Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 75.3
edited by Xiaoling
on 2022/07/09 08:58
Change comment: There is no comment for this version
To version 32.6
edited by Xiaoling
on 2022/06/07 11:34
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,721 +1,723 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
12 12  
13 13  
15 += 1. Introduction =
14 14  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
16 -= 1.  Introduction =
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
19 19  
20 20  (((
21 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
22 22  
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
30 30  )))
31 31  
32 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
33 33  )))
34 34  
39 +
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657327959271-447.png]]
43 +[[image:1654503265560-120.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
43 43  
44 -
45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
46 46  * Ultra low power consumption
47 -* Distance Detection by Ultrasonic technology
48 -* Flat object range 280mm - 7500mm
49 -* Accuracy: ±(1cm+S*0.3%) (S: Distance)
50 -* Cable Length: 25cm
51 +* Monitor Soil Moisture
52 +* Monitor Soil Temperature
53 +* Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Micro SIM card slot for NB-IoT SIM
56 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
57 57  
61 +== 1.3 Specification ==
58 58  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
59 59  
60 -== 1.3  Specification ==
65 +[[image:image-20220606162220-5.png]]
61 61  
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
69 +== ​1.4 Applications ==
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
71 +* Smart Agriculture
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
76 76  
76 +== 1.5 Firmware Change log ==
77 77  
78 -(% style="color:#037691" %)**Battery:**
79 79  
80 -* Li/SOCI2 un-chargeable battery
81 -* Capacity: 8500mAh
82 -* Self Discharge: <1% / Year @ 25°C
83 -* Max continuously current: 130mA
84 -* Max boost current: 2A, 1 second
79 +**LSE01 v1.0 :**  Release
85 85  
86 86  
87 -(% style="color:#037691" %)**Power Consumption**
88 88  
89 -* STOP Mode: 10uA @ 3.3v
90 -* Max transmit power: 350mA@3.3v
83 += 2. Configure LSE01 to connect to LoRaWAN network =
91 91  
85 +== 2.1 How it works ==
92 92  
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
93 93  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
94 94  
95 -== ​1.4  Applications ==
96 96  
97 -* Smart Agriculture
98 98  
99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
100 -​
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
101 101  
102 -== 1.5  Pin Definitions ==
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
103 103  
104 104  
105 -[[image:1657246476176-652.png]]
102 +[[image:1654503992078-669.png]]
106 106  
107 107  
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
108 108  
109 -= 2.  Use NSE01 to communicate with IoT Server =
110 110  
111 -== 2.1  How it works ==
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
112 112  
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
113 113  
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
149 +
150 +Uplink payload includes in total 11 bytes.
151 +
152 +
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
156 +
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +
170 +
171 +=== 2.3.2 MOD~=1(Original value) ===
172 +
173 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 +
175 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 +|(((
177 +**Size**
178 +
179 +**(bytes)**
180 +)))|**2**|**2**|**2**|**2**|**2**|**1**
181 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 +Temperature
183 +
184 +(Reserve, Ignore now)
185 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 +MOD & Digital Interrupt
187 +
188 +(Optional)
189 +)))
190 +
191 +
192 +
193 +=== 2.3.3 Battery Info ===
194 +
195 +Check the battery voltage for LSE01.
196 +
197 +Ex1: 0x0B45 = 2885mV
198 +
199 +Ex2: 0x0B49 = 2889mV
200 +
201 +
202 +
203 +=== 2.3.4 Soil Moisture ===
204 +
205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 +
207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
208 +
209 +
210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 +
212 +
213 +
214 +=== 2.3.5 Soil Temperature ===
215 +
216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 +
218 +**Example**:
219 +
220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 +
222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 +
224 +
225 +
226 +=== 2.3.6 Soil Conductivity (EC) ===
227 +
114 114  (((
115 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
116 116  )))
117 117  
232 +(((
233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
234 +)))
118 118  
119 119  (((
120 -The diagram below shows the working flow in default firmware of NSE01:
237 +Generally, the EC value of irrigation water is less than 800uS / cm.
121 121  )))
122 122  
123 -[[image:image-20220708101605-2.png]]
240 +(((
241 +
242 +)))
124 124  
125 125  (((
126 126  
127 127  )))
128 128  
248 +=== 2.3.7 MOD ===
129 129  
250 +Firmware version at least v2.1 supports changing mode.
