Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 29 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,12 +1,19 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 6 7 7 8 + 9 + 10 + 11 + 12 + 13 + 8 8 **Table of Contents:** 9 9 16 +{{toc/}} 10 10 11 11 12 12 ... ... @@ -13,73 +13,65 @@ 13 13 14 14 15 15 16 -= 1. 23 += 1. Introduction = 17 17 18 -== 1.1 DDS75DistanceDetectionSensor ==25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 19 19 20 20 ((( 21 21 22 22 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 32 + 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 30 30 ))) 31 31 32 - 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 33 33 ))) 34 34 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 44 + 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 47 +))) 48 + 49 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 57 +== 1.2 Features == 43 43 44 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 45 45 * Monitor Soil Moisture 46 46 * Monitor Soil Temperature 47 47 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 48 48 * AT Commands to change parameters 49 49 * Uplink on periodically 50 50 * Downlink to change configure 51 51 * IP66 Waterproof Enclosure 52 -* Ultra-Low Power consumption 53 -* AT Commands to change parameters 54 -* Micro SIM card slot for NB-IoT SIM 55 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 56 56 57 -== 1.3 Specification == 58 58 59 59 60 - (% style="color:#037691"%)**Common DC Characteristics:**73 +== 1.3 Specification == 61 61 62 -* Supply Voltage: 2.1v ~~ 3.6v 63 -* Operating Temperature: -40 ~~ 85°C 64 - 65 -(% style="color:#037691" %)**NB-IoT Spec:** 66 - 67 -* - B1 @H-FDD: 2100MHz 68 -* - B3 @H-FDD: 1800MHz 69 -* - B8 @H-FDD: 900MHz 70 -* - B5 @H-FDD: 850MHz 71 -* - B20 @H-FDD: 800MHz 72 -* - B28 @H-FDD: 700MHz 73 - 74 -Probe(% style="color:#037691" %)** Specification:** 75 - 76 76 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 77 77 78 -[[image:image-20220 708101224-1.png]]77 +[[image:image-20220606162220-5.png]] 79 79 80 80 81 81 82 -== 1.4 81 +== 1.4 Applications == 83 83 84 84 * Smart Agriculture 85 85 ... ... @@ -86,623 +86,709 @@ 86 86 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 87 87 88 88 89 -== 1.5 Pin Definitions==88 +== 1.5 Firmware Change log == 90 90 91 91 92 - [[image:1657246476176-652.png]]91 +**LSE01 v1.0 :** Release 93 93 94 94 95 95 96 -= 2. UseNSE01 to communicatewithIoTServer=95 += 2. Configure LSE01 to connect to LoRaWAN network = 97 97 98 -== 2.1 97 +== 2.1 How it works == 99 99 100 - 101 101 ((( 102 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.100 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 103 103 ))) 104 104 105 - 106 106 ((( 107 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:104 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 108 108 ))) 109 109 110 -[[image:image-20220708101605-2.png]] 111 111 112 -((( 113 - 114 -))) 115 115 109 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 116 116 111 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 117 117 118 -== 2.2 Configure the NSE01 == 119 119 114 +[[image:1654503992078-669.png]] 120 120 121 -=== 2.2.1 Test Requirement === 122 122 117 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 123 123 124 -((( 125 -To use NSE01 in your city, make sure meet below requirements: 126 -))) 127 127 128 -* Your local operator has already distributed a NB-IoT Network there. 129 -* The local NB-IoT network used the band that NSE01 supports. 130 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 120 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 131 131 132 -((( 133 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 134 -))) 122 +Each LSE01 is shipped with a sticker with the default device EUI as below: 135 135 124 +[[image:image-20220606163732-6.jpeg]] 136 136 137 - [[image:1657249419225-449.png]]126 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 138 138 128 +**Add APP EUI in the application** 139 139 140 140 141 - === 2.2.2 Insert SIM card ===131 +[[image:1654504596150-405.png]] 142 142 143 -((( 144 -Insert the NB-IoT Card get from your provider. 