Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 31 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- 1657327959271-447.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,721 +1,753 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7327959271-447.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 - 45 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 46 46 * Ultra low power consumption 47 -* Distance Detectionby Ultrasonictechnology48 -* Flat objectrange280mm - 7500mm49 -* Accuracy:±(1cm+S*0.3%) (S: Distance)50 -* Cable Length: 25cm51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 51 51 * AT Commands to change parameters 52 52 * Uplink on periodically 53 53 * Downlink to change configure 54 54 * IP66 Waterproof Enclosure 55 -* Micro SIM card slot for NB-IoT SIM 56 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 57 57 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - == 1.3 Specification==65 +[[image:image-20220606162220-5.png]] 61 61 62 62 63 -(% style="color:#037691" %)**Common DC Characteristics:** 64 64 65 -* Supply Voltage: 2.1v ~~ 3.6v 66 -* Operating Temperature: -40 ~~ 85°C 69 +== 1.4 Applications == 67 67 68 - (%style="color:#037691" %)**NB-IoT Spec:**71 +* Smart Agriculture 69 69 70 -* - B1 @H-FDD: 2100MHz 71 -* - B3 @H-FDD: 1800MHz 72 -* - B8 @H-FDD: 900MHz 73 -* - B5 @H-FDD: 850MHz 74 -* - B20 @H-FDD: 800MHz 75 -* - B28 @H-FDD: 700MHz 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 76 76 76 +== 1.5 Firmware Change log == 77 77 78 -(% style="color:#037691" %)**Battery:** 79 79 80 -* Li/SOCI2 un-chargeable battery 81 -* Capacity: 8500mAh 82 -* Self Discharge: <1% / Year @ 25°C 83 -* Max continuously current: 130mA 84 -* Max boost current: 2A, 1 second 79 +**LSE01 v1.0 :** Release 85 85 86 86 87 -(% style="color:#037691" %)**Power Consumption** 88 88 89 -* STOP Mode: 10uA @ 3.3v 90 -* Max transmit power: 350mA@3.3v 83 += 2. Configure LSE01 to connect to LoRaWAN network = 91 91 85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 94 94 95 -== 1.4 Applications == 96 96 97 -* Smart Agriculture 98 98 99 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 100 - 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 101 101 102 - ==1.5 PinDefinitions==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 103 103 104 104 105 -[[image:165 7246476176-652.png]]102 +[[image:1654503992078-669.png]] 106 106 107 107 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 108 108 109 -= 2. Use NSE01 to communicate with IoT Server = 110 110 111 - ==2.1Howitworks==108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 112 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 113 113 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 114 114 ((( 115 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 116 116 ))) 117 117 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 118 118 119 -((( 120 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 121 121 ))) 122 122 123 -[[image:image-20220708101605-2.png]] 124 124 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 125 125 ((( 126 - 199 +Check the battery voltage for LSE01. 127 127 ))) 128 128 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 129 129 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 130 130 131 -== 2.2 Configure the NSE01 == 132 132 133 133 134 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 135 135 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 136 136 137 137 ((( 138 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 139 139 ))) 140 140 141 - * Your local operator has already distributed a NB-IoT Network there.142 - *The local NB-IoT network used the band that NSE01 supports.143 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 144 144 145 145 ((( 146 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 147 147 ))) 148 148 149 149 150 -[[image:1657249419225-449.png]] 151 151 232 +=== 2.3.5 Soil Temperature === 152 152 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 153 153 154 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 155 155 156 156 ((( 157 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 158 158 ))) 159 159 160 160 ((( 161 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 162 162 ))) 163 163 164 164 165 -[[image:1657249468462-536.png]] 166 166 252 +=== 2.3.6 Soil