130 130  
131 -== 2.2 ​ Configure the NSE01 ==
252 +For example, bytes[10]=90
132 132  
254 +mod=(bytes[10]>>7)&0x01=1.
133 133  
134 -=== 2.2.1 Test Requirement ===
135 135  
257 +**Downlink Command:**
136 136  
137 -(((
138 -To use NSE01 in your city, make sure meet below requirements:
139 -)))
259 +If payload = 0x0A00, workmode=0
140 140  
141 -* Your local operator has already distributed a NB-IoT Network there.
142 -* The local NB-IoT network used the band that NSE01 supports.
143 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
261 +If** **payload =** **0x0A01, workmode=1
144 144  
145 -(((
146 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
147 -)))
148 148  
149 149  
150 -[[image:1657249419225-449.png]]
265 +=== 2.3.8 ​Decode payload in The Things Network ===
151 151  
267 +While using TTN network, you can add the payload format to decode the payload.
152 152  
153 153  
154 -=== 2.2.2 Insert SIM card ===
270 +[[image:1654505570700-128.png]]
155 155  
156 -(((
157 -Insert the NB-IoT Card get from your provider.
158 -)))
272 +The payload decoder function for TTN is here:
159 159  
160 -(((
161 -User need to take out the NB-IoT module and insert the SIM card like below:
162 -)))
274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
163 163  
164 164  
165 -[[image:1657249468462-536.png]]
166 166  
278 +== 2.4 Uplink Interval ==
167 167  
280 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
168 168  
169 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
170 170  
171 -(((
172 -(((
173 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
174 -)))
175 -)))
176 176  
284 +== 2.5 Downlink Payload ==
177 177  
178 -**Connection:**
286 +By default, LSE50 prints the downlink payload to console port.
179 179  
180 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
288 +[[image:image-20220606165544-8.png]]
181 181  
182 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
183 183  
184 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
291 +**Examples:**
185 185  
186 186  
187 -In the PC, use below serial tool settings:
294 +* **Set TDC**
188 188  
189 -* Baud:  (% style="color:green" %)**9600**
190 -* Data bits:** (% style="color:green" %)8(%%)**
191 -* Stop bits: (% style="color:green" %)**1**
192 -* Parity:  (% style="color:green" %)**None**
193 -* Flow Control: (% style="color:green" %)**None**
296 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
194 194  
195 -(((
196 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
197 -)))
298 +Payload:    01 00 00 1E    TDC=30S
198 198  
199 -[[image:image-20220708110657-3.png]]
300 +Payload:    01 00 00 3C    TDC=60S
200 200  
201 -(((
202 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
203 -)))
204 204  
303 +* **Reset**
205 205  
305 +If payload = 0x04FF, it will reset the LSE01
206 206  
207 -=== 2.2.4 Use CoAP protocol to uplink data ===
208 208  
209 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
308 +* **CFM**
210 210  
310 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
211 211  
212 -**Use below commands:**
213 213  
214 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
215 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
216 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
217 217  
218 -For parameter description, please refer to AT command set
314 +== 2.6 ​Show Data in DataCake IoT Server ==
219 219  
220 -[[image:1657249793983-486.png]]
316 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
221 221  
222 222  
223 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
319 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
224 224  
225 -[[image:1657249831934-534.png]]
321 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
226 226  
227 227  
324 +[[image:1654505857935-743.png]]
228 228  
229 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
230 230  
231 -This feature is supported since firmware version v1.0.1
327 +[[image:1654505874829-548.png]]
232 232  
329 +Step 3: Create an account or log in Datacake.
233 233  
234 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
236 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
331 +Step 4: Search the LSE01 and add DevEUI.