145 -))) 146 146 147 -((( 148 -User need to take out the NB-IoT module and insert the SIM card like below: 149 -))) 150 150 135 +**Add APP KEY and DEV EUI** 151 151 152 -[[image:165 7249468462-536.png]]137 +[[image:1654504683289-357.png]] 153 153 154 154 155 155 156 - ===2.2.3 ConnectUSB–TTLtoNSE01to configure it ===141 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 157 157 158 -((( 159 -((( 160 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 161 -))) 162 -))) 163 163 144 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 164 164 165 - **Connection:**146 +[[image:image-20220606163915-7.png]] 166 166 167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 168 168 169 - background-color:yellow" %)USBTTL TXD<~-~-~-~->UART_RXD149 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 170 170 171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD151 +[[image:1654504778294-788.png]] 172 172 173 173 174 -In the PC, use below serial tool settings: 175 175 176 -* Baud: (% style="color:green" %)**9600** 177 -* Data bits:** (% style="color:green" %)8(%%)** 178 -* Stop bits: (% style="color:green" %)**1** 179 -* Parity: (% style="color:green" %)**None** 180 -* Flow Control: (% style="color:green" %)**None** 155 +== 2.3 Uplink Payload == 181 181 182 -((( 183 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 184 -))) 185 185 186 - [[image:image-20220708110657-3.png]]158 +=== 2.3.1 MOD~=0(Default Mode) === 187 187 160 +LSE01 will uplink payload via LoRaWAN with below payload format: 161 + 188 188 ((( 189 - (% style="color:red" %)Note: the valid AT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]163 +Uplink payload includes in total 11 bytes. 190 190 ))) 191 191 166 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 167 +|((( 168 +**Size** 192 192 170 +**(bytes)** 171 +)))|**2**|**2**|**2**|**2**|**2**|**1** 172 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 173 +Temperature 193 193 194 -=== 2.2.4 Use CoAP protocol to uplink data === 175 +(Reserve, Ignore now) 176 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 177 +MOD & Digital Interrupt 195 195 196 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 179 +(Optional) 180 +))) 197 197 198 198 199 -**Use below commands:** 200 200 201 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 202 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 203 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 184 +=== 2.3.2 MOD~=1(Original value) === 204 204 205 - Forparameterdescription,please refertoATcommandset186 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 206 206 207 -[[image:1657249793983-486.png]] 188 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 189 +|((( 190 +**Size** 208 208 192 +**(bytes)** 193 +)))|**2**|**2**|**2**|**2**|**2**|**1** 194 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 195 +Temperature 209 209 210 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 197 +(Reserve, Ignore now) 198 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 199 +MOD & Digital Interrupt 211 211 212 -[[image:1657249831934-534.png]] 201 +(Optional) 202 +))) 213 213 214 214 215 215 216 -=== 2. 2.5UseUDP protocolto uplink data(Default protocol)===206 +=== 2.3.3 Battery Info === 217 217 218 -This feature is supported since firmware version v1.0.1 208 +((( 209 +Check the battery voltage for LSE01. 210 +))) 219 219 212 +((( 213 +Ex1: 0x0B45 = 2885mV 214 +))) 220 220 221 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink222 - * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601**(%%) ~/~/ to set UDP server address and port223 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary216 +((( 217 +Ex2: 0x0B49 = 2889mV 218 +))) 224 224 225 -[[image:1657249864775-321.png]] 226 226 227 227 228 - [[image:1657249930215-289.png]]222 +=== 2.3.4 Soil Moisture === 229 229 224 +((( 225 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 226 +))) 230 230 228 +((( 229 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 230 +))) 231 231 232 -=== 2.2.6 Use MQTT protocol to uplink data === 232 +((( 233 + 234 +))) 233 233 234 -This feature is supported since firmware version v110 236 +((( 237 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 238 +))) 235 235 236 236 237 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 240 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 241 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 244 244 245 - [[image:1657249978444-674.png]]242 +=== 2.3.5 Soil Temperature === 246 246 244 +((( 245 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 246 +))) 247 247 248 -[[image:1657249990869-686.png]] 248 +((( 249 +**Example**: 250 +))) 249 249 252 +((( 253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 +))) 250 250 251 251 ((( 252 - MQTTprotocolhasa much higher power consumptioncomparevsUDP/CoAP protocol. Please check the power analyze document and adjust the uplinkperiodtoasuitable interval.257 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 253 253 ))) 254 254 255 255 256 256 257 -=== 2. 