Conductivity (EC) === 167 167 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 168 168 169 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 170 170 171 171 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 172 172 ((( 173 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 174 174 ))) 269 + 270 +((( 271 + 175 175 ))) 176 176 274 +=== 2.3.7 MOD === 177 177 178 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 179 179 180 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 181 181 182 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 183 183 184 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 185 185 283 +**Downlink Command:** 186 186 187 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 188 188 189 -* Baud: (% style="color:green" %)**9600** 190 -* Data bits:** (% style="color:green" %)8(%%)** 191 -* Stop bits: (% style="color:green" %)**1** 192 -* Parity: (% style="color:green" %)**None** 193 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 194 194 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 195 195 ((( 196 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 197 197 ))) 198 198 199 -[[image:image-20220708110657-3.png]] 200 - 201 201 ((( 202 - (%style="color:red" %)Note:the valid AT Commandscan befoundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 203 203 ))) 204 204 205 205 206 206 207 -== =2.2.4se CoAPprotocolto uplinkdata ===308 +== 2.4 Uplink Interval == 208 208 209 - (%style="color:red"%)Note: ifyoudon'thaveCoAPserver,you canreferthis linktosetup one:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 210 210 211 211 212 -**Use below commands:** 213 213 214 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 215 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 216 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 314 +== 2.5 Downlink Payload == 217 217 218 - Forparameterdescription,pleaserefertoATcommandset316 +By default, LSE50 prints the downlink payload to console port. 219 219 220 -[[image:165 7249793983-486.png]]318 +[[image:image-20220606165544-8.png]] 221 221 222 222 223 - After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.321 +**Examples:** 224 224 225 -[[image:1657249831934-534.png]] 226 226 324 +* **Set TDC** 227 227 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 228 228 229 - === 2.2.5 Use UDPprotocoltouplinkdata(Defaultprotocol)===328 +Payload: 01 00 00 1E TDC=30S 230 230 231 - This feature is supportedsincefirmwareversionv1.0.1330 +Payload: 01 00 00 3C TDC=60S 232 232 233 233 234 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 235 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 236 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 333 +* **Reset** 237 237 238 - [[image:1657249864775-321.png]]335 +If payload = 0x04FF, it will reset the LSE01 239 239 240 240 241 - [[image:1657249930215-289.png]]338 +* **CFM** 242 242 340 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 243 243 244 244 245 -=== 2.2.6 Use MQTT protocol to uplink data === 246 246 247 - Thisfeatureissupportedsincefirmwaresionv110344 +== 2.6 Show Data in DataCake IoT Server == 248 248 346 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 249 249 250 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 251 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 252 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 253 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 254 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 255 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 256 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 257 257 258 - [[image:1657249978444-674.png]]349 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 259 259 351 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 260 260 261 -[[image:1657249990869-686.png]] 262 262 354 +[[image:1654505857935-743.png]] 263 263 264 -((( 265 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 266 -))) 267 267 357 +[[image:1654505874829-548.png]] 268 268 359 +Step 3: Create an account or log in Datacake. 269 269 270 - === 2.2.7 UseTCPprotocoltouplinkdata===361 +Step 4: Search the LSE01 and add DevEUI. 