237 237  
238 -[[image:1657249864775-321.png]]
239 239  
334 +[[image:1654505905236-553.png]]
240 240  
241 -[[image:1657249930215-289.png]]
242 242  
337 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
243 243  
339 +[[image:1654505925508-181.png]]
244 244  
245 -=== 2.2.6 Use MQTT protocol to uplink data ===
246 246  
247 -This feature is supported since firmware version v110
248 248  
343 +== 2.7 Frequency Plans ==
249 249  
250 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
251 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
252 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
253 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
254 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
255 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
256 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
345 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
257 257  
258 -[[image:1657249978444-674.png]]
259 259  
348 +=== 2.7.1 EU863-870 (EU868) ===
260 260  
261 -[[image:1657249990869-686.png]]
350 +(% style="color:#037691" %)** Uplink:**
262 262  
352 +868.1 - SF7BW125 to SF12BW125
263 263  
264 -(((
265 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
266 -)))
354 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
267 267  
356 +868.5 - SF7BW125 to SF12BW125
268 268  
358 +867.1 - SF7BW125 to SF12BW125
269 269  
270 -=== 2.2.7 Use TCP protocol to uplink data ===
360 +867.3 - SF7BW125 to SF12BW125
271 271  
272 -This feature is supported since firmware version v110
362 +867.5 - SF7BW125 to SF12BW125
273 273  
364 +867.7 - SF7BW125 to SF12BW125
274 274  
275 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
366 +867.9 - SF7BW125 to SF12BW125
277 277  
278 -[[image:1657250217799-140.png]]
368 +868.8 - FSK
279 279  
280 280  
281 -[[image:1657250255956-604.png]]
371 +(% style="color:#037691" %)** Downlink:**
282 282  
373 +Uplink channels 1-9 (RX1)
283 283  
375 +869.525 - SF9BW125 (RX2 downlink only)
284 284  
285 -=== 2.2.8 Change Update Interval ===
286 286  
287 -User can use below command to change the (% style="color:green" %)**uplink interval**.
288 288  
289 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
379 +=== 2.7.2 US902-928(US915) ===
290 290  
291 -(((
292 -(% style="color:red" %)**NOTE:**
293 -)))
381 +Used in USA, Canada and South America. Default use CHE=2
294 294  
295 -(((
296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
297 -)))
383 +(% style="color:#037691" %)**Uplink:**
298 298  
385 +903.9 - SF7BW125 to SF10BW125
299 299  
387 +904.1 - SF7BW125 to SF10BW125
300 300  
301 -== 2.3  Uplink Payload ==
389 +904.3 - SF7BW125 to SF10BW125
302 302  
303 -In this mode, uplink payload includes in total 18 bytes
391 +904.5 - SF7BW125 to SF10BW125
304 304  
305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
306 -|=(% style="width: 60px;" %)(((
307 -**Size(bytes)**
308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
393 +904.7 - SF7BW125 to SF10BW125
310 310  
311 -(((
312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
313 -)))
395 +904.9 - SF7BW125 to SF10BW125
314 314  
397 +905.1 - SF7BW125 to SF10BW125
315 315  
316 -[[image:image-20220708111918-4.png]]
399 +905.3 - SF7BW125 to SF10BW125
317 317  
318 318  
319 -The payload is ASCII string, representative same HEX:
402 +(% style="color:#037691" %)**Downlink:**
320 320  
321 -0x72403155615900640c7817075e0a8c02f900 where:
404 +923.3 - SF7BW500 to SF12BW500
322 322  
323 -* Device ID: 0x 724031556159 = 724031556159
324 -* Version: 0x0064=100=1.0.0
406 +923.9 - SF7BW500 to SF12BW500
325 325  
326 -* BAT: 0x0c78 = 3192 mV = 3.192V
327 -* Singal: 0x17 = 23
328 -* Soil Moisture: 0x075e= 1886 = 18.86  %
329 -* Soil Temperature:0x0a8c =2700=27 °C
330 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
331 -* Interrupt: 0x00 = 0
408 +924.5 - SF7BW500 to SF12BW500
332 332  
333 -== 2. Payload Explanation and Sensor Interface ==
410 +925.1 - SF7BW500 to SF12BW500
334 334  
412 +925.7 - SF7BW500 to SF12BW500
335 335  
336 -=== 2.4.1  Device ID ===
414 +926.3 - SF7BW500 to SF12BW500
337 337  
338 -(((
339 -By default, the Device ID equal to the last 6 bytes of IMEI.
340 -)))
416 +926.9 - SF7BW500 to SF12BW500
341 341  
342 -(((
343 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
344 -)))
418 +927.5 - SF7BW500 to SF12BW500
345 345  
346 -(((
347 -**Example:**
348 -)))
420 +923.3 - SF12BW500(RX2 downlink only)
349 349  
350 -(((
351 -AT+DEUI=A84041F15612
352 -)))
353 353  
354 -(((
355 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
356 -)))
357 357  
424 +=== 2.7.3 CN470-510 (CN470) ===
358 358  
426 +Used in China, Default use CHE=1
359 359  
360 -=== 2.4.2  Version Info ===
428 +(% style="color:#037691" %)**Uplink:**
361 361  
362 -(((
363 -Specify the software version: 0x64=100, means firmware version 1.00.