2.7Use TCP protocoltouplinkdata===262 +=== 2.3.6 Soil Conductivity (EC) === 258 258 259 -This feature is supported since firmware version v110 264 +((( 265 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 266 +))) 260 260 268 +((( 269 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 270 +))) 261 261 262 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 263 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 272 +((( 273 +Generally, the EC value of irrigation water is less than 800uS / cm. 274 +))) 264 264 265 -[[image:1657250217799-140.png]] 276 +((( 277 + 278 +))) 266 266 280 +((( 281 + 282 +))) 267 267 268 - [[image:1657250255956-604.png]]284 +=== 2.3.7 MOD === 269 269 286 +Firmware version at least v2.1 supports changing mode. 270 270 288 +For example, bytes[10]=90 271 271 272 - === 2.2.8 Change UpdateInterval===290 +mod=(bytes[10]>>7)&0x01=1. 273 273 274 -User can use below command to change the (% style="color:green" %)**uplink interval**. 275 275 276 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Intervalto600s293 +**Downlink Command:** 277 277 278 -((( 279 -(% style="color:red" %)**NOTE:** 280 -))) 295 +If payload = 0x0A00, workmode=0 281 281 282 -((( 283 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 284 -))) 297 +If** **payload =** **0x0A01, workmode=1 285 285 286 286 287 287 288 -== 2.3 UplinkPayload ==301 +=== 2.3.8 Decode payload in The Things Network === 289 289 290 - In thismode, uplinkpayloadincludesintotal18bytes303 +While using TTN network, you can add the payload format to decode the payload. 291 291 292 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 293 -|=(% style="width: 60px;" %)((( 294 -**Size(bytes)** 295 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 296 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 297 297 306 +[[image:1654505570700-128.png]] 307 + 298 298 ((( 299 - If we use theMQTT client tosubscribeto this MQTT topic, wecanseethe followinginformationwhen theNSE01uplinkdata.309 +The payload decoder function for TTN is here: 300 300 ))) 301 301 312 +((( 313 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 314 +))) 302 302 303 -[[image:image-20220708111918-4.png]] 304 304 317 +== 2.4 Uplink Interval == 305 305 306 -The payload isASCIIstring,representative sameEX:319 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 307 307 308 -0x72403155615900640c7817075e0a8c02f900 where: 309 309 310 -* Device ID: 0x 724031556159 = 724031556159 311 -* Version: 0x0064=100=1.0.0 312 312 313 -* BAT: 0x0c78 = 3192 mV = 3.192V 314 -* Singal: 0x17 = 23 315 -* Soil Moisture: 0x075e= 1886 = 18.86 % 316 -* Soil Temperature:0x0a8c =2700=27 °C 317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 -* Interrupt: 0x00 = 0 323 +== 2.5 Downlink Payload == 319 319 320 - ==2.4 PayloadExplanation andSensorInterface==325 +By default, LSE50 prints the downlink payload to console port. 321 321 327 +[[image:image-20220606165544-8.png]] 322 322 323 -=== 2.4.1 Device ID === 324 324 325 325 ((( 326 - By default, theDevice ID equal to the last 6 bytes of IMEI.331 +**Examples:** 327 327 ))) 328 328 329 329 ((( 330 - Usercan use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID335 + 331 331 ))) 332 332 333 -((( 334 -** Example:**338 +* ((( 339 +**Set TDC** 335 335 ))) 336 336 337 337 ((( 338 - AT+DEUI=A84041F15612343 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 339 339 ))) 340 340 341 341 ((( 342 - The Device ID is stored inanone-erase area, UpgradethefirmwareorrunAT+FDR won't erase Device ID.347 +Payload: 01 00 00 1E TDC=30S 343 343 ))) 344 344 345 - 346 - 347 -=== 2.4.2 Version Info === 348 - 349 349 ((( 350 - Specifythe software version: 0x64=100,meansfirmwareversion 1.00.351 +Payload: 01 00 00 3C TDC=60S 351 351 ))) 352 352 353 353 ((( 354 - Forexample: 0x00 64 : this device is NSE01 with firmware version 1.0.0.355 + 355 355 ))) 356 356 357 - 358 - 359 -=== 2.4.3 Battery Info === 360 - 361 -((( 362 -Check the battery voltage for LSE01. 358 +* ((( 359 +**Reset** 363 363 ))) 364 364 365 365 ((( 366 - Ex1:0x0B45=2885mV363 +If payload = 0x04FF, it will reset the LSE01 367 367 ))) 368 368 369 -((( 370 -Ex2: 0x0B49 = 2889mV 371 -))) 372 372 367 +* **CFM** 373 373 369 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 374 374 375 -=== 2.4.4 Signal Strength === 376 376 377 -((( 378 -NB-IoT Network signal Strength. 379 -))) 380 380 381 -((( 382 -**Ex1: 0x1d = 29** 383 -))) 373 +== 2.6 Show Data in DataCake IoT Server == 384 384 385 385 ((( 386 - (%style="color:blue"%)**0**(%%)-113dBmorless376 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 387 387 ))) 388 388 389 389 ((( 390 - (%style="color:blue" %)**1**(%%) -111dBm380 + 391 391 ))) 392 392 393 393 ((( 394 -(% style="color:blue" %)** 2...30**(%%)-109dBm...