271 271 272 -This feature is supported since firmware version v110 273 273 364 +[[image:1654505905236-553.png]] 274 274 275 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 276 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 277 277 278 - [[image:1657250217799-140.png]]367 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 279 279 369 +[[image:1654505925508-181.png]] 280 280 281 -[[image:1657250255956-604.png]] 282 282 283 283 373 +== 2.7 Frequency Plans == 284 284 285 - ===2.2.8ChangeUpdateInterval===375 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 286 286 287 -User can use below command to change the (% style="color:green" %)**uplink interval**. 288 288 289 - * (% style="color:blue" %)**AT+TDC=600**(%%)~/~/ SetUpdate Interval to600s378 +=== 2.7.1 EU863-870 (EU868) === 290 290 291 -((( 292 -(% style="color:red" %)**NOTE:** 293 -))) 380 +(% style="color:#037691" %)** Uplink:** 294 294 295 -((( 296 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 297 -))) 382 +868.1 - SF7BW125 to SF12BW125 298 298 384 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 299 299 386 +868.5 - SF7BW125 to SF12BW125 300 300 301 - == 2.3UplinkPayload==388 +867.1 - SF7BW125 to SF12BW125 302 302 303 - Inthismode,uplink payload includes intotal18 bytes390 +867.3 - SF7BW125 to SF12BW125 304 304 305 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 306 -|=(% style="width: 60px;" %)((( 307 -**Size(bytes)** 308 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 309 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 392 +867.5 - SF7BW125 to SF12BW125 310 310 311 -((( 312 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 313 -))) 394 +867.7 - SF7BW125 to SF12BW125 314 314 396 +867.9 - SF7BW125 to SF12BW125 315 315 316 - [[image:image-20220708111918-4.png]]398 +868.8 - FSK 317 317 318 318 319 - ThepayloadisASCII string, representative same HEX:401 +(% style="color:#037691" %)** Downlink:** 320 320 321 - 0x72403155615900640c7817075e0a8c02f900where:403 +Uplink channels 1-9 (RX1) 322 322 323 -* Device ID: 0x 724031556159 = 724031556159 324 -* Version: 0x0064=100=1.0.0 405 +869.525 - SF9BW125 (RX2 downlink only) 325 325 326 -* BAT: 0x0c78 = 3192 mV = 3.192V 327 -* Singal: 0x17 = 23 328 -* Soil Moisture: 0x075e= 1886 = 18.86 % 329 -* Soil Temperature:0x0a8c =2700=27 °C 330 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 331 -* Interrupt: 0x00 = 0 332 332 333 -== 2.4 Payload Explanation and Sensor Interface == 334 334 409 +=== 2.7.2 US902-928(US915) === 335 335 336 - ===2.4.1 DeviceID ===411 +Used in USA, Canada and South America. Default use CHE=2 337 337 338 -((( 339 -By default, the Device ID equal to the last 6 bytes of IMEI. 340 -))) 413 +(% style="color:#037691" %)**Uplink:** 341 341 342 -((( 343 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 344 -))) 415 +903.9 - SF7BW125 to SF10BW125 345 345 346 -((( 347 -**Example:** 348 -))) 417 +904.1 - SF7BW125 to SF10BW125 349 349 350 -((( 351 -AT+DEUI=A84041F15612 352 -))) 419 +904.3 - SF7BW125 to SF10BW125 353 353 354 -((( 355 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 356 -))) 421 +904.5 - SF7BW125 to SF10BW125 357 357 423 +904.7 - SF7BW125 to SF10BW125 358 358 425 +904.9 - SF7BW125 to SF10BW125 359 359 360 - ===2.4.2VersionInfo ===427 +905.1 - SF7BW125 to SF10BW125 361 361 362 -((( 363 -Specify the software version: 0x64=100, means firmware version 1.00. 364 -))) 429 +905.3 - SF7BW125 to SF10BW125 365 365 366 -((( 367 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 368 -))) 369 369 432 +(% style="color:#037691" %)**Downlink:** 370 370 434 +923.3 - SF7BW500 to SF12BW500 371 371 372 - ===2.4.3atteryInfo===436 +923.9 - SF7BW500 to SF12BW500 373 373 374 -((( 375 -Check the battery voltage for LSE01. 376 -))) 438 +924.5 - SF7BW500 to SF12BW500 377 377 378 -((( 379 -Ex1: 0x0B45 = 2885mV 380 -))) 440 +925.1 - SF7BW500 to SF12BW500 381 381 382 -((( 383 -Ex2: 0x0B49 = 2889mV 384 -))) 442 +925.7 - SF7BW500 to SF12BW500 385 385 444 +926.3 - SF7BW500 to SF12BW500 386 386 446 +926.9 - SF7BW500 to SF12BW500 387 387 388 - ===2.4.4SignalStrength===448 +927.5 - SF7BW500 to SF12BW500 389 389 390 -((( 391 -NB-IoT Network signal Strength. 