Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 74.2
edited by Xiaoling
on 2022/07/09 08:52
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,12 +1,19 @@
1 1  (% style="text-align:center" %)
2 -[[image:image-20220709085040-1.png||height="542" width="524"]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 6  
7 7  
8 +
9 +
10 +
11 +
12 +
13 +
8 8  **Table of Contents:**
9 9  
16 +{{toc/}}
10 10  
11 11  
12 12  
... ... @@ -13,73 +13,67 @@
13 13  
14 14  
15 15  
16 -= 1.  Introduction =
23 += 1. Introduction =
17 17  
18 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
19 19  
20 20  (((
21 21  
22 22  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
23 23  (((
24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
30 30  )))
31 31  
32 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
33 33  )))
34 34  
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
44 +
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
48 +
49 +
35 35  [[image:1654503236291-817.png]]
36 36  
37 37  
38 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
39 39  
40 40  
41 41  
42 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
43 43  
44 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
45 45  * Monitor Soil Moisture
46 46  * Monitor Soil Temperature
47 47  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
48 48  * AT Commands to change parameters
49 49  * Uplink on periodically
50 50  * Downlink to change configure
51 51  * IP66 Waterproof Enclosure
52 -* Ultra-Low Power consumption
53 -* AT Commands to change parameters
54 -* Micro SIM card slot for NB-IoT SIM
55 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
56 56  
57 -== 1.3  Specification ==
58 58  
59 59  
60 -(% style="color:#037691" %)**Common DC Characteristics:**
61 61  
62 -* Supply Voltage: 2.1v ~~ 3.6v
63 -* Operating Temperature: -40 ~~ 85°C
64 64  
65 -(% style="color:#037691" %)**NB-IoT Spec:**
75 +== 1.3 Specification ==
66 66  
67 -* - B1 @H-FDD: 2100MHz
68 -* - B3 @H-FDD: 1800MHz
69 -* - B8 @H-FDD: 900MHz
70 -* - B5 @H-FDD: 850MHz
71 -* - B20 @H-FDD: 800MHz
72 -* - B28 @H-FDD: 700MHz
73 -
74 -Probe(% style="color:#037691" %)** Specification:**
75 -
76 76  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
77 77  
78 -[[image:image-20220708101224-1.png]]
79 +[[image:image-20220606162220-5.png]]
79 79  
80 80  
81 81  
82 -== ​1.4  Applications ==
83 +== ​1.4 Applications ==
83 83  
84 84  * Smart Agriculture
85 85  
... ... @@ -86,623 +86,715 @@
86 86  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
87 87  ​
88 88  
89 -== 1.5  Pin Definitions ==
90 +== 1.5 Firmware Change log ==
90 90  
91 91  
92 -[[image:1657246476176-652.png]]
93 +**LSE01 v1.0 :**  Release
93 93  
94 94  
95 95  
96 -= 2.  Use NSE01 to communicate with IoT Server =
97 += 2. Configure LSE01 to connect to LoRaWAN network =
97 97  
98 -== 2.1  How it works ==
99 +== 2.1 How it works ==
99 99  
100 -
101 101  (((
102 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
103 103  )))
104 104  
105 -
106 106  (((
107 -The diagram below shows the working flow in default firmware of NSE01:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
108 108  )))
109 109  
110 -[[image:image-20220708101605-2.png]]
111 111  
112 -(((
113 -
114 -)))
115 115  
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
116 116  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
117 117  
118 -== 2.2 ​ Configure the NSE01 ==
119 119  
116 +[[image:1654503992078-669.png]]
120 120  
121 -=== 2.2.1 Test Requirement ===
122 122  
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
123 123  
124 -(((
125 -To use NSE01 in your city, make sure meet below requirements:
126 -)))
127 127  
128 -* Your local operator has already distributed a NB-IoT Network there.
129 -* The local NB-IoT network used the band that NSE01 supports.
130 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
131 131  
132 -(((
133 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
134 -)))
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
135 135  
126 +[[image:image-20220606163732-6.jpeg]]
136 136  
137 -[[image:1657249419225-449.png]]
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
138 138  
130 +**Add APP EUI in the application**
139 139  
140 140  
141 -=== 2.2.2 Insert SIM card ===
133 +[[image:1654504596150-405.png]]
142 142  
143 -(((
144 -Insert the NB-IoT Card get from your provider.