-53dBm384 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 395 395 ))) 396 396 397 397 ((( 398 -(% style="color:blue" %)** 31**-51dBmor greater388 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 399 399 ))) 400 400 401 -((( 402 -(% style="color:blue" %)**99** (%%) Not known or not detectable 403 -))) 404 404 392 +[[image:1654505857935-743.png]] 405 405 406 406 407 - ===2.4.5 Soil Moisture ===395 +[[image:1654505874829-548.png]] 408 408 409 -((( 410 -((( 411 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 412 -))) 413 -))) 414 414 415 -((( 416 -((( 417 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 418 -))) 419 -))) 398 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 420 420 421 -((( 422 - 423 -))) 400 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 424 424 425 -((( 426 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 427 -))) 428 428 403 +[[image:1654505905236-553.png]] 429 429 430 430 431 - ===2.4.6SoilTemperature===406 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 432 432 433 -((( 434 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 435 -))) 408 +[[image:1654505925508-181.png]] 436 436 437 -((( 438 -**Example**: 439 -))) 440 440 441 -((( 442 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 443 -))) 444 444 445 -((( 446 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 447 -))) 412 +== 2.7 Frequency Plans == 448 448 414 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 449 449 450 450 451 -=== 2. 4.7Soil Conductivity(EC) ===417 +=== 2.7.1 EU863-870 (EU868) === 452 452 453 -((( 454 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 455 -))) 419 +(% style="color:#037691" %)** Uplink:** 456 456 457 -((( 458 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 459 -))) 421 +868.1 - SF7BW125 to SF12BW125 460 460 461 -((( 462 -Generally, the EC value of irrigation water is less than 800uS / cm. 463 -))) 423 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 464 464 465 -((( 466 - 467 -))) 425 +868.5 - SF7BW125 to SF12BW125 468 468 469 -((( 470 - 471 -))) 427 +867.1 - SF7BW125 to SF12BW125 472 472 473 - ===2.4.8DigitalInterrupt ===429 +867.3 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 477 -))) 431 +867.5 - SF7BW125 to SF12BW125 478 478 479 -((( 480 -The command is: 481 -))) 433 +867.7 - SF7BW125 to SF12BW125 482 482 483 -((( 484 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 485 -))) 435 +867.9 - SF7BW125 to SF12BW125 486 486 437 +868.8 - FSK 487 487 488 -((( 489 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 490 -))) 491 491 440 +(% style="color:#037691" %)** Downlink:** 492 492 493 -((( 494 -Example: 495 -))) 442 +Uplink channels 1-9 (RX1) 496 496 497 -((( 498 -0x(00): Normal uplink packet. 499 -))) 444 +869.525 - SF9BW125 (RX2 downlink only) 500 500 501 -((( 502 -0x(01): Interrupt Uplink Packet. 503 -))) 504 504 505 505 448 +=== 2.7.2 US902-928(US915) === 506 506 507 - ===2.4.9+5VOutput ===450 +Used in USA, Canada and South America. Default use CHE=2 508 508 509 -((( 510 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 511 -))) 452 +(% style="color:#037691" %)**Uplink:** 512 512 454 +903.9 - SF7BW125 to SF10BW125 513 513 514 -((( 515 -The 5V output time can be controlled by AT Command. 516 -))) 456 +904.1 - SF7BW125 to SF10BW125 517 517 518 -((( 519 -(% style="color:blue" %)**AT+5VT=1000** 520 -))) 458 +904.3 - SF7BW125 to SF10BW125 521 521 522 -((( 523 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 524 -))) 460 +904.5 - SF7BW125 to SF10BW125 525 525 462 +904.7 - SF7BW125 to SF10BW125 526 526 464 +904.9 - SF7BW125 to SF10BW125 527 527 528 - ==2.5DownlinkPayload ==466 +905.1 - SF7BW125 to SF10BW125 529 529 530 - Bydefault,NSE01prints the downlinkpayload to console port.468 +905.3 - SF7BW125 to SF10BW125 531 531 532 -[[image:image-20220708133731-5.png]] 533 533 471 +(% style="color:#037691" %)**Downlink:** 534 534 535 -((( 536 -(% style="color:blue" %)**Examples:** 537 -))) 473 +923.3 - SF7BW500 to SF12BW500 538 538 539 -((( 540 - 541 -))) 475 +923.9 - SF7BW500 to SF12BW500 542 542 543 -* ((( 544 -(% style="color:blue" %)**Set TDC** 545 -))) 477 +924.5 - SF7BW500 to SF12BW500 546 546 547 -((( 548 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 549 -))) 479 +925.1 - SF7BW500 to SF12BW500 550 550 551 -((( 552 -Payload: 01 00 00 1E TDC=30S 553 -))) 481 +925.7 - SF7BW500 to SF12BW500 554 554 555 -((( 556 -Payload: 01 00 00 3C TDC=60S 557 -))) 483 +926.3 - SF7BW500 to SF12BW500 558 558 559 -((( 560 - 561 -))) 485 +926.9 - SF7BW500 to SF12BW500 562 562 563 -* ((( 564 -(% style="color:blue" %)**Reset** 565 -))) 487 +927.5 - SF7BW500 to SF12BW500 566 566 567 -((( 568 -If payload = 0x04FF, it will reset the NSE01 569 -))) 489 +923.3 - SF12BW500(RX2 downlink only) 570 570 571 571 572 -* (% style="color:blue" %)**INTMOD** 573 573 574 -((( 575 -Downlink Payload: 06000003, Set AT+INTMOD=3 576 -))) 493 +=== 2.7.3 CN470-510 (CN470) === 577 577 495 +Used in China, Default use CHE=1 578 578 497 +(% style="color:#037691" %)**Uplink:** 579 579 580 - == 2.6LEDIndicator==499 +486.3 - SF7BW125 to SF12BW125 581 581 582 -((( 583 -The NSE01 has an internal LED which is to show the status of different state. 