392 -))) 450 +923.3 - SF12BW500(RX2 downlink only) 393 393 394 -((( 395 -**Ex1: 0x1d = 29** 396 -))) 397 397 398 -((( 399 -(% style="color:blue" %)**0**(%%) -113dBm or less 400 -))) 401 401 402 -((( 403 -(% style="color:blue" %)**1**(%%) -111dBm 404 -))) 454 +=== 2.7.3 CN470-510 (CN470) === 405 405 406 -((( 407 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 408 -))) 456 +Used in China, Default use CHE=1 409 409 410 -((( 411 -(% style="color:blue" %)**31** (%%) -51dBm or greater 412 -))) 458 +(% style="color:#037691" %)**Uplink:** 413 413 414 -((( 415 -(% style="color:blue" %)**99** (%%) Not known or not detectable 416 -))) 460 +486.3 - SF7BW125 to SF12BW125 417 417 462 +486.5 - SF7BW125 to SF12BW125 418 418 464 +486.7 - SF7BW125 to SF12BW125 419 419 420 - === 2.4.5SoilMoisture===466 +486.9 - SF7BW125 to SF12BW125 421 421 422 -((( 423 -((( 424 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 425 -))) 426 -))) 468 +487.1 - SF7BW125 to SF12BW125 427 427 428 -((( 429 -((( 430 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 431 -))) 432 -))) 470 +487.3 - SF7BW125 to SF12BW125 433 433 434 -((( 435 - 436 -))) 472 +487.5 - SF7BW125 to SF12BW125 437 437 438 -((( 439 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 440 -))) 474 +487.7 - SF7BW125 to SF12BW125 441 441 442 442 477 +(% style="color:#037691" %)**Downlink:** 443 443 444 - === 2.4.6oilTemperature===479 +506.7 - SF7BW125 to SF12BW125 445 445 446 -((( 447 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 448 -))) 481 +506.9 - SF7BW125 to SF12BW125 449 449 450 -((( 451 -**Example**: 452 -))) 483 +507.1 - SF7BW125 to SF12BW125 453 453 454 -((( 455 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 456 -))) 485 +507.3 - SF7BW125 to SF12BW125 457 457 458 -((( 459 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 460 -))) 487 +507.5 - SF7BW125 to SF12BW125 461 461 489 +507.7 - SF7BW125 to SF12BW125 462 462 491 +507.9 - SF7BW125 to SF12BW125 463 463 464 - === 2.4.7SoilConductivity(EC) ===493 +508.1 - SF7BW125 to SF12BW125 465 465 466 -((( 467 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 468 -))) 495 +505.3 - SF12BW125 (RX2 downlink only) 469 469 470 -((( 471 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 472 -))) 473 473 474 -((( 475 -Generally, the EC value of irrigation water is less than 800uS / cm. 476 -))) 477 477 478 -((( 479 - 480 -))) 499 +=== 2.7.4 AU915-928(AU915) === 481 481 482 -((( 483 - 484 -))) 501 +Default use CHE=2 485 485 486 - ===2.4.8 DigitalInterrupt===503 +(% style="color:#037691" %)**Uplink:** 487 487 488 -((( 489 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 490 -))) 505 +916.8 - SF7BW125 to SF12BW125 491 491 492 -((( 493 -The command is: 494 -))) 507 +917.0 - SF7BW125 to SF12BW125 495 495 496 -((( 497 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 498 -))) 509 +917.2 - SF7BW125 to SF12BW125 499 499 511 +917.4 - SF7BW125 to SF12BW125 500 500 501 -((( 502 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 503 -))) 513 +917.6 - SF7BW125 to SF12BW125 504 504 515 +917.8 - SF7BW125 to SF12BW125 505 505 506 -((( 507 -Example: 508 -))) 517 +918.0 - SF7BW125 to SF12BW125 509 509 510 -((( 511 -0x(00): Normal uplink packet. 512 -))) 519 +918.2 - SF7BW125 to SF12BW125 513 513 514 -((( 515 -0x(01): Interrupt Uplink Packet. 516 -))) 517 517 522 +(% style="color:#037691" %)**Downlink:** 518 518 524 +923.3 - SF7BW500 to SF12BW500 519 519 520 - ===2.4.9+5VOutput===526 +923.9 - SF7BW500 to SF12BW500 521 521 522 -((( 523 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 524 -))) 528 +924.5 - SF7BW500 to SF12BW500 525 525 530 +925.1 - SF7BW500 to SF12BW500 526 526 527 -((( 528 -The 5V output time can be controlled by AT Command. 529 -))) 532 +925.7 - SF7BW500 to SF12BW500 530 530 531 -((( 532 -(% style="color:blue" %)**AT+5VT=1000** 533 -))) 534 +926.3 - SF7BW500 to SF12BW500 534 534 535 -((( 536 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 537 -))) 536 +926.9 - SF7BW500 to SF12BW500 538 538 538 +927.5 - SF7BW500 to SF12BW500 539 539 540 +923.3 - SF12BW500(RX2 downlink only) 540 540 541 -== 2.5 Downlink Payload == 542 542 543 -By default, NSE01 prints the downlink payload to console port. 544 544 545 - [[image:image-20220708133731-5.png]]544 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 546 546 546 +(% style="color:#037691" %)**Default Uplink channel:** 547 547 548 -((( 549 -(% style="color:blue" %)**Examples:** 550 -))) 548 +923.2 - SF7BW125 to SF10BW125 551 551 552 -((( 553 - 554 -))) 550 +923.4 - SF7BW125 to SF10BW125 555 555 556 -* ((( 557 -(% style="color:blue" %)**Set TDC** 558 -))) 559 559 560 -((( 561 