Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 74.2
edited by Xiaoling
on 2022/07/09 08:52
Change comment: There is no comment for this version
To version 45.1
edited by Xiaoling
on 2022/07/08 10:16
Change comment: Uploaded new attachment "image-20220708101605-2.png", version {1}

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,11 +1,10 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 -**Table of Contents:**
9 9  
10 10  
11 11  
... ... @@ -12,23 +12,28 @@
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 +
17 +
18 +
19 +
20 +
16 16  = 1.  Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
23 -(((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
30 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
31 31  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
32 32  
33 33  )))
34 34  
... ... @@ -39,8 +39,9 @@
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
43 43  
48 +
44 44  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
45 45  * Monitor Soil Moisture
46 46  * Monitor Soil Temperature
... ... @@ -54,6 +54,8 @@
54 54  * Micro SIM card slot for NB-IoT SIM
55 55  * 8500mAh Battery for long term use
56 56  
62 +
63 +
57 57  == 1.3  Specification ==
58 58  
59 59  
... ... @@ -62,6 +62,7 @@
62 62  * Supply Voltage: 2.1v ~~ 3.6v
63 63  * Operating Temperature: -40 ~~ 85°C
64 64  
72 +
65 65  (% style="color:#037691" %)**NB-IoT Spec:**
66 66  
67 67  * - B1 @H-FDD: 2100MHz
... ... @@ -71,8 +71,9 @@
71 71  * - B20 @H-FDD: 800MHz
72 72  * - B28 @H-FDD: 700MHz
73 73  
74 -Probe(% style="color:#037691" %)** Specification:**
75 75  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
76 76  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 78  [[image:image-20220708101224-1.png]]
... ... @@ -93,616 +93,696 @@
93 93  
94 94  
95 95  
96 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
97 97  
98 -== 2.1  How it works ==
107 +== 2.1 How it works ==
99 99  
100 -
101 101  (((
102 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 103  )))
104 104  
105 -
106 106  (((
107 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
108 108  )))
109 109  
110 -[[image:image-20220708101605-2.png]]
111 111  
112 -(((
113 -
114 -)))
115 115  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
116 116  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
117 117  
118 -== 2.2 ​ Configure the NSE01 ==
119 119  
124 +[[image:1654503992078-669.png]]
120 120  
121 -=== 2.2.1 Test Requirement ===
122 122  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
123 123  
124 -(((
125 -To use NSE01 in your city, make sure meet below requirements:
126 -)))
127 127  
128 -* Your local operator has already distributed a NB-IoT Network there.
129 -* The local NB-IoT network used the band that NSE01 supports.
130 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 131  
132 -(((
133 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
134 -)))
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
135 135  
134 +[[image:image-20220606163732-6.jpeg]]
136 136  
137 -[[image:1657249419225-449.png]]
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
138 138  
138 +**Add APP EUI in the application**
139 139  
140 140  
141 -=== 2.2.2 Insert SIM card ===
141 +[[image:1654504596150-405.png]]
142 142  
143 -(((
144 -Insert the NB-IoT Card get from your provider.
145 -)))
146 146  
147 -(((
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 -)))
150 150  
145 +**Add APP KEY and DEV EUI**
151 151  
152 -[[image:1657249468462-536.png]]
147 +[[image:1654504683289-357.png]]
153 153  
154 154  
155 155  
156 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
157 157  
158 -(((
159 -(((
160 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
161 -)))
162 -)))
163 163  
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
164 164  
165 -**Connection:**
156 +[[image:image-20220606163915-7.png]]
166 166  
167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168 168  
169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170 170  
171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
161 +[[image:1654504778294-788.png]]
172 172  
173 173  
174 -In the PC, use below serial tool settings:
175 175  
176 -* Baud:  (% style="color:green" %)**9600**
177 -* Data bits:** (% style="color:green" %)8(%%)**
178 -* Stop bits: (% style="color:green" %)**1**
179 -* Parity:  (% style="color:green" %)**None**
180 -* Flow Control: (% style="color:green" %)**None**
165 +== 2.3 Uplink Payload ==
181 181  
182 -(((
183 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
184 -)))
185 185  
186 -[[image:image-20220708110657-3.png]]
168 +=== 2.3.1 MOD~=0(Default Mode) ===
187 187  
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
188 188  (((
189 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
173 +Uplink payload includes in total 11 bytes.