364 -)))
430 +486.3 - SF7BW125 to SF12BW125
365 365  
366 -(((
367 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
368 -)))
432 +486.5 - SF7BW125 to SF12BW125
369 369  
434 +486.7 - SF7BW125 to SF12BW125
370 370  
436 +486.9 - SF7BW125 to SF12BW125
371 371  
372 -=== 2.4. Battery Info ===
438 +487.1 - SF7BW125 to SF12BW125
373 373  
374 -(((
375 -Check the battery voltage for LSE01.
376 -)))
440 +487.3 - SF7BW125 to SF12BW125
377 377  
378 -(((
379 -Ex1: 0x0B45 = 2885mV
380 -)))
442 +487.5 - SF7BW125 to SF12BW125
381 381  
382 -(((
383 -Ex2: 0x0B49 = 2889mV
384 -)))
444 +487.7 - SF7BW125 to SF12BW125
385 385  
386 386  
447 +(% style="color:#037691" %)**Downlink:**
387 387  
388 -=== 2.4.4  Signal Strength ===
449 +506.7 - SF7BW125 to SF12BW125
389 389  
390 -(((
391 -NB-IoT Network signal Strength.
392 -)))
451 +506.9 - SF7BW125 to SF12BW125
393 393  
394 -(((
395 -**Ex1: 0x1d = 29**
396 -)))
453 +507.1 - SF7BW125 to SF12BW125
397 397  
398 -(((
399 -(% style="color:blue" %)**0**(%%)  -113dBm or less
400 -)))
455 +507.3 - SF7BW125 to SF12BW125
401 401  
402 -(((
403 -(% style="color:blue" %)**1**(%%)  -111dBm
404 -)))
457 +507.5 - SF7BW125 to SF12BW125
405 405  
406 -(((
407 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
408 -)))
459 +507.7 - SF7BW125 to SF12BW125
409 409  
410 -(((
411 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
412 -)))
461 +507.9 - SF7BW125 to SF12BW125
413 413  
414 -(((
415 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
416 -)))
463 +508.1 - SF7BW125 to SF12BW125
417 417  
465 +505.3 - SF12BW125 (RX2 downlink only)
418 418  
419 419  
420 -=== 2.4.5  Soil Moisture ===
421 421  
422 -(((
423 -(((
424 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
425 -)))
426 -)))
469 +=== 2.7.4 AU915-928(AU915) ===
427 427  
428 -(((
429 -(((
430 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
431 -)))
432 -)))
471 +Default use CHE=2
433 433  
434 -(((
435 -
436 -)))
473 +(% style="color:#037691" %)**Uplink:**
437 437  
438 -(((
439 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
440 -)))
475 +916.8 - SF7BW125 to SF12BW125
441 441  
477 +917.0 - SF7BW125 to SF12BW125
442 442  
479 +917.2 - SF7BW125 to SF12BW125
443 443  
444 -=== 2.4.6  Soil Temperature ===
481 +917.4 - SF7BW125 to SF12BW125
445 445  
446 -(((
447 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
448 -)))
483 +917.6 - SF7BW125 to SF12BW125
449 449  
450 -(((
451 -**Example**:
452 -)))
485 +917.8 - SF7BW125 to SF12BW125
453 453  
454 -(((
455 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
456 -)))
487 +918.0 - SF7BW125 to SF12BW125
457 457  
458 -(((
459 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
460 -)))
489 +918.2 - SF7BW125 to SF12BW125
461 461  
462 462  
492 +(% style="color:#037691" %)**Downlink:**
463 463  
464 -=== 2.4.7  Soil Conductivity (EC) ===
494 +923.3 - SF7BW500 to SF12BW500
465 465  
466 -(((
467 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
468 -)))
496 +923.9 - SF7BW500 to SF12BW500
469 469  
470 -(((
471 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
472 -)))
498 +924.5 - SF7BW500 to SF12BW500
473 473  
474 -(((
475 -Generally, the EC value of irrigation water is less than 800uS / cm.