145 -)))
146 146  
147 -(((
148 -User need to take out the NB-IoT module and insert the SIM card like below:
149 -)))
150 150  
137 +**Add APP KEY and DEV EUI**
151 151  
152 -[[image:1657249468462-536.png]]
139 +[[image:1654504683289-357.png]]
153 153  
154 154  
155 155  
156 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
157 157  
158 -(((
159 -(((
160 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
161 -)))
162 -)))
163 163  
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
164 164  
165 -**Connection:**
148 +[[image:image-20220606163915-7.png]]
166 166  
167 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
168 168  
169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
170 170  
171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
153 +[[image:1654504778294-788.png]]
172 172  
173 173  
174 -In the PC, use below serial tool settings:
175 175  
176 -* Baud:  (% style="color:green" %)**9600**
177 -* Data bits:** (% style="color:green" %)8(%%)**
178 -* Stop bits: (% style="color:green" %)**1**
179 -* Parity:  (% style="color:green" %)**None**
180 -* Flow Control: (% style="color:green" %)**None**
157 +== 2.3 Uplink Payload ==
181 181  
182 -(((
183 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
184 -)))
185 185  
186 -[[image:image-20220708110657-3.png]]
160 +=== 2.3.1 MOD~=0(Default Mode) ===
187 187  
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
188 188  (((
189 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
165 +Uplink payload includes in total 11 bytes.
190 190  )))
191 191  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
192 192  
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
193 193  
194 -=== 2.2.4 Use CoAP protocol to uplink data ===
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
195 195  
196 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 +(Optional)
182 +)))
197 197  
198 198  
199 -**Use below commands:**
200 200  
201 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
202 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
203 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
204 204  
205 -For parameter description, please refer to AT command set
206 206  
207 -[[image:1657249793983-486.png]]
208 208  
209 209  
210 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
190 +=== 2.3.2 MOD~=1(Original value) ===
211 211  
212 -[[image:1657249831934-534.png]]
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
213 213  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
214 214  
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
215 215  
216 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
217 217  
218 -This feature is supported since firmware version v1.0.1
207 +(Optional)
208 +)))
219 219  
220 220  
221 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
223 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
224 224  
225 -[[image:1657249864775-321.png]]
226 226  
227 227  
228 -[[image:1657249930215-289.png]]
229 229  
230 230  
216 +=== 2.3.3 Battery Info ===
231 231  
232 -=== 2.2.6 Use MQTT protocol to uplink data ===
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
233 233  
234 -This feature is supported since firmware version v110
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
235 235  
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
236 236  
237 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
240 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
241 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
244 244  
245 -[[image:1657249978444-674.png]]
246 246  
232 +=== 2.3.4 Soil Moisture ===
247 247  
248 -[[image:1657249990869-686.png]]
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
249 249  
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
250 250  
251 251  (((
252 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
243 +
253 253  )))
254 254  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
255 255  
256 256  
257 -=== 2.2.7 Use TCP protocol to uplink data ===
258 258  
259 -This feature is supported since firmware version v110
252 +=== 2.3.5 Soil Temperature ===
260 260  
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
261 261  
262 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
263 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
258 +(((
259 +**Example**:
260 +)))
264 264  
265 -[[image:1657250217799-140.png]]
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
266 266  
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
267 267  
268 -[[image:1657250255956-604.png]]
269 269  
270 270  
272 +=== 2.3.6 Soil Conductivity (EC) ===
271 271  
272 -=== 2.2.8 Change Update Interval ===
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
273 273  
274 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
275 275  
276 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
277 -
278 278  (((
279 -(% style="color:red" %)**NOTE:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 280  )))
281 281  
282 282  (((
283 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
284 284  )))
285 285  
286 -
287 -
288 -== 2.3  Uplink Payload ==
289 -
290 -In this mode, uplink payload includes in total 18 bytes
291 -
292 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
293 -|=(% style="width: 60px;" %)(((
294 -**Size(bytes)**
295 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
296 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
297 -
298 298  (((
299 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
291 +
300 300  )))
301 301  
294 +=== 2.3.7 MOD ===
302 302  
303 -[[image:image-20220708111918-4.png]]
296 +Firmware version at least v2.1 supports changing mode.