190 190  )))
191 191  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
192 192  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
193 193  
194 -=== 2.2.4 Use CoAP protocol to uplink data ===
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
195 195  
196 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
189 +(Optional)
190 +)))
197 197  
192 +=== 2.3.2 MOD~=1(Original value) ===
198 198  
199 -**Use below commands:**
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
200 200  
201 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
202 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
203 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
204 204  
205 -For parameter description, please refer to AT command set
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
206 206  
207 -[[image:1657249793983-486.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
208 208  
209 +(Optional)
210 +)))
209 209  
210 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
212 +=== 2.3.3 Battery Info ===
211 211  
212 -[[image:1657249831934-534.png]]
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
213 213  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
214 214  
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
215 215  
216 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
217 217  
218 -This feature is supported since firmware version v1.0.1
219 219  
228 +=== 2.3.4 Soil Moisture ===
220 220  
221 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
224 224  
225 -[[image:1657249864775-321.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
226 226  
238 +(((
239 +
240 +)))
227 227  
228 -[[image:1657249930215-289.png]]
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
229 229  
230 230  
231 231  
232 -=== 2.2.6 Use MQTT protocol to uplink data ===
248 +=== 2.3.5 Soil Temperature ===
233 233  
234 -This feature is supported since firmware version v110
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
235 235  
254 +(((
255 +**Example**:
256 +)))
236 236  
237 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
241 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
244 244  
245 -[[image:1657249978444-674.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
246 246  
247 247  
248 -[[image:1657249990869-686.png]]
249 249  
268 +=== 2.3.6 Soil Conductivity (EC) ===
250 250  
251 251  (((
252 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
253 253  )))
254 254  
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
255 255  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
256 256  
257 -=== 2.2.7 Use TCP protocol to uplink data ===
282 +(((
283 +
284 +)))
258 258  
259 -This feature is supported since firmware version v110
286 +(((
287 +
288 +)))
260 260  
290 +=== 2.3.7 MOD ===
261 261  
262 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
263 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
292 +Firmware version at least v2.1 supports changing mode.
264 264  
265 -[[image:1657250217799-140.png]]
294 +For example, bytes[10]=90
266 266  
296 +mod=(bytes[10]>>7)&0x01=1.
267 267  
268 -[[image:1657250255956-604.png]]
269 269  
299 +**Downlink Command:**
270 270  
301 +If payload = 0x0A00, workmode=0
271 271  
272 -=== 2.2.8 Change Update Interval ===
303 +If** **payload =** **0x0A01, workmode=1
273 273  
274 -User can use below command to change the (% style="color:green" %)**uplink interval**.
275 275  
276 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
277 277  
278 -(((
279 -(% style="color:red" %)**NOTE:**
280 -)))
307 +=== 2.3.8 ​Decode payload in The Things Network ===
281 281  
282 -(((
283 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
284 -)))
309 +While using TTN network, you can add the payload format to decode the payload.
285 285  
286 286  
312 +[[image:1654505570700-128.png]]
287 287  
288 -== 2.3  Uplink Payload ==
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
289 289  
290 -In this mode, uplink payload includes in total 18 bytes
291 -
292 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
293 -|=(% style="width: 60px;" %)(((
294 -**Size(bytes)**
295 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
296 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
297 -
298 298  (((
299 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
300 300  )))
301 301  
302 302  
303 -[[image:image-20220708111918-4.png]]
323 +== 2.4 Uplink Interval ==
304 304  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
305 305  
306 -The payload is ASCII string, representative same HEX:
307 307  
308 -0x72403155615900640c7817075e0a8c02f900 where:
309 309  
310 -* Device ID: 0x 724031556159 = 724031556159
311 -* Version: 0x0064=100=1.0.0
329 +== 2.5 Downlink Payload ==
312 312  
313 -* BAT: 0x0c78 = 3192 mV = 3.192V
314 -* Singal: 0x17 = 23
315 -* Soil Moisture: 0x075e= 1886 = 18.86  %
316 -* Soil Temperature:0x0a8c =2700=27 °C
317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 -* Interrupt: 0x00 = 0
331 +By default, LSE50 prints the downlink payload to console port.