476 -)))
500 +925.1 - SF7BW500 to SF12BW500
477 477  
478 -(((
479 -
480 -)))
502 +925.7 - SF7BW500 to SF12BW500
481 481  
482 -(((
483 -
484 -)))
504 +926.3 - SF7BW500 to SF12BW500
485 485  
486 -=== 2.4.8  Digital Interrupt ===
506 +926.9 - SF7BW500 to SF12BW500
487 487  
488 -(((
489 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
490 -)))
508 +927.5 - SF7BW500 to SF12BW500
491 491  
492 -(((
493 -The command is:
494 -)))
510 +923.3 - SF12BW500(RX2 downlink only)
495 495  
496 -(((
497 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
498 -)))
499 499  
500 500  
501 -(((
502 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
503 -)))
514 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
504 504  
516 +(% style="color:#037691" %)**Default Uplink channel:**
505 505  
506 -(((
507 -Example:
508 -)))
518 +923.2 - SF7BW125 to SF10BW125
509 509  
510 -(((
511 -0x(00): Normal uplink packet.
512 -)))
520 +923.4 - SF7BW125 to SF10BW125
513 513  
514 -(((
515 -0x(01): Interrupt Uplink Packet.
516 -)))
517 517  
523 +(% style="color:#037691" %)**Additional Uplink Channel**:
518 518  
525 +(OTAA mode, channel added by JoinAccept message)
519 519  
520 -=== 2.4.9  ​+5V Output ===
527 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
521 521  
522 -(((
523 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
524 -)))
529 +922.2 - SF7BW125 to SF10BW125
525 525  
531 +922.4 - SF7BW125 to SF10BW125
526 526  
527 -(((
528 -The 5V output time can be controlled by AT Command.
529 -)))
533 +922.6 - SF7BW125 to SF10BW125
530 530  
531 -(((
532 -(% style="color:blue" %)**AT+5VT=1000**
533 -)))
535 +922.8 - SF7BW125 to SF10BW125
534 534  
535 -(((
536 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
537 -)))
537 +923.0 - SF7BW125 to SF10BW125
538 538  
539 +922.0 - SF7BW125 to SF10BW125
539 539  
540 540  
541 -== 2.5  Downlink Payload ==
542 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
542 542  
543 -By default, NSE01 prints the downlink payload to console port.
544 +923.6 - SF7BW125 to SF10BW125
544 544  
545 -[[image:image-20220708133731-5.png]]
546 +923.8 - SF7BW125 to SF10BW125
546 546  
548 +924.0 - SF7BW125 to SF10BW125
547 547  
548 -(((
549 -(% style="color:blue" %)**Examples:**
550 -)))
550 +924.2 - SF7BW125 to SF10BW125
551 551  
552 -(((
553 -
554 -)))
552 +924.4 - SF7BW125 to SF10BW125
555 555  
556 -* (((
557 -(% style="color:blue" %)**Set TDC**
558 -)))
554 +924.6 - SF7BW125 to SF10BW125
559 559  
560 -(((
561 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
562 -)))
563 563  
564 -(((
565 -Payload:    01 00 00 1E    TDC=30S
566 -)))
557 +(% style="color:#037691" %)** Downlink:**
567 567  
568 -(((
569 -Payload:    01 00 00 3C    TDC=60S
570 -)))
559 +Uplink channels 1-8 (RX1)
571 571  
572 -(((
573 -
574 -)))
561 +923.2 - SF10BW125 (RX2)
575 575  
576 -* (((
577 -(% style="color:blue" %)**Reset**
578 -)))
579 579  
580 -(((
581 -If payload = 0x04FF, it will reset the NSE01
582 -)))
583 583  
565 +=== 2.7.6 KR920-923 (KR920) ===
584 584  
585 -* (% style="color:blue" %)**INTMOD**
567 +Default channel:
586 586  
587 -(((
588 -Downlink Payload: 06000003, Set AT+INTMOD=3
589 -)))
569 +922.1 - SF7BW125 to SF12BW125
590 590  
571 +922.3 - SF7BW125 to SF12BW125
591 591  
573 +922.5 - SF7BW125 to SF12BW125
592 592  
593 -== 2.6  ​LED Indicator ==
594 594  
595 -(((
596 -The NSE01 has an internal LED which is to show the status of different state.
576 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
597 597  
578 +922.1 - SF7BW125 to SF12BW125
598 598  
599 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
600 -* Then the LED will be on for 1 second means device is boot normally.
601 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
602 -* For each uplink probe, LED will be on for 500ms.