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 562 -))) 553 +(% style="color:#037691" %)**Additional Uplink Channel**: 563 563 564 -((( 565 -Payload: 01 00 00 1E TDC=30S 566 -))) 555 +(OTAA mode, channel added by JoinAccept message) 567 567 568 -((( 569 -Payload: 01 00 00 3C TDC=60S 570 -))) 557 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 571 571 572 -((( 573 - 574 -))) 559 +922.2 - SF7BW125 to SF10BW125 575 575 576 -* ((( 577 -(% style="color:blue" %)**Reset** 578 -))) 561 +922.4 - SF7BW125 to SF10BW125 579 579 580 -((( 581 -If payload = 0x04FF, it will reset the NSE01 582 -))) 563 +922.6 - SF7BW125 to SF10BW125 583 583 565 +922.8 - SF7BW125 to SF10BW125 584 584 585 - *(%style="color:blue"%)**INTMOD**567 +923.0 - SF7BW125 to SF10BW125 586 586 587 -((( 588 -Downlink Payload: 06000003, Set AT+INTMOD=3 589 -))) 569 +922.0 - SF7BW125 to SF10BW125 590 590 591 591 572 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 592 592 593 - ==2.6LEDIndicator==574 +923.6 - SF7BW125 to SF10BW125 594 594 595 -((( 596 -The NSE01 has an internal LED which is to show the status of different state. 576 +923.8 - SF7BW125 to SF10BW125 597 597 578 +924.0 - SF7BW125 to SF10BW125 598 598 599 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 600 -* Then the LED will be on for 1 second means device is boot normally. 601 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 602 -* For each uplink probe, LED will be on for 500ms. 603 -))) 580 +924.2 - SF7BW125 to SF10BW125 604 604 582 +924.4 - SF7BW125 to SF10BW125 605 605 584 +924.6 - SF7BW125 to SF10BW125 606 606 607 607 608 - ==2.7 InstallationinSoil==587 +(% style="color:#037691" %)** Downlink:** 609 609 610 - __**Measurementthesoilurface**__589 +Uplink channels 1-8 (RX1) 611 611 612 -((( 613 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 614 -))) 591 +923.2 - SF10BW125 (RX2) 615 615 616 -[[image:1657259653666-883.png]] 617 617 618 618 619 -((( 620 - 595 +=== 2.7.6 KR920-923 (KR920) === 621 621 622 -((( 623 -Dig a hole with diameter > 20CM. 624 -))) 597 +Default channel: 625 625 626 -((( 627 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 628 -))) 629 -))) 599 +922.1 - SF7BW125 to SF12BW125 630 630 631 - [[image:1654506665940-119.png]]601 +922.3 - SF7BW125 to SF12BW125 632 632 633 -((( 634 - 635 -))) 603 +922.5 - SF7BW125 to SF12BW125 636 636 637 637 638 -= =2.8 FirmwareChangeLog==606 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 639 639 608 +922.1 - SF7BW125 to SF12BW125 640 640 641 - DownloadURL&FirmwareChange log610 +922.3 - SF7BW125 to SF12BW125 642 642 643 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]612 +922.5 - SF7BW125 to SF12BW125 644 644 614 +922.7 - SF7BW125 to SF12BW125 645 645 646 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]616 +922.9 - SF7BW125 to SF12BW125 647 647 618 +923.1 - SF7BW125 to SF12BW125 648 648 620 +923.3 - SF7BW125 to SF12BW125 649 649 650 -== 2.9 Battery Analysis == 651 651 652 - ===2.9.1 BatteryType==623 +(% style="color:#037691" %)**Downlink:** 653 653 625 +Uplink channels 1-7(RX1) 654 654 627 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 + 629 + 630 + 631 +=== 2.7.7 IN865-867 (IN865) === 632 + 633 +(% style="color:#037691" %)** Uplink:** 634 + 635 +865.0625 - SF7BW125 to SF12BW125 636 + 637 +865.4025 - SF7BW125 to SF12BW125 638 + 639 +865.9850 - SF7BW125 to SF12BW125 640 + 641 + 642 +(% style="color:#037691" %) **Downlink:** 643 + 644 +Uplink channels 1-3 (RX1) 645 + 646 +866.550 - SF10BW125 (RX2) 647 + 648 + 649 + 650 + 651 +== 2.8 LED Indicator == 652 + 653 +The LSE01 has an internal LED which is to show the status of different state. 654 + 655 +* Blink once when device power on. 656 +* Solid ON for 5 seconds once device successful Join the network. 657 +* Blink once when device transmit a packet. 