319 319  
320 -== 2.4  Payload Explanation and Sensor Interface ==
333 +[[image:image-20220606165544-8.png]]
321 321  
322 322  
323 -=== 2.4.1  Device ID ===
324 -
325 325  (((
326 -By default, the Device ID equal to the last 6 bytes of IMEI.
337 +(% style="color:blue" %)**Examples:**
327 327  )))
328 328  
329 329  (((
330 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
341 +
331 331  )))
332 332  
333 -(((
334 -**Example:**
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
335 335  )))
336 336  
337 337  (((
338 -AT+DEUI=A84041F15612
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
339 339  )))
340 340  
341 341  (((
342 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
353 +Payload:    01 00 00 1E    TDC=30S
343 343  )))
344 344  
345 -
346 -
347 -=== 2.4.2  Version Info ===
348 -
349 349  (((
350 -Specify the software version: 0x64=100, means firmware version 1.00.
357 +Payload:    01 00 00 3C    TDC=60S
351 351  )))
352 352  
353 353  (((
354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
361 +
355 355  )))
356 356  
357 -
358 -
359 -=== 2.4.3  Battery Info ===
360 -
361 -(((
362 -Check the battery voltage for LSE01.
364 +* (((
365 +(% style="color:blue" %)**Reset**
363 363  )))
364 364  
365 365  (((
366 -Ex1: 0x0B45 = 2885mV
369 +If payload = 0x04FF, it will reset the LSE01
367 367  )))
368 368  
369 -(((
370 -Ex2: 0x0B49 = 2889mV
371 -)))
372 372  
373 +* (% style="color:blue" %)**CFM**
373 373  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
374 374  
375 -=== 2.4.4  Signal Strength ===
376 376  
377 -(((
378 -NB-IoT Network signal Strength.
379 -)))
380 380  
381 -(((
382 -**Ex1: 0x1d = 29**
383 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
384 384  
385 385  (((
386 -(% style="color:blue" %)**0**(%%)  -113dBm or less
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
387 387  )))
388 388  
389 389  (((
390 -(% style="color:blue" %)**1**(%%)  -111dBm
386 +
391 391  )))
392 392  
393 393  (((
394 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
390 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
395 395  )))
396 396  
397 397  (((
398 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
394 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
399 399  )))
400 400  
401 -(((
402 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
403 -)))
404 404  
398 +[[image:1654505857935-743.png]]
405 405  
406 406  
407 -=== 2.4.5  Soil Moisture ===
401 +[[image:1654505874829-548.png]]
408 408  
409 -(((
410 -(((
411 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
412 -)))
413 -)))
414 414  
415 -(((
416 -(((
417 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
418 -)))
419 -)))
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
420 420  
421 -(((
422 -
423 -)))
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
424 424  
425 -(((
426 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
427 -)))
428 428  
409 +[[image:1654505905236-553.png]]
429 429  
430 430  
431 -=== 2.4.6  Soil Temperature ===
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
432 432  
433 -(((
434 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
435 -)))
414 +[[image:1654505925508-181.png]]
436 436  
437 -(((
438 -**Example**:
439 -)))
440 440  
441 -(((
442 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
443 -)))
444 444  
445 -(((
446 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
447 -)))
418 +== 2.7 Frequency Plans ==
448 448  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
449 449  
450 450  
451 -=== 2.4.7  Soil Conductivity (EC) ===
423 +=== 2.7.1 EU863-870 (EU868) ===
452 452  
453 -(((
454 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
455 -)))
425 +(% style="color:#037691" %)** Uplink:**
456 456  
457 -(((
458 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
459 -)))
427 +868.1 - SF7BW125 to SF12BW125
460 460  
461 -(((
462 -Generally, the EC value of irrigation water is less than 800uS / cm.