304 304  
298 +For example, bytes[10]=90
305 305  
306 -The payload is ASCII string, representative same HEX:
300 +mod=(bytes[10]>>7)&0x01=1.
307 307  
308 -0x72403155615900640c7817075e0a8c02f900 where:
309 309  
310 -* Device ID: 0x 724031556159 = 724031556159
311 -* Version: 0x0064=100=1.0.0
303 +**Downlink Command:**
312 312  
313 -* BAT: 0x0c78 = 3192 mV = 3.192V
314 -* Singal: 0x17 = 23
315 -* Soil Moisture: 0x075e= 1886 = 18.86  %
316 -* Soil Temperature:0x0a8c =2700=27 °C
317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
318 -* Interrupt: 0x00 = 0
305 +If payload = 0x0A00, workmode=0
319 319  
320 -== 2.4  Payload Explanation and Sensor Interface ==
307 +If** **payload =** **0x0A01, workmode=1
321 321  
322 322  
323 -=== 2.4.1  Device ID ===
324 324  
325 -(((
326 -By default, the Device ID equal to the last 6 bytes of IMEI.
327 -)))
311 +=== 2.3.8 ​Decode payload in The Things Network ===
328 328  
329 -(((
330 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
331 -)))
313 +While using TTN network, you can add the payload format to decode the payload.
332 332  
333 -(((
334 -**Example:**
335 -)))
336 336  
316 +[[image:1654505570700-128.png]]
317 +
337 337  (((
338 -AT+DEUI=A84041F15612
319 +The payload decoder function for TTN is here:
339 339  )))
340 340  
341 341  (((
342 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
343 343  )))
344 344  
345 345  
327 +== 2.4 Uplink Interval ==
346 346  
347 -=== 2.4.2  Version Info ===
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
348 348  
349 -(((
350 -Specify the software version: 0x64=100, means firmware version 1.00.
351 -)))
352 352  
353 -(((
354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
355 -)))
356 356  
333 +== 2.5 Downlink Payload ==
357 357  
335 +By default, LSE50 prints the downlink payload to console port.
358 358  
359 -=== 2.4.3  Battery Info ===
337 +[[image:image-20220606165544-8.png]]
360 360  
361 -(((
362 -Check the battery voltage for LSE01.
363 -)))
364 364  
365 365  (((
366 -Ex1: 0x0B45 = 2885mV
341 +**Examples:**
367 367  )))
368 368  
369 369  (((
370 -Ex2: 0x0B49 = 2889mV
345 +
371 371  )))
372 372  
373 -
374 -
375 -=== 2.4.4  Signal Strength ===
376 -
377 -(((
378 -NB-IoT Network signal Strength.
348 +* (((
349 +**Set TDC**
379 379  )))
380 380  
381 381  (((
382 -**Ex1: 0x1d = 29**
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
383 383  )))
384 384  
385 385  (((
386 -(% style="color:blue" %)**0**(%%)  -113dBm or less
357 +Payload:    01 00 00 1E    TDC=30S
387 387  )))
388 388  
389 389  (((
390 -(% style="color:blue" %)**1**(%%)  -111dBm
361 +Payload:    01 00 00 3C    TDC=60S
391 391  )))
392 392  
393 393  (((
394 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
365 +
395 395  )))
396 396  
397 -(((
398 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
368 +* (((
369 +**Reset**
399 399  )))
400 400  
401 401  (((
402 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +If payload = 0x04FF, it will reset the LSE01
403 403  )))
404 404  
405 405  
377 +* **CFM**
406 406  
407 -=== 2.4.5  Soil Moisture ===
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
408 408  
381 +
382 +
383 +== 2.6 ​Show Data in DataCake IoT Server ==
384 +
409 409  (((
410 -(((
411 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
412 412  )))
413 -)))
414 414  
415 415  (((
416 -(((
417 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
390 +
418 418  )))
419 -)))
420 420  
421 421  (((
422 -
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
423 423  )))
424 424  
425 425  (((
426 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
398 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
427 427  )))
428 428  
429 429  
402 +[[image:1654505857935-743.png]]
430 430  
431 -=== 2.4.6  Soil Temperature ===
432 432  
433 -(((
434 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
435 -)))
405 +[[image:1654505874829-548.png]]
436 436  
437 -(((
438 -**Example**:
439 -)))
440 440  
441 -(((
442 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
443 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
444 444  
445 -(((
446 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
447 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
448 448  
449 449  
413 +[[image:1654505905236-553.png]]
450 450  
451 -=== 2.4.7  Soil Conductivity (EC) ===
452 452  
453 -(((
454 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
455 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
456 456  
457 -(((
458 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
459 -)))
418 +[[image:1654505925508-181.png]]
460 460  
461 -(((
462 -Generally, the EC value of irrigation water is less than 800uS / cm.