658 + 659 + 660 + 661 +== 2.9 Installation in Soil == 662 + 663 +**Measurement the soil surface** 664 + 665 + 666 +[[image:1654506634463-199.png]] 667 + 655 655 ((( 656 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 669 +((( 670 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 657 657 ))) 672 +))) 658 658 659 659 675 +[[image:1654506665940-119.png]] 676 + 660 660 ((( 661 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.678 +Dig a hole with diameter > 20CM. 662 662 ))) 663 663 681 +((( 682 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 683 +))) 664 664 685 + 686 +== 2.10 Firmware Change Log == 687 + 665 665 ((( 666 - The battery relateddocumentsasbelow:689 +**Firmware download link:** 667 667 ))) 668 668 669 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]670 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]671 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]692 +((( 693 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 694 +))) 672 672 673 673 ((( 674 - [[image:image-20220708140453-6.png]]697 + 675 675 ))) 676 676 700 +((( 701 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 702 +))) 677 677 704 +((( 705 + 706 +))) 678 678 679 -=== 2.9.2 Power consumption Analyze === 708 +((( 709 +**V1.0.** 710 +))) 680 680 681 681 ((( 682 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.713 +Release 683 683 ))) 684 684 685 685 717 +== 2.11 Battery Analysis == 718 + 719 +=== 2.11.1 Battery Type === 720 + 686 686 ((( 687 - Instruction touse as below:722 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 688 688 ))) 689 689 690 690 ((( 691 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]726 +The battery is designed to last for more than 5 years for the LSN50. 692 692 ))) 693 693 694 - 695 695 ((( 696 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 730 +((( 731 +The battery-related documents are as below: 697 697 ))) 733 +))) 698 698 699 699 * ((( 700 - ProductModel736 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 701 701 ))) 702 702 * ((( 703 - UplinkInterval739 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 704 704 ))) 705 705 * ((( 706 - WorkingMode742 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 707 707 ))) 708 708 709 -((( 710 -And the Life expectation in difference case will be shown on the right. 711 -))) 745 + [[image:image-20220606171726-9.png]] 712 712 713 -[[image:image-20220708141352-7.jpeg]] 714 714 715 715 749 +=== 2.11.2 Battery Note === 716 716 717 -=== 2.9.3 Battery Note === 718 - 719 719 ((( 720 720 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 721 721 ))) ... ... @@ -722,176 +722,303 @@ 722 722 723 723 724 724 725 -=== 2. 9.4Replace the battery ===757 +=== 2.11.3 Replace the battery === 726 726 727 727 ((( 728 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).760 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 729 729 ))) 730 730 731 - 732 - 733 -= 3. Access NB-IoT Module = 734 - 735 735 ((( 736 - Userscan directly accesstheATcommand set of theNB-IoTmodule.764 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 737 737 ))) 738 738 739 739 ((( 740 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]768 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 741 741 ))) 742 742 743 -[[image:1657261278785-153.png]] 744 744 745 745 773 += 3. Using the AT Commands = 746 746 747 -= 4.UsingtheAT Commands =775 +== 3.1 Access AT Commands == 748 748 749 -== 4.1 Access AT Commands == 750 750 751 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]778 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 752 752 780 +[[image:1654501986557-872.png||height="391" width="800"]] 753 753 754 -AT+<CMD>? : Help on <CMD> 755 755 756 - AT+<CMD>: Run<CMD>783 +Or if you have below board, use below connection: 757 757 758 -AT+<CMD>=<value> : Set the value 759 759 760 - AT+<CMD>=?:Get the value786 +[[image:1654502005655-729.png||height="503" width="801"]] 761 761 762 762 789 + 790 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 791 + 792 + 793 + [[image:1654502050864-459.png||height="564" width="806"]] 794 + 795 + 796 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 797 + 798 + 799 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 800 + 801 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 802 + 803 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 804 + 805 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 806 + 807 + 763 763 (% style="color:#037691" %)**General Commands**(%%) 764 764 765 -AT 810 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 766 766 767 -AT? 812 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 768 768 769 -ATZ 814 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 770 770 771 -AT+TDC 816 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 772 772 773 -AT+CFG : Print all configurations 774 774 775 - AT+CFGMOD: Workingmode