463 -)))
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
464 464  
465 -(((
466 -
467 -)))
431 +868.5 - SF7BW125 to SF12BW125
468 468  
469 -(((
470 -
471 -)))
433 +867.1 - SF7BW125 to SF12BW125
472 472  
473 -=== 2.4.8  Digital Interrupt ===
435 +867.3 - SF7BW125 to SF12BW125
474 474  
475 -(((
476 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
477 -)))
437 +867.5 - SF7BW125 to SF12BW125
478 478  
479 -(((
480 -The command is:
481 -)))
439 +867.7 - SF7BW125 to SF12BW125
482 482  
483 -(((
484 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
485 -)))
441 +867.9 - SF7BW125 to SF12BW125
486 486  
443 +868.8 - FSK
487 487  
488 -(((
489 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
490 -)))
491 491  
446 +(% style="color:#037691" %)** Downlink:**
492 492  
493 -(((
494 -Example:
495 -)))
448 +Uplink channels 1-9 (RX1)
496 496  
497 -(((
498 -0x(00): Normal uplink packet.
499 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
500 500  
501 -(((
502 -0x(01): Interrupt Uplink Packet.
503 -)))
504 504  
505 505  
454 +=== 2.7.2 US902-928(US915) ===
506 506  
507 -=== 2.4.9  ​+5V Output ===
456 +Used in USA, Canada and South America. Default use CHE=2
508 508  
509 -(((
510 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
511 -)))
458 +(% style="color:#037691" %)**Uplink:**
512 512  
460 +903.9 - SF7BW125 to SF10BW125
513 513  
514 -(((
515 -The 5V output time can be controlled by AT Command.
516 -)))
462 +904.1 - SF7BW125 to SF10BW125
517 517  
518 -(((
519 -(% style="color:blue" %)**AT+5VT=1000**
520 -)))
464 +904.3 - SF7BW125 to SF10BW125
521 521  
522 -(((
523 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
524 -)))
466 +904.5 - SF7BW125 to SF10BW125
525 525  
468 +904.7 - SF7BW125 to SF10BW125
526 526  
470 +904.9 - SF7BW125 to SF10BW125
527 527  
528 -== 2.5  Downlink Payload ==
472 +905.1 - SF7BW125 to SF10BW125
529 529  
530 -By default, NSE01 prints the downlink payload to console port.
474 +905.3 - SF7BW125 to SF10BW125
531 531  
532 -[[image:image-20220708133731-5.png]]
533 533  
477 +(% style="color:#037691" %)**Downlink:**
534 534  
535 -(((
536 -(% style="color:blue" %)**Examples:**
537 -)))
479 +923.3 - SF7BW500 to SF12BW500
538 538  
539 -(((
540 -
541 -)))
481 +923.9 - SF7BW500 to SF12BW500
542 542  
543 -* (((
544 -(% style="color:blue" %)**Set TDC**
545 -)))
483 +924.5 - SF7BW500 to SF12BW500
546 546  
547 -(((
548 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
549 -)))
485 +925.1 - SF7BW500 to SF12BW500
550 550  
551 -(((
552 -Payload:    01 00 00 1E    TDC=30S
553 -)))
487 +925.7 - SF7BW500 to SF12BW500
554 554  
555 -(((
556 -Payload:    01 00 00 3C    TDC=60S
557 -)))
489 +926.3 - SF7BW500 to SF12BW500
558 558  
559 -(((
560 -
561 -)))
491 +926.9 - SF7BW500 to SF12BW500
562 562  
563 -* (((
564 -(% style="color:blue" %)**Reset**
565 -)))
493 +927.5 - SF7BW500 to SF12BW500
566 566  
567 -(((
568 -If payload = 0x04FF, it will reset the NSE01
569 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
570 570  
571 571  
572 -* (% style="color:blue" %)**INTMOD**
573 573  
574 -(((
575 -Downlink Payload: 06000003, Set AT+INTMOD=3
576 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
577 577  
501 +Used in China, Default use CHE=1
578 578  
503 +(% style="color:#037691" %)**Uplink:**
579 579  
580 -== 2.6  ​LED Indicator ==
505 +486.3 - SF7BW125 to SF12BW125
581 581  
582 -(((
583 -The NSE01 has an internal LED which is to show the status of different state.