463 -)))
464 464  
465 -(((
466 -
467 -)))
468 468  
469 -(((
470 -
471 -)))
422 +== 2.7 Frequency Plans ==
472 472  
473 -=== 2.4.8  Digital Interrupt ===
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
474 474  
475 -(((
476 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
477 -)))
478 478  
479 -(((
480 -The command is:
481 -)))
427 +=== 2.7.1 EU863-870 (EU868) ===
482 482  
483 -(((
484 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
485 -)))
429 +(% style="color:#037691" %)** Uplink:**
486 486  
431 +868.1 - SF7BW125 to SF12BW125
487 487  
488 -(((
489 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
490 -)))
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
491 491  
435 +868.5 - SF7BW125 to SF12BW125
492 492  
493 -(((
494 -Example:
495 -)))
437 +867.1 - SF7BW125 to SF12BW125
496 496  
497 -(((
498 -0x(00): Normal uplink packet.
499 -)))
439 +867.3 - SF7BW125 to SF12BW125
500 500  
501 -(((
502 -0x(01): Interrupt Uplink Packet.
503 -)))
441 +867.5 - SF7BW125 to SF12BW125
504 504  
443 +867.7 - SF7BW125 to SF12BW125
505 505  
445 +867.9 - SF7BW125 to SF12BW125
506 506  
507 -=== 2.4.9  ​+5V Output ===
447 +868.8 - FSK
508 508  
509 -(((
510 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
511 -)))
512 512  
450 +(% style="color:#037691" %)** Downlink:**
513 513  
514 -(((
515 -The 5V output time can be controlled by AT Command.
516 -)))
452 +Uplink channels 1-9 (RX1)
517 517  
518 -(((
519 -(% style="color:blue" %)**AT+5VT=1000**
520 -)))
454 +869.525 - SF9BW125 (RX2 downlink only)
521 521  
522 -(((
523 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
524 -)))
525 525  
526 526  
458 +=== 2.7.2 US902-928(US915) ===
527 527  
528 -== 2.5  Downlink Payload ==
460 +Used in USA, Canada and South America. Default use CHE=2
529 529  
530 -By default, NSE01 prints the downlink payload to console port.
462 +(% style="color:#037691" %)**Uplink:**
531 531  
532 -[[image:image-20220708133731-5.png]]
464 +903.9 - SF7BW125 to SF10BW125
533 533  
466 +904.1 - SF7BW125 to SF10BW125
534 534  
535 -(((
536 -(% style="color:blue" %)**Examples:**
537 -)))
468 +904.3 - SF7BW125 to SF10BW125
538 538  
539 -(((
540 -
541 -)))
470 +904.5 - SF7BW125 to SF10BW125
542 542  
543 -* (((
544 -(% style="color:blue" %)**Set TDC**
545 -)))
472 +904.7 - SF7BW125 to SF10BW125
546 546  
547 -(((
548 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
549 -)))
474 +904.9 - SF7BW125 to SF10BW125
550 550  
551 -(((
552 -Payload:    01 00 00 1E    TDC=30S
553 -)))
476 +905.1 - SF7BW125 to SF10BW125
554 554  
555 -(((
556 -Payload:    01 00 00 3C    TDC=60S
557 -)))
478 +905.3 - SF7BW125 to SF10BW125
558 558  
559 -(((
560 -
561 -)))
562 562  
563 -* (((
564 -(% style="color:blue" %)**Reset**
565 -)))
481 +(% style="color:#037691" %)**Downlink:**
566 566  
567 -(((
568 -If payload = 0x04FF, it will reset the NSE01
569 -)))
483 +923.3 - SF7BW500 to SF12BW500
570 570  
485 +923.9 - SF7BW500 to SF12BW500
571 571  
572 -* (% style="color:blue" %)**INTMOD**
487 +924.5 - SF7BW500 to SF12BW500
573 573  
574 -(((
575 -Downlink Payload: 06000003, Set AT+INTMOD=3
576 -)))
489 +925.1 - SF7BW500 to SF12BW500
577 577  
491 +925.7 - SF7BW500 to SF12BW500
578 578  
493 +926.3 - SF7BW500 to SF12BW500
579 579  
580 -== 2.6  ​LED Indicator ==
495 +926.9 - SF7BW500 to SF12BW500
581 581  
582 -(((
583 -The NSE01 has an internal LED which is to show the status of different state.