603 -)))
580 +922.3 - SF7BW125 to SF12BW125
604 604  
582 +922.5 - SF7BW125 to SF12BW125
605 605  
584 +922.7 - SF7BW125 to SF12BW125
606 606  
586 +922.9 - SF7BW125 to SF12BW125
607 607  
608 -== 2.7  Installation in Soil ==
588 +923.1 - SF7BW125 to SF12BW125
609 609  
610 -__**Measurement the soil surface**__
590 +923.3 - SF7BW125 to SF12BW125
611 611  
612 -(((
613 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
614 -)))
615 615  
616 -[[image:1657259653666-883.png]]
593 +(% style="color:#037691" %)**Downlink:**
617 617  
595 +Uplink channels 1-7(RX1)
618 618  
619 -(((
620 -
597 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
621 621  
622 -(((
623 -Dig a hole with diameter > 20CM.
624 -)))
625 625  
626 -(((
627 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
628 -)))
629 -)))
630 630  
631 -[[image:1654506665940-119.png]]
601 +=== 2.7.7 IN865-867 (IN865) ===
632 632  
633 -(((
634 -
635 -)))
603 +(% style="color:#037691" %)** Uplink:**
636 636  
605 +865.0625 - SF7BW125 to SF12BW125
637 637  
638 -== 2.8  Firmware Change Log ==
607 +865.4025 - SF7BW125 to SF12BW125
639 639  
609 +865.9850 - SF7BW125 to SF12BW125
640 640  
641 -Download URL & Firmware Change log
642 642  
643 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
612 +(% style="color:#037691" %) **Downlink:**
644 644  
614 +Uplink channels 1-3 (RX1)
645 645  
646 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
616 +866.550 - SF10BW125 (RX2)
647 647  
648 648  
649 649  
650 -== 2.9  ​Battery Analysis ==
651 651  
652 -=== 2.9.1  ​Battery Type ===
621 +== 2.8 LED Indicator ==
653 653  
623 +The LSE01 has an internal LED which is to show the status of different state.
654 654  
625 +* Blink once when device power on.
626 +* Solid ON for 5 seconds once device successful Join the network.
627 +* Blink once when device transmit a packet.
628 +
629 +
630 +
631 +== 2.9 Installation in Soil ==
632 +
633 +**Measurement the soil surface**
634 +
635 +
636 +[[image:1654506634463-199.png]] ​
637 +
655 655  (((
656 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
639 +(((
640 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
657 657  )))
642 +)))
658 658  
659 659  
645 +[[image:1654506665940-119.png]]
646 +
660 660  (((
661 -The battery is designed to last for several years depends on the actually use environment and update interval. 
648 +Dig a hole with diameter > 20CM.
662 662  )))
663 663  
651 +(((
652 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
653 +)))
664 664  
655 +
656 +== 2.10 ​Firmware Change Log ==
657 +
665 665  (((
666 -The battery related documents as below:
659 +**Firmware download link:**
667 667  )))
668 668  
669 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
670 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
662 +(((
663 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
664 +)))
672 672  
673 673  (((
674 -[[image:image-20220708140453-6.png]]
667 +
675 675  )))
676 676  
670 +(((
671 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
672 +)))
677 677  
674 +(((
675 +
676 +)))
678 678  
679 -=== 2.9.2  Power consumption Analyze ===
678 +(((
679 +**V1.0.**
680 +)))
680 680  
681 681  (((
682 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
683 +Release
683 683  )))
684 684  
685 685  
687 +== 2.11 ​Battery Analysis ==
688 +
689 +=== 2.11.1 ​Battery Type ===
690 +
686 686  (((
687 -Instruction to use as below:
692 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
688 688  )))
689 689  
690 690  (((
691 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
696 +The battery is designed to last for more than 5 years for the LSN50.
692 692  )))
693 693  
694 -
695 695  (((
696 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
700 +(((
701 +The battery-related documents are as below:
697 697  )))
703 +)))
698 698  
699 699  * (((
700 -Product Model
706 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
701 701  )))
702 702  * (((
703 -Uplink Interval
709 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
704 704  )))
705 705  * (((
706 -Working Mode
712 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
707 707  )))
708 708  
709 -(((
710 -And the Life expectation in difference case will be shown on the right.
711 -)))
715 + [[image:image-20220606171726-9.png]]
712 712  
713 -[[image:image-20220708141352-7.jpeg]]
714 714  
715 715  
719 +=== 2.11.2 ​Battery Note ===
716 716  
717 -=== 2.9.3  ​Battery Note ===
718 -
719 719  (((
720 720  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
721 721  )))
... ... @@ -722,176 +722,303 @@
722 722  
723 723  
724 724  
725 -=== 2.9. Replace the battery ===
727 +=== 2.11.3 Replace the battery ===
726 726  
727 727  (((
728 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
730 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
729 729  )))
730 730  
731 -
732 -
733 -= 3. ​ Access NB-IoT Module =
734 -
735 735  (((
736 -Users can directly access the AT command set of the NB-IoT module.