501 +486.5 - SF7BW125 to SF12BW125 584 584 503 +486.7 - SF7BW125 to SF12BW125 585 585 586 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 587 -* Then the LED will be on for 1 second means device is boot normally. 588 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 589 -* For each uplink probe, LED will be on for 500ms. 590 -))) 505 +486.9 - SF7BW125 to SF12BW125 591 591 507 +487.1 - SF7BW125 to SF12BW125 592 592 509 +487.3 - SF7BW125 to SF12BW125 593 593 511 +487.5 - SF7BW125 to SF12BW125 594 594 595 - == 2.7InstallationinSoil==513 +487.7 - SF7BW125 to SF12BW125 596 596 597 -__**Measurement the soil surface**__ 598 598 599 -((( 600 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 601 -))) 516 +(% style="color:#037691" %)**Downlink:** 602 602 603 - [[image:1657259653666-883.png]]518 +506.7 - SF7BW125 to SF12BW125 604 604 520 +506.9 - SF7BW125 to SF12BW125 605 605 606 -((( 607 - 522 +507.1 - SF7BW125 to SF12BW125 608 608 609 -((( 610 -Dig a hole with diameter > 20CM. 611 -))) 524 +507.3 - SF7BW125 to SF12BW125 612 612 613 -((( 614 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 615 -))) 616 -))) 526 +507.5 - SF7BW125 to SF12BW125 617 617 618 - [[image:1654506665940-119.png]]528 +507.7 - SF7BW125 to SF12BW125 619 619 620 -((( 621 - 622 -))) 530 +507.9 - SF7BW125 to SF12BW125 623 623 532 +508.1 - SF7BW125 to SF12BW125 624 624 625 - == 2.8FirmwareChangeLog==534 +505.3 - SF12BW125 (RX2 downlink only) 626 626 627 627 628 -Download URL & Firmware Change log 629 629 630 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]538 +=== 2.7.4 AU915-928(AU915) === 631 631 540 +Default use CHE=2 632 632 633 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]542 +(% style="color:#037691" %)**Uplink:** 634 634 544 +916.8 - SF7BW125 to SF12BW125 635 635 546 +917.0 - SF7BW125 to SF12BW125 636 636 637 - == 2.9BatteryAnalysis ==548 +917.2 - SF7BW125 to SF12BW125 638 638 639 - === 2.9.1BatteryType ===550 +917.4 - SF7BW125 to SF12BW125 640 640 552 +917.6 - SF7BW125 to SF12BW125 641 641 554 +917.8 - SF7BW125 to SF12BW125 555 + 556 +918.0 - SF7BW125 to SF12BW125 557 + 558 +918.2 - SF7BW125 to SF12BW125 559 + 560 + 561 +(% style="color:#037691" %)**Downlink:** 562 + 563 +923.3 - SF7BW500 to SF12BW500 564 + 565 +923.9 - SF7BW500 to SF12BW500 566 + 567 +924.5 - SF7BW500 to SF12BW500 568 + 569 +925.1 - SF7BW500 to SF12BW500 570 + 571 +925.7 - SF7BW500 to SF12BW500 572 + 573 +926.3 - SF7BW500 to SF12BW500 574 + 575 +926.9 - SF7BW500 to SF12BW500 576 + 577 +927.5 - SF7BW500 to SF12BW500 578 + 579 +923.3 - SF12BW500(RX2 downlink only) 580 + 581 + 582 + 583 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 584 + 585 +(% style="color:#037691" %)**Default Uplink channel:** 586 + 587 +923.2 - SF7BW125 to SF10BW125 588 + 589 +923.4 - SF7BW125 to SF10BW125 590 + 591 + 592 +(% style="color:#037691" %)**Additional Uplink Channel**: 593 + 594 +(OTAA mode, channel added by JoinAccept message) 595 + 596 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 597 + 598 +922.2 - SF7BW125 to SF10BW125 599 + 600 +922.4 - SF7BW125 to SF10BW125 601 + 602 +922.6 - SF7BW125 to SF10BW125 603 + 604 +922.8 - SF7BW125 to SF10BW125 605 + 606 +923.0 - SF7BW125 to SF10BW125 607 + 608 +922.0 - SF7BW125 to SF10BW125 609 + 610 + 611 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 612 + 613 +923.6 - SF7BW125 to SF10BW125 614 + 615 +923.8 - SF7BW125 to SF10BW125 616 + 617 +924.0 - SF7BW125 to SF10BW125 618 + 619 +924.2 - SF7BW125 to SF10BW125 620 + 621 +924.4 - SF7BW125 to SF10BW125 622 + 623 +924.6 - SF7BW125 to SF10BW125 624 + 625 + 626 +(% style="color:#037691" %)** Downlink:** 627 + 628 +Uplink channels 1-8 (RX1) 629 + 630 +923.2 - SF10BW125 (RX2) 631 + 632 + 633 + 634 +=== 2.7.6 KR920-923 (KR920) === 635 + 636 +Default channel: 637 + 638 +922.1 - SF7BW125 to SF12BW125 639 + 640 +922.3 - SF7BW125 to SF12BW125 641 + 642 +922.5 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 646 + 647 +922.1 - SF7BW125 to SF12BW125 648 + 649 +922.3 - SF7BW125 to SF12BW125 650 + 651 +922.5 - SF7BW125 to SF12BW125 652 + 653 +922.7 - SF7BW125 to SF12BW125 654 + 655 +922.9 - SF7BW125 to SF12BW125 