selection819 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 776 776 777 -AT+I NTMOD:Setthe trigger interruptmode821 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 778 778 779 -AT+ 5VTSetextend the timeof5V power823 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 780 780 781 -AT+P ROChooseagreement825 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 782 782 783 -AT+ WEIGREGet weightorsetweight to 0827 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 784 784 785 -AT+ WEIGAPGet or SettheGapValue of weight829 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 786 786 787 -AT+ RXDL: Extendthe sendingandreceivingtime831 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 788 788 789 -AT+ CNTFACGettcountingparameters833 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 790 790 791 -AT+ SERVADDR:ServerAddress835 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 792 792 837 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 793 793 794 -(% style="color:# 037691" %)**COAPManagement**839 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 795 795 796 -AT+ URIsourceparameters841 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 797 797 843 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 798 798 799 -(% style="color:# 037691" %)**UDPManagement**845 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 800 800 801 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)847 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 802 802 849 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 803 803 804 -(% style="color:# 037691" %)**MQTTManagement**851 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 805 805 806 -AT+CLIENT : Get or Set MQTT client 807 807 808 - AT+UNAMEGetSetMQTT Username854 +(% style="color:#037691" %)**LoRa Network Management** 809 809 810 -AT+ PWDGetor SetMQTT password856 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 811 811 812 -AT+ PUBTOPICGetorSetMQTTpublishtopic858 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 813 813 814 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic860 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 815 815 862 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 816 816 817 -(% style="color:# 037691" %)**Information**864 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 818 818 819 -AT+F DRctoryDataReset866 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 820 820 821 -AT+ PWORDSerialAccessPassword868 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 822 822 870 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 823 823 872 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 824 824 825 -= 5.FAQ=874 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 826 826 827 -= =5.1HowtoUpgradeFirmware==876 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 828 828 878 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 829 829 880 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 881 + 882 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 883 + 884 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 885 + 886 + 887 +(% style="color:#037691" %)**Information** 888 + 889 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 890 + 891 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 892 + 893 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 894 + 895 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 896 + 897 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 898 + 899 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 900 + 901 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 902 + 903 + 904 += 4. FAQ = 905 + 906 +== 4.1 How to change the LoRa Frequency Bands/Region? == 907 + 830 830 ((( 831 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 909 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 910 +When downloading the images, choose the required image file for download. 