734 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
737 737  )))
738 738  
739 739  (((
740 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
738 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
741 741  )))
742 742  
743 -[[image:1657261278785-153.png]]
744 744  
745 745  
743 += 3. ​Using the AT Commands =
746 746  
747 -= 4.  Using the AT Commands =
745 +== 3.1 Access AT Commands ==
748 748  
749 -== 4.1  Access AT Commands ==
750 750  
751 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
748 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
752 752  
750 +[[image:1654501986557-872.png||height="391" width="800"]]
753 753  
754 -AT+<CMD>?  : Help on <CMD>
755 755  
756 -AT+<CMD>         : Run <CMD>
753 +Or if you have below board, use below connection:
757 757  
758 -AT+<CMD>=<value> : Set the value
759 759  
760 -AT+<CMD>=?  : Get the value
756 +[[image:1654502005655-729.png||height="503" width="801"]]
761 761  
762 762  
759 +
760 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
761 +
762 +
763 + [[image:1654502050864-459.png||height="564" width="806"]]
764 +
765 +
766 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
767 +
768 +
769 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
770 +
771 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
772 +
773 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
774 +
775 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
776 +
777 +
763 763  (% style="color:#037691" %)**General Commands**(%%)      
764 764  
765 -AT  : Attention       
780 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
766 766  
767 -AT?  : Short Help     
782 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
768 768  
769 -ATZ  : MCU Reset    
784 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
770 770  
771 -AT+TDC  : Application Data Transmission Interval
786 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
772 772  
773 -AT+CFG  : Print all configurations
774 774  
775 -AT+CFGMOD           : Working mode selection
789 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
776 776  
777 -AT+INTMOD            : Set the trigger interrupt mode
791 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
778 778  
779 -AT+5VT  : Set extend the time of 5V power  
793 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
780 780  
781 -AT+PRO  : Choose agreement
795 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
782 782  
783 -AT+WEIGRE  : Get weight or set weight to 0
797 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
784 784  
785 -AT+WEIGAP  : Get or Set the GapValue of weight
799 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
786 786  
787 -AT+RXDL  : Extend the sending and receiving time
801 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
788 788  
789 -AT+CNTFAC  : Get or set counting parameters
803 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
790 790  
791 -AT+SERVADDR  : Server Address
805 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
792 792  
807 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
793 793  
794 -(% style="color:#037691" %)**COAP Management**      
809 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
795 795  
796 -AT+URI            : Resource parameters
811 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
797 797  
813 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
798 798  
799 -(% style="color:#037691" %)**UDP Management**
815 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
800 800  
801 -AT+CFM          : Upload confirmation mode (only valid for UDP)
817 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
802 802  
819 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
803 803  
804 -(% style="color:#037691" %)**MQTT Management**
821 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
805 805  
806 -AT+CLIENT               : Get or Set MQTT client
807 807  
808 -AT+UNAME  : Get or Set MQTT Username
824 +(% style="color:#037691" %)**LoRa Network Management**
809 809  
810 -AT+PWD                  : Get or Set MQTT password
826 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
811 811  
812 -AT+PUBTOPI : Get or Set MQTT publish topic
828 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
813 813  
814 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
830 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
815 815  
832 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
816 816  
817 -(% style="color:#037691" %)**Information**          
834 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
818 818  
819 -AT+FDR  : Factory Data Reset
836 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
820 820  
821 -AT+PWOR : Serial Access Password
838 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
822 822  
840 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
823 823  
842 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
824 824  
825 -= ​5.  FAQ =
844 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
826 826  
827 -== 5.1 How to Upgrade Firmware ==
846 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
828 828  
848 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
829 829  
850 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
851 +
852 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
853 +
854 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
855 +
856 +
857 +(% style="color:#037691" %)**Information** 
858 +
859 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
860 +
861 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
862 +
863 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