656 + 657 +923.1 - SF7BW125 to SF12BW125 658 + 659 +923.3 - SF7BW125 to SF12BW125 660 + 661 + 662 +(% style="color:#037691" %)**Downlink:** 663 + 664 +Uplink channels 1-7(RX1) 665 + 666 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 667 + 668 + 669 + 670 +=== 2.7.7 IN865-867 (IN865) === 671 + 672 +(% style="color:#037691" %)** Uplink:** 673 + 674 +865.0625 - SF7BW125 to SF12BW125 675 + 676 +865.4025 - SF7BW125 to SF12BW125 677 + 678 +865.9850 - SF7BW125 to SF12BW125 679 + 680 + 681 +(% style="color:#037691" %) **Downlink:** 682 + 683 +Uplink channels 1-3 (RX1) 684 + 685 +866.550 - SF10BW125 (RX2) 686 + 687 + 688 + 689 + 690 +== 2.8 LED Indicator == 691 + 692 +The LSE01 has an internal LED which is to show the status of different state. 693 + 694 +* Blink once when device power on. 695 +* Solid ON for 5 seconds once device successful Join the network. 696 +* Blink once when device transmit a packet. 697 + 698 + 699 + 700 +== 2.9 Installation in Soil == 701 + 702 +**Measurement the soil surface** 703 + 704 + 705 +[[image:1654506634463-199.png]] 706 + 642 642 ((( 643 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 708 +((( 709 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 644 ))) 711 +))) 645 645 646 646 714 + 715 +[[image:1654506665940-119.png]] 716 + 647 647 ((( 648 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.718 +Dig a hole with diameter > 20CM. 649 649 ))) 650 650 721 +((( 722 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 723 +))) 651 651 725 + 726 +== 2.10 Firmware Change Log == 727 + 652 652 ((( 653 - The battery relateddocumentsasbelow:729 +**Firmware download link:** 654 654 ))) 655 655 656 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]657 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]658 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]732 +((( 733 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 734 +))) 659 659 660 660 ((( 661 - [[image:image-20220708140453-6.png]]737 + 662 662 ))) 663 663 740 +((( 741 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 742 +))) 664 664 744 +((( 745 + 746 +))) 665 665 666 -=== 2.9.2 Power consumption Analyze === 748 +((( 749 +**V1.0.** 750 +))) 667 667 668 668 ((( 669 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.753 +Release 670 670 ))) 671 671 672 672 757 +== 2.11 Battery Analysis == 758 + 759 +=== 2.11.1 Battery Type === 760 + 673 673 ((( 674 - Instruction touse as below:762 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 675 675 ))) 676 676 677 677 ((( 678 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]766 +The battery is designed to last for more than 5 years for the LSN50. 679 679 ))) 680 680 681 - 682 682 ((( 683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 770 +((( 771 +The battery-related documents are as below: 684 684 ))) 773 +))) 685 685 686 686 * ((( 687 - Product Model776 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 688 688 ))) 689 689 * ((( 690 - UplinkInterval779 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 691 691 ))) 692 692 * ((( 693 - WorkingMode782 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 694 694 ))) 695 695 696 -((( 697 -And the Life expectation in difference case will be shown on the right. 698 -))) 785 + [[image:image-20220610172436-1.png]] 699 699 700 -[[image:image-20220708141352-7.jpeg]] 701 701 702 702 789 +=== 2.11.2 Battery Note === 703 703 704 -=== 2.9.3 Battery Note === 705 - 706 706 ((( 707 707 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 708 708 ))) ... ... @@ -709,176 +709,302 @@ 709 709 710 710 711 711 712 -=== 2. 9.4Replace the battery ===797 +=== 2.11.3 Replace the battery === 713 713 714 714 ((( 715 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).800 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 716 716 ))) 717 717 718 - 719 - 720 -= 3. Access NB-IoT Module = 721 - 722 722 ((( 723 - Userscan directly accesstheATcommand set of theNB-IoTmodule.804 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 724 724 ))) 725 725 726 726 ((( 727 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]808 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 728 728 ))) 729 729 730 -[[image:1657261278785-153.png]] 731 731 732 732 813 += 3. Using the AT Commands = 733 733 734 -= 4.UsingtheAT Commands =815 +== 3.1 Access AT Commands == 735 735 736 -== 4.1 Access AT Commands == 737 737 738 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]818 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 739 739 820 +[[image:1654501986557-872.png||height="391" width="800"]] 740 740 741 -AT+<CMD>? : Help on <CMD> 742 742 743 - AT+<CMD>: Run<CMD>823 +Or if you