497 +927.5 - SF7BW500 to SF12BW500
584 584  
499 +923.3 - SF12BW500(RX2 downlink only)
585 585  
586 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
587 -* Then the LED will be on for 1 second means device is boot normally.
588 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
589 -* For each uplink probe, LED will be on for 500ms.
590 -)))
591 591  
592 592  
503 +=== 2.7.3 CN470-510 (CN470) ===
593 593  
505 +Used in China, Default use CHE=1
594 594  
595 -== 2.7  Installation in Soil ==
507 +(% style="color:#037691" %)**Uplink:**
596 596  
597 -__**Measurement the soil surface**__
509 +486.3 - SF7BW125 to SF12BW125
598 598  
599 -(((
600 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
601 -)))
511 +486.5 - SF7BW125 to SF12BW125
602 602  
603 -[[image:1657259653666-883.png]]
513 +486.7 - SF7BW125 to SF12BW125
604 604  
515 +486.9 - SF7BW125 to SF12BW125
605 605  
606 -(((
607 -
517 +487.1 - SF7BW125 to SF12BW125
608 608  
609 -(((
610 -Dig a hole with diameter > 20CM.
611 -)))
519 +487.3 - SF7BW125 to SF12BW125
612 612  
613 -(((
614 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
615 -)))
616 -)))
521 +487.5 - SF7BW125 to SF12BW125
617 617  
618 -[[image:1654506665940-119.png]]
523 +487.7 - SF7BW125 to SF12BW125
619 619  
620 -(((
621 -
622 -)))
623 623  
526 +(% style="color:#037691" %)**Downlink:**
624 624  
625 -== 2. Firmware Change Log ==
528 +506.7 - SF7BW125 to SF12BW125
626 626  
530 +506.9 - SF7BW125 to SF12BW125
627 627  
628 -Download URL & Firmware Change log
532 +507.1 - SF7BW125 to SF12BW125
629 629  
630 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 +507.3 - SF7BW125 to SF12BW125
631 631  
536 +507.5 - SF7BW125 to SF12BW125
632 632  
633 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 +507.7 - SF7BW125 to SF12BW125
634 634  
540 +507.9 - SF7BW125 to SF12BW125
635 635  
542 +508.1 - SF7BW125 to SF12BW125
636 636  
637 -== 2. Battery Analysis ==
544 +505.3 - SF12BW125 (RX2 downlink only)
638 638  
639 -=== 2.9.1  ​Battery Type ===
640 640  
641 641  
548 +=== 2.7.4 AU915-928(AU915) ===
549 +
550 +Default use CHE=2
551 +
552 +(% style="color:#037691" %)**Uplink:**
553 +
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
642 642  (((
643 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
644 644  )))
719 +)))
645 645  
646 646  
722 +
723 +[[image:1654506665940-119.png]]
724 +
647 647  (((
648 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
649 649  )))
650 650  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
651 651  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
652 652  (((
653 -The battery related documents as below:
737 +**Firmware download link:**
654 654  )))
655 655  
656 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
657 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
659 659  
660 660  (((
661 -[[image:image-20220708140453-6.png]]
745 +
662 662  )))
663 663  
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
664 664  
752 +(((
753 +
754 +)))
665 665  
666 -=== 2.9.2  Power consumption Analyze ===
756 +(((
757 +**V1.0.**
758 +)))
667 667  
668 668  (((
669 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +Release
670 670  )))
671 671  
672 672  
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
673 673  (((
674 -Instruction to use as below:
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
675 675  )))
676 676  
677 677  (((
678 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The battery is designed to last for more than 5 years for the LSN50.