864 +
865 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
866 +
867 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
868 +
869 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
870 +
871 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
872 +
873 +
874 += ​4. FAQ =
875 +
876 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
877 +
830 830  (((
831 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
879 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
880 +When downloading the images, choose the required image file for download. ​
832 832  )))
833 833  
834 834  (((
835 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
884 +
836 836  )))
837 837  
838 838  (((
839 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
888 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
840 840  )))
841 841  
891 +(((
892 +
893 +)))
842 842  
895 +(((
896 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
897 +)))
843 843  
844 -== 5.2  Can I calibrate NSE01 to different soil types? ==
899 +(((
900 +
901 +)))
845 845  
846 846  (((
847 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
904 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
848 848  )))
849 849  
907 +[[image:image-20220606154726-3.png]]
850 850  
851 -= 6.  Trouble Shooting =
852 852  
853 -== 6.1  ​Connection problem when uploading firmware ==
910 +When you use the TTN network, the US915 frequency bands use are:
854 854  
912 +* 903.9 - SF7BW125 to SF10BW125
913 +* 904.1 - SF7BW125 to SF10BW125
914 +* 904.3 - SF7BW125 to SF10BW125
915 +* 904.5 - SF7BW125 to SF10BW125
916 +* 904.7 - SF7BW125 to SF10BW125
917 +* 904.9 - SF7BW125 to SF10BW125
918 +* 905.1 - SF7BW125 to SF10BW125
919 +* 905.3 - SF7BW125 to SF10BW125
920 +* 904.6 - SF8BW500
855 855  
856 856  (((
857 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
923 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
858 858  )))
859 859  
860 -(% class="wikigeneratedid" %)
926 +(% class="box infomessage" %)
861 861  (((
928 +**AT+CHE=2**
929 +)))
930 +
931 +(% class="box infomessage" %)
932 +(((
933 +**ATZ**
934 +)))
935 +
936 +(((
937 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
938 +)))
939 +
940 +(((
862 862  
863 863  )))
864 864  
944 +(((
945 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
946 +)))
865 865  
866 -== 6.2  AT Command input doesn't work ==
948 +[[image:image-20220606154825-4.png]]
867 867  
950 +
951 +
952 += 5. Trouble Shooting =
953 +
954 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
955 +
956 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
957 +
958 +
959 +== 5.2 AT Command input doesn’t work ==
960 +
868 868  (((
869 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
962 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
963 +)))
870 870  
871 -
965 +
966 +== 5.3 Device rejoin in at the second uplink packet ==
967 +
968 +(% style="color:#4f81bd" %)**Issue describe as below:**
969 +
970 +[[image:1654500909990-784.png]]
971 +
972 +
973 +(% style="color:#4f81bd" %)**Cause for this issue:**
974 +
975 +(((
976 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
872 872  )))
873 873  
874 874  
875 -= 7. ​ Order Info =
980 +(% style="color:#4f81bd" %)**Solution: **
876 876  
982 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
877 877  
878 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
984 +[[image:1654500929571-736.png||height="458" width="832"]]
879 879  
880 880  
987 += 6. ​Order Info =
988 +
989 +
990 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
991 +
992 +
993 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
994 +
995 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
996 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
997 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
998 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
999 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1000 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1001 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1002 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1003 +
1004 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1005 +
1006 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1007 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1008 +
881 881  (% class="wikigeneratedid" %)
882 882  (((
883 883  
884 884  )))
885 885  
886 -= 8.  Packing Info =
1014 += 7. Packing Info =
887 887  
888 888  (((
889 889  
890 890  
891 891  (% style="color:#037691" %)**Package Includes**:
1020 +)))
892 892  
893 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
894 -* External antenna x 1
1022 +* (((
1023 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
895 895  )))
896 896  
897 897  (((
... ... @@ -898,19 +898,30 @@
898 898  
899 899  
900 900  (% style="color:#037691" %)**Dimension and weight**:
1030 +)))
901 901  
902 -* Size: 195 x 125 x 55 mm
903 -* Weight:   420g
1032 +* (((
1033 +Device Size: cm
904 904  )))
1035 +* (((
1036 +Device Weight: g
1037 +)))
1038 +* (((
1039 +Package Size / pcs : cm
1040 +)))
1041 +* (((
1042 +Weight / pcs : g
905 905  
906 -(((
907 -
908 908  
909 -
910 910  
911 911  )))
912 912  
913 -= 9.  Support =
1048 += 8. Support =
914 914  
915 915  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
916 916  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1052 +
1053 +
1054 +~)~)~)
1055 +~)~)~)
1056 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
1657327959271-447.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -78.3 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content