786 786 787 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 788 788 789 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 790 790 791 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 792 792 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 793 793 794 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 795 795 796 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 797 797 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 798 798 799 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 800 800 801 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 802 802 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 803 803 804 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 805 805 806 -AT+CLIENT : Get or Set MQTT client 807 807 808 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 809 809 810 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 811 811 812 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 813 813 814 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 815 815 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 816 816 817 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 818 818 819 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 820 820 821 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 822 822 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 823 823 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 824 824 825 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 826 826 827 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 828 828 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 829 829 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 830 830 ((( 831 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 832 832 ))) 833 833 834 834 ((( 835 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 836 836 ))) 837 837 838 838 ((( 839 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 840 840 ))) 841 841 894 +((( 895 + 896 +))) 842 842 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 843 843 844 -== 5.2 Can I calibrate NSE01 to different soil types? == 902 +((( 903 + 904 +))) 845 845 846 846 ((( 847 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 848 848 ))) 849 849 910 +[[image:image-20220606154726-3.png]] 850 850 851 -= 6. Trouble Shooting = 852 852 853 - ==6.1 Connection problemwhenuploadingfirmware==913 +When you use the TTN network, the US915 frequency bands use are: 854 854 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 855 855 856 856 ((( 857 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 858 858 ))) 859 859 860 -(% class=" wikigeneratedid" %)929 +(% class="box infomessage" %) 861 861 ((( 931 +**AT+CHE=2** 932 +))) 933 + 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 938 + 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 942 + 943 +((( 862 862 863 863 ))) 864 864 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 865 865 866 - == 6.2 AT Commandinput doesn't work ==951 +[[image:image-20220606154825-4.png]] 867 867 953 + 954 + 955 += 5. Trouble Shooting = 956 + 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 958 + 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 868 868 ((( 869 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 870 870 871 - 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 872 872 ))) 873 873 874 874 875 - =7. OrderInfo=983 +(% style="color:#4f81bd" %)**Solution: ** 876 876 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 877 877 878 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**987 +[[image:1654500929571-736.png||height="458" width="832"]] 879 879 880 880 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 881 881 (% class="wikigeneratedid" %) 882 882 ((( 883 883 884 884 ))) 885 885 886 -= 8.1017 += 7. Packing Info = 887 887 888 888 ((( 889 889 890 890 891 891 (% style="color:#037691" %)**Package Includes**: 1023 +))) 892 892 893 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1894 - *Externalantennax 11025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 895 895 ))) 896 896 897 897 ((( ... ... @@ -898,19 +898,30 @@ 898 898 899 899 900 900 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 901 901 902 -* Size: 195 x 125 x 55 mm903 - * Weight:420g1035 +* ((( 1036 +Device Size: cm 904 904 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 905 905 906 -((( 907 - 908 908 909 - 910 910 911 911 ))) 912 912 913 -= 9.1051 += 8. Support = 914 914 915 915 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 916 916 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content