507 +486.5 - SF7BW125 to SF12BW125
584 584  
509 +486.7 - SF7BW125 to SF12BW125
585 585  
586 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
587 -* Then the LED will be on for 1 second means device is boot normally.
588 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
589 -* For each uplink probe, LED will be on for 500ms.
590 -)))
511 +486.9 - SF7BW125 to SF12BW125
591 591  
513 +487.1 - SF7BW125 to SF12BW125
592 592  
515 +487.3 - SF7BW125 to SF12BW125
593 593  
517 +487.5 - SF7BW125 to SF12BW125
594 594  
595 -== 2.7  Installation in Soil ==
519 +487.7 - SF7BW125 to SF12BW125
596 596  
597 -__**Measurement the soil surface**__
598 598  
599 -(((
600 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
601 -)))
522 +(% style="color:#037691" %)**Downlink:**
602 602  
603 -[[image:1657259653666-883.png]]
524 +506.7 - SF7BW125 to SF12BW125
604 604  
526 +506.9 - SF7BW125 to SF12BW125
605 605  
606 -(((
607 -
528 +507.1 - SF7BW125 to SF12BW125
608 608  
609 -(((
610 -Dig a hole with diameter > 20CM.
611 -)))
530 +507.3 - SF7BW125 to SF12BW125
612 612  
613 -(((
614 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
615 -)))
616 -)))
532 +507.5 - SF7BW125 to SF12BW125
617 617  
618 -[[image:1654506665940-119.png]]
534 +507.7 - SF7BW125 to SF12BW125
619 619  
620 -(((
621 -
622 -)))
536 +507.9 - SF7BW125 to SF12BW125
623 623  
538 +508.1 - SF7BW125 to SF12BW125
624 624  
625 -== 2. Firmware Change Log ==
540 +505.3 - SF12BW125 (RX2 downlink only)
626 626  
627 627  
628 -Download URL & Firmware Change log
629 629  
630 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
544 +=== 2.7.4 AU915-928(AU915) ===
631 631  
546 +Default use CHE=2
632 632  
633 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
548 +(% style="color:#037691" %)**Uplink:**
634 634  
550 +916.8 - SF7BW125 to SF12BW125
635 635  
552 +917.0 - SF7BW125 to SF12BW125
636 636  
637 -== 2.9  Battery Analysis ==
554 +917.2 - SF7BW125 to SF12BW125
638 638  
639 -=== 2.9.1  Battery Type ===
556 +917.4 - SF7BW125 to SF12BW125
640 640  
558 +917.6 - SF7BW125 to SF12BW125
641 641  
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
642 642  (((
643 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
644 644  )))
715 +)))
645 645  
646 646  
718 +
719 +[[image:1654506665940-119.png]]
720 +
647 647  (((
648 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
649 649  )))
650 650  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
651 651  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
652 652  (((
653 -The battery related documents as below:
733 +**Firmware download link:**
654 654  )))
655 655  
656 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
657 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
659 659  
660 660  (((
661 -[[image:image-20220708140453-6.png]]
741 +
662 662  )))
663 663  
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
664 664  
748 +(((
749 +
750 +)))
665 665  
666 -=== 2.9.2  Power consumption Analyze ===
752 +(((
753 +**V1.0.**
754 +)))
667 667  
668 668  (((
669 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
670 670  )))
671 671  
672 672  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
673 673  (((
674 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
675 675  )))
676 676  
677 677  (((
678 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
679 679  )))
680 680  
681 -
682 682  (((
683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
684 684  )))
777 +)))
685 685  
686 686  * (((
687 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
688 688  )))
689 689  * (((
690 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
691 691  )))
692 692  * (((
693 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
694 694  )))
695 695  
696 -(((
697 -And the Life expectation in difference case will be shown on the right.