have below board, use below connection: 744 744 745 -AT+<CMD>=<value> : Set the value 746 746 747 - AT+<CMD>=?:Get the value826 +[[image:1654502005655-729.png||height="503" width="801"]] 748 748 749 749 829 + 830 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 831 + 832 + 833 + [[image:1654502050864-459.png||height="564" width="806"]] 834 + 835 + 836 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 837 + 838 + 839 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 840 + 841 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 846 + 847 + 750 750 (% style="color:#037691" %)**General Commands**(%%) 751 751 752 -AT 850 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 753 753 754 -AT? 852 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 755 755 756 -ATZ 854 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 757 757 758 -AT+TDC 856 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 759 759 760 -AT+CFG : Print all configurations 761 761 762 - AT+CFGMOD: Workingmode selection859 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 763 763 764 -AT+I NTMOD:Setthe trigger interruptmode861 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 765 765 766 -AT+ 5VTSetextend the timeof5V power863 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 767 767 768 -AT+P ROChooseagreement865 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 769 769 770 -AT+ WEIGREGet weightorsetweight to 0867 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 771 771 772 -AT+ WEIGAPGet or SettheGapValue of weight869 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 773 773 774 -AT+ RXDL: Extendthe sendingandreceivingtime871 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 775 775 776 -AT+ CNTFACGettcountingparameters873 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 777 777 778 -AT+ SERVADDR:ServerAddress875 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 779 779 877 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 780 780 781 -(% style="color:# 037691" %)**COAPManagement**879 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 782 782 783 -AT+ URIsourceparameters881 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 784 784 883 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 785 785 786 -(% style="color:# 037691" %)**UDPManagement**885 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 787 787 788 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)887 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 789 789 889 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 790 790 791 -(% style="color:# 037691" %)**MQTTManagement**891 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 792 792 793 -AT+CLIENT : Get or Set MQTT client 794 794 795 - AT+UNAMEGetSetMQTT Username894 +(% style="color:#037691" %)**LoRa Network Management** 796 796 797 -AT+ PWDGetor SetMQTT password896 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 798 798 799 -AT+ PUBTOPICGetorSetMQTTpublishtopic898 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 800 800 801 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic900 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 802 802 902 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 803 803 804 -(% style="color:# 037691" %)**Information**904 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 805 805 806 -AT+F DRctoryDataReset906 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 807 807 808 -AT+ PWORDSerialAccessPassword908 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 809 809 910 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 810 810 912 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 811 811 812 -= 5.FAQ=914 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 813 813 814 -= =5.1HowtoUpgradeFirmware==916 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 815 815 918 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 816 816 920 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 925 + 926 + 927 +(% style="color:#037691" %)**Information** 928 + 929 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 930 + 931 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 940 + 941 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 942 + 943 + 944 += 4. FAQ = 945 + 946 +== 4.1 How to change the LoRa Frequency Bands/Region? == 947 + 817 817 ((( 818 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 949 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 950 +When downloading the images, choose the required image file for download. 