679 679  )))
680 680  
681 -
682 682  (((
683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
684 684  )))
781 +)))
685 685  
686 686  * (((
687 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
688 688  )))
689 689  * (((
690 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
691 691  )))
692 692  * (((
693 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
694 694  )))
695 695  
696 -(((
697 -And the Life expectation in difference case will be shown on the right.
698 -)))
793 + [[image:image-20220610172436-1.png]]
699 699  
700 -[[image:image-20220708141352-7.jpeg]]
701 701  
702 702  
797 +=== 2.11.2 ​Battery Note ===
703 703  
704 -=== 2.9.3  ​Battery Note ===
705 -
706 706  (((
707 707  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
708 708  )))
... ... @@ -709,176 +709,298 @@
709 709  
710 710  
711 711  
712 -=== 2.9. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
713 713  
714 714  (((
715 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
716 716  )))
717 717  
718 -
719 -
720 -= 3. ​ Access NB-IoT Module =
721 -
722 722  (((
723 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
724 724  )))
725 725  
726 726  (((
727 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
728 728  )))
729 729  
730 -[[image:1657261278785-153.png]]
731 731  
732 732  
821 += 3. ​Using the AT Commands =
733 733  
734 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
735 735  
736 -== 4.1  Access AT Commands ==
737 737  
738 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
739 739  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
740 740  
741 -AT+<CMD>?  : Help on <CMD>
742 742  
743 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
744 744  
745 -AT+<CMD>=<value> : Set the value
746 746  
747 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
748 748  
749 749  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
750 750  (% style="color:#037691" %)**General Commands**(%%)      
751 751  
752 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
753 753  
754 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
755 755  
756 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
757 757  
758 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
759 759  
760 -AT+CFG  : Print all configurations
761 761  
762 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
763 763  
764 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
765 765  
766 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
767 767  
768 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
769 769  
770 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
771 771  
772 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
773 773  
774 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
775 775  
776 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
777 777  
778 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
779 779  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
780 780  
781 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
782 782  
783 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
784 784  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
785 785  
786 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
787 787  
788 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
789 789  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
790 790  
791 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
792 792  
793 -AT+CLIENT               : Get or Set MQTT client
794 794  
795 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
796 796  
797 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
798 798  
799 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
800 800  
801 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
802 802  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
803 803  
804 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
805 805  
806 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
807 807  
808 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
809 809  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
810 810  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
811 811  
812 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
813 813  
814 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
815 815  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
816 816  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
817 817  (((
818 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
819 819  )))
820 820  
821 821  (((
822 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
823 823  )))
824 824  
825 825  (((
826 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
827 827  )))
828 828  
969 +(((
970 +
971 +)))
829 829  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
830 830  
831 -== 5.2  Can I calibrate NSE01 to different soil types? ==
977 +(((
978 +
979 +)))
832 832  
833 833  (((
834 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
835 835  )))
836 836  
985 +[[image:image-20220606154726-3.png]]
837 837  
838 -= 6.  Trouble Shooting =
839 839  
840 -== 6.1  ​Connection problem when uploading firmware ==
988 +When you use the TTN network, the US915 frequency bands use are:
841 841  
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
842 842  
843 843  (((
844 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
845 845  )))
846 846  
847 -(% class="wikigeneratedid" %)
848 848  (((
849 849  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
850 850  )))
851 851  
1013 +(((
1014 +
1015 +)))
852 852  
853 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
854 854  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
855 855  (((
856 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
857 857  
858 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
859 859  )))
860 860  
861 861  
862 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
863 863  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
864 864  
865 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
866 866  
867 867  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
868 868  (% class="wikigeneratedid" %)
869 869  (((
870 870  
871 871  )))
872 872  
873 -= 8.  Packing Info =
1087 += 7. Packing Info =
874 874  
875 875  (((
876 876  
877 877  
878 878  (% style="color:#037691" %)**Package Includes**:
1093 +)))
879 879  
880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
881 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
882 882  )))
883 883  
884 884  (((
... ... @@ -885,19 +885,24 @@
885 885  
886 886  
887 887  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
888 888  
889 -* Size: 195 x 125 x 55 mm
890 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
891 891  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
892 892  
893 -(((
894 894  
895 -
896 -
897 -
898 898  )))
899 899  
900 -= 9.  Support =
1120 += 8. Support =
901 901  
902 902  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
903 903  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content
image-20220709085040-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -200.4 KB
Content