832 832 ))) 833 833 834 834 ((( 835 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]914 + 836 836 ))) 837 837 838 838 ((( 839 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.918 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 840 840 ))) 841 841 921 +((( 922 + 923 +))) 842 842 925 +((( 926 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 927 +))) 843 843 844 -== 5.2 Can I calibrate NSE01 to different soil types? == 929 +((( 930 + 931 +))) 845 845 846 846 ((( 847 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].934 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 848 848 ))) 849 849 937 +[[image:image-20220606154726-3.png]] 850 850 851 -= 6. Trouble Shooting = 852 852 853 - ==6.1 Connection problemwhenuploadingfirmware==940 +When you use the TTN network, the US915 frequency bands use are: 854 854 942 +* 903.9 - SF7BW125 to SF10BW125 943 +* 904.1 - SF7BW125 to SF10BW125 944 +* 904.3 - SF7BW125 to SF10BW125 945 +* 904.5 - SF7BW125 to SF10BW125 946 +* 904.7 - SF7BW125 to SF10BW125 947 +* 904.9 - SF7BW125 to SF10BW125 948 +* 905.1 - SF7BW125 to SF10BW125 949 +* 905.3 - SF7BW125 to SF10BW125 950 +* 904.6 - SF8BW500 855 855 856 856 ((( 857 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]953 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 858 858 ))) 859 859 860 -(% class=" wikigeneratedid" %)956 +(% class="box infomessage" %) 861 861 ((( 958 +**AT+CHE=2** 959 +))) 960 + 961 +(% class="box infomessage" %) 962 +((( 963 +**ATZ** 964 +))) 965 + 966 +((( 967 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 968 +))) 969 + 970 +((( 862 862 863 863 ))) 864 864 974 +((( 975 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 976 +))) 865 865 866 - == 6.2 AT Commandinput doesn't work ==978 +[[image:image-20220606154825-4.png]] 867 867 980 + 981 + 982 += 5. Trouble Shooting = 983 + 984 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 985 + 986 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 987 + 988 + 989 +== 5.2 AT Command input doesn’t work == 990 + 868 868 ((( 869 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 992 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +))) 870 870 871 - 995 + 996 +== 5.3 Device rejoin in at the second uplink packet == 997 + 998 +(% style="color:#4f81bd" %)**Issue describe as below:** 999 + 1000 +[[image:1654500909990-784.png]] 1001 + 1002 + 1003 +(% style="color:#4f81bd" %)**Cause for this issue:** 1004 + 1005 +((( 1006 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 872 872 ))) 873 873 874 874 875 - =7. OrderInfo=1010 +(% style="color:#4f81bd" %)**Solution: ** 876 876 1012 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 877 877 878 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1014 +[[image:1654500929571-736.png||height="458" width="832"]] 879 879 880 880 1017 += 6. Order Info = 1018 + 1019 + 1020 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1024 + 1025 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1026 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1027 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1028 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1029 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1030 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1031 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1032 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1033 + 1034 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1035 + 1036 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1037 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1038 + 881 881 (% class="wikigeneratedid" %) 882 882 ((( 883 883 884 884 ))) 885 885 886 -= 8.1044 += 7. Packing Info = 887 887 888 888 ((( 889 889 890 890 891 891 (% style="color:#037691" %)**Package Includes**: 1050 +))) 892 892 893 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1894 - *Externalantennax 11052 +* ((( 1053 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 895 895 ))) 896 896 897 897 ((( ... ... @@ -898,19 +898,30 @@ 898 898 899 899 900 900 (% style="color:#037691" %)**Dimension and weight**: 1060 +))) 901 901 902 -* Size: 195 x 125 x 55 mm903 - * Weight:420g1062 +* ((( 1063 +Device Size: cm 904 904 ))) 1065 +* ((( 1066 +Device Weight: g 1067 +))) 1068 +* ((( 1069 +Package Size / pcs : cm 1070 +))) 1071 +* ((( 1072 +Weight / pcs : g 905 905 906 -((( 907 - 908 908 909 - 910 910 911 911 ))) 912 912 913 -= 9.1078 += 8. Support = 914 914 915 915 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 916 916 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1082 + 1083 + 1084 +~)~)~) 1085 +~)~)~) 1086 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -78.3 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content