819 819 ))) 820 820 821 821 ((( 822 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]954 + 823 823 ))) 824 824 825 825 ((( 826 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.958 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 827 827 ))) 828 828 961 +((( 962 + 963 +))) 829 829 965 +((( 966 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 967 +))) 830 830 831 -== 5.2 Can I calibrate NSE01 to different soil types? == 969 +((( 970 + 971 +))) 832 832 833 833 ((( 834 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].974 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 835 835 ))) 836 836 977 +[[image:image-20220606154726-3.png]] 837 837 838 -= 6. Trouble Shooting = 839 839 840 - ==6.1 Connection problemwhenuploadingfirmware==980 +When you use the TTN network, the US915 frequency bands use are: 841 841 982 +* 903.9 - SF7BW125 to SF10BW125 983 +* 904.1 - SF7BW125 to SF10BW125 984 +* 904.3 - SF7BW125 to SF10BW125 985 +* 904.5 - SF7BW125 to SF10BW125 986 +* 904.7 - SF7BW125 to SF10BW125 987 +* 904.9 - SF7BW125 to SF10BW125 988 +* 905.1 - SF7BW125 to SF10BW125 989 +* 905.3 - SF7BW125 to SF10BW125 990 +* 904.6 - SF8BW500 842 842 843 843 ((( 844 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 993 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 994 + 995 +* (% style="color:#037691" %)**AT+CHE=2** 996 +* (% style="color:#037691" %)**ATZ** 845 845 ))) 846 846 847 -(% class="wikigeneratedid" %) 848 848 ((( 849 849 1001 + 1002 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 850 850 ))) 851 851 1005 +((( 1006 + 1007 +))) 852 852 853 -== 6.2 AT Command input doesn't work == 1009 +((( 1010 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1011 +))) 854 854 1013 +[[image:image-20220606154825-4.png]] 1014 + 1015 + 1016 +== 4.2 Can I calibrate LSE01 to different soil types? == 1017 + 1018 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1019 + 1020 + 1021 += 5. Trouble Shooting = 1022 + 1023 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1024 + 1025 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1026 + 1027 + 1028 +== 5.2 AT Command input doesn’t work == 1029 + 855 855 ((( 856 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1031 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1032 +))) 857 857 858 - 1034 + 1035 +== 5.3 Device rejoin in at the second uplink packet == 1036 + 1037 +(% style="color:#4f81bd" %)**Issue describe as below:** 1038 + 1039 +[[image:1654500909990-784.png]] 1040 + 1041 + 1042 +(% style="color:#4f81bd" %)**Cause for this issue:** 1043 + 1044 +((( 1045 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 859 859 ))) 860 860 861 861 862 - =7. OrderInfo=1049 +(% style="color:#4f81bd" %)**Solution: ** 863 863 1051 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 864 864 865 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1053 +[[image:1654500929571-736.png||height="458" width="832"]] 866 866 867 867 1056 += 6. Order Info = 1057 + 1058 + 1059 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1060 + 1061 + 1062 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1063 + 1064 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1065 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1066 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1067 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1068 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1069 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1070 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1071 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1072 + 1073 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1074 + 1075 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1076 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1077 + 868 868 (% class="wikigeneratedid" %) 869 869 ((( 870 870 871 871 ))) 872 872 873 -= 8.1083 += 7. Packing Info = 874 874 875 875 ((( 876 876 877 877 878 878 (% style="color:#037691" %)**Package Includes**: 1089 +))) 879 879 880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1881 - *Externalantennax 11091 +* ((( 1092 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 882 882 ))) 883 883 884 884 ((( ... ... @@ -885,19 +885,24 @@ 885 885 886 886 887 887 (% style="color:#037691" %)**Dimension and weight**: 1099 +))) 888 888 889 -* Size: 195 x 125 x 55 mm890 - * Weight:420g1101 +* ((( 1102 +Device Size: cm 891 891 ))) 1104 +* ((( 1105 +Device Weight: g 1106 +))) 1107 +* ((( 1108 +Package Size / pcs : cm 1109 +))) 1110 +* ((( 1111 +Weight / pcs : g 892 892 893 -((( 894 894 895 - 896 - 897 - 898 898 ))) 899 899 900 -= 9.1116 += 8. Support = 901 901 902 902 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 903 903 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content