698 -)))
789 + [[image:image-20220610172436-1.png]]
699 699  
700 -[[image:image-20220708141352-7.jpeg]]
701 701  
702 702  
793 +=== 2.11.2 ​Battery Note ===
703 703  
704 -=== 2.9.3  ​Battery Note ===
705 -
706 706  (((
707 707  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
708 708  )))
... ... @@ -709,176 +709,302 @@
709 709  
710 710  
711 711  
712 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
713 713  
714 714  (((
715 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
716 716  )))
717 717  
718 -
719 -
720 -= 3. ​ Access NB-IoT Module =
721 -
722 722  (((
723 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
724 724  )))
725 725  
726 726  (((
727 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
728 728  )))
729 729  
730 -[[image:1657261278785-153.png]]
731 731  
732 732  
817 += 3. ​Using the AT Commands =
733 733  
734 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
735 735  
736 -== 4.1  Access AT Commands ==
737 737  
738 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
739 739  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
740 740  
741 -AT+<CMD>?  : Help on <CMD>
742 742  
743 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
744 744  
745 -AT+<CMD>=<value> : Set the value
746 746  
747 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
748 748  
749 749  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
750 750  (% style="color:#037691" %)**General Commands**(%%)      
751 751  
752 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 753  
754 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 755  
756 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 757  
758 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 759  
760 -AT+CFG  : Print all configurations
761 761  
762 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 763  
764 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 765  
766 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 767  
768 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 769  
770 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 771  
772 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 773  
774 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
775 775  
776 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 777  
778 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 779  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
780 780  
781 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 782  
783 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 784  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
785 785  
786 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 787  
788 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 789  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
790 790  
791 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 792  
793 -AT+CLIENT               : Get or Set MQTT client
794 794  
795 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
796 796  
797 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 798  
799 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 800  
801 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 802  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
803 803  
804 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 805  
806 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 807  
808 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 809  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
810 810  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
811 811  
812 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 813  
814 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 815  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
816 816  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
817 817  (((
818 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
819 819  )))
820 820  
821 821  (((
822 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
823 823  )))
824 824  
825 825  (((
826 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
827 827  )))
828 828  
965 +(((
966 +
967 +)))
829 829  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
830 830  
831 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
832 832  
833 833  (((
834 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
835 835  )))
836 836  
981 +[[image:image-20220606154726-3.png]]
837 837  
838 -= 6.  Trouble Shooting =
839 839  
840 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
841 841  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
842 842  
843 843  (((
844 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
845 845  )))
846 846  
847 -(% class="wikigeneratedid" %)
848 848  (((
849 849  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
850 850  )))
851 851  
1009 +(((
1010 +
1011 +)))
852 852  
853 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
854 854  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
855 855  (((
856 856  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
857 857  
858 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
859 859  )))
860 860  
861 861  
862 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
863 863  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
864 864  
865 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
866 866  
867 867  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
868 868  (% class="wikigeneratedid" %)
869 869  (((
870 870  
871 871  )))
872 872  
873 -= 8.  Packing Info =
1087 += 7. Packing Info =
874 874  
875 875  (((
876 876  
877 877  
878 878  (% style="color:#037691" %)**Package Includes**:
1093 +)))
879 879  
880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
881 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
882 882  )))
883 883  
884 884  (((
... ... @@ -885,19 +885,24 @@
885 885  
886 886  
887 887  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
888 888  
889 -* Size: 195 x 125 x 55 mm
890 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
891 891  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
892 892  
893 -(((
894 894  
895 -
896 -
897 -
898 898  )))
899 899  
900 -= 9.  Support =
1120 += 8. Support =
901 901  
902 902  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
903 903  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content