Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 30 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,708 +1,773 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 709085040-1.png||height="542" width="524"]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 -**Table of Contents:** 9 9 10 10 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 16 -= 1. Introduction = 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 17 17 18 -== 1.1 What is NDDS75 Distance Detection Sensor == 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 19 19 20 20 ((( 21 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 22 22 23 23 ((( 24 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 30 30 ))) 31 31 32 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 33 33 ))) 34 34 39 + 35 35 [[image:1654503236291-817.png]] 36 36 37 37 38 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 39 39 40 40 41 41 42 -== 1.2 47 +== 1.2 Features == 43 43 44 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 45 45 * Monitor Soil Moisture 46 46 * Monitor Soil Temperature 47 47 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 48 48 * AT Commands to change parameters 49 49 * Uplink on periodically 50 50 * Downlink to change configure 51 51 * IP66 Waterproof Enclosure 52 -* Ultra-Low Power consumption 53 -* AT Commands to change parameters 54 -* Micro SIM card slot for NB-IoT SIM 55 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 56 56 57 -== 1.3 61 +== 1.3 Specification == 58 58 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 59 59 60 - (% style="color:#037691" %)**CommonDC Characteristics:**65 +[[image:image-20220606162220-5.png]] 61 61 62 -* Supply Voltage: 2.1v ~~ 3.6v 63 -* Operating Temperature: -40 ~~ 85°C 64 64 65 -(% style="color:#037691" %)**NB-IoT Spec:** 66 66 67 -* - B1 @H-FDD: 2100MHz 68 -* - B3 @H-FDD: 1800MHz 69 -* - B8 @H-FDD: 900MHz 70 -* - B5 @H-FDD: 850MHz 71 -* - B20 @H-FDD: 800MHz 72 -* - B28 @H-FDD: 700MHz 69 +== 1.4 Applications == 73 73 74 - Probe(%style="color:#037691"%)** Specification:**71 +* Smart Agriculture 75 75 76 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 77 77 78 - [[image:image-20220708101224-1.png]]76 +== 1.5 Firmware Change log == 79 79 80 80 79 +**LSE01 v1.0 :** Release 81 81 82 -== 1.4 Applications == 83 83 84 -* Smart Agriculture 85 85 86 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 87 - 83 += 2. Configure LSE01 to connect to LoRaWAN network = 88 88 89 -== 1.5PinDefinitions ==85 +== 2.1 How it works == 90 90 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 91 91 92 -[[image:1657246476176-652.png]] 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 93 93 94 94 95 95 96 -= 2. UseNSE01to communicatewithIoTServer =97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 97 97 98 - ==2.1How it works==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 99 99 100 100 102 +[[image:1654503992078-669.png]] 103 + 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 101 101 ((( 102 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 103 103 ))) 104 104 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 105 105 106 -((( 107 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 108 108 ))) 109 109 110 -[[image:image-20220708101605-2.png]] 111 111 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 112 112 ((( 113 - 199 +Check the battery voltage for LSE01. 114 114 ))) 115 115 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 116 116 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 117 117 118 -== 2.2 Configure the NSE01 == 119 119 120 120 121 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 122 122 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 123 123 124 124 ((( 125 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 126 126 ))) 127 127 128 - * Your local operator has already distributed a NB-IoT Network there.129 - *The local NB-IoT network used the band that NSE01 supports.130 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 131 131 132 132 ((( 133 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 134 134 ))) 135 135 136 136 137 -[[image:1657249419225-449.png]] 138 138 232 +=== 2.3.5 Soil Temperature === 139 139 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 140 140 141 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 142 142 143 143 ((( 144 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 145 145 ))) 146 146 147 147 ((( 148 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 149 149 ))) 150 150 151 151 152 -[[image:1657249468462-536.png]] 153 153 252 +=== 2.3.6 Soil Conductivity (EC) === 154 154 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 155 155 156 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 157 157 158 158 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 159 159 ((( 160 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 161 161 ))) 269 + 270 +((( 271 + 162 162 ))) 163 163 274 +=== 2.3.7 MOD === 164 164 165 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 166 166 167 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 168 168 169 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 170 170 171 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 172 172 283 +**Downlink Command:** 173 173 174 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 175 175 176 -* Baud: (% style="color:green" %)**9600** 177 -* Data bits:** (% style="color:green" %)8(%%)** 178 -* Stop bits: (% style="color:green" %)**1** 179 -* Parity: (% style="color:green" %)**None** 180 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 181 181 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 182 182 ((( 183 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 184 184 ))) 185 185 186 -[[image:image-20220708110657-3.png]] 302 +((( 303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 +))) 187 187 306 + 307 + 308 +== 2.4 Uplink Interval == 309 + 310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 311 + 312 + 313 + 314 +== 2.5 Downlink Payload == 315 + 316 +By default, LSE50 prints the downlink payload to console port. 317 + 318 +[[image:image-20220606165544-8.png]] 319 + 320 + 188 188 ((( 189 - (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]322 +**Examples:** 190 190 ))) 191 191 325 +((( 326 + 327 +))) 192 192 329 +* ((( 330 +**Set TDC** 331 +))) 193 193 194 -=== 2.2.4 Use CoAP protocol to uplink data === 333 +((( 334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 +))) 195 195 196 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 337 +((( 338 +Payload: 01 00 00 1E TDC=30S 339 +))) 197 197 341 +((( 342 +Payload: 01 00 00 3C TDC=60S 343 +))) 198 198 199 -**Use below commands:** 345 +((( 346 + 347 +))) 200 200 201 -* ( % style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink202 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAPserver address and port203 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path349 +* ((( 350 +**Reset** 351 +))) 204 204 205 -For parameter description, please refer to AT command set 353 +((( 354 +If payload = 0x04FF, it will reset the LSE01 355 +))) 206 206 207 -[[image:1657249793983-486.png]] 208 208 358 +* **CFM** 209 209 210 - After configure the server address and(% style="color:green"%)**resetthe device**(%%) (viaAT+ATZ ), NSE01will starttouplinksensor valuestoCoAP server.360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 211 211 212 -[[image:1657249831934-534.png]] 213 213 214 214 364 +== 2.6 Show Data in DataCake IoT Server == 215 215 216 - === 2.2.5 UseUDPprotocoltouplinkdata(Defaultrotocol)===366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 217 217 218 -This feature is supported since firmware version v1.0.1 219 219 369 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 220 220 221 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 222 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 223 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 371 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 224 224 225 -[[image:1657249864775-321.png]] 226 226 374 +[[image:1654505857935-743.png]] 227 227 228 -[[image:1657249930215-289.png]] 229 229 377 +[[image:1654505874829-548.png]] 230 230 379 +Step 3: Create an account or log in Datacake. 231 231 232 - === 2.2.6 UseMQTTprotocoltouplinkdata===381 +Step 4: Search the LSE01 and add DevEUI. 233 233 234 -This feature is supported since firmware version v110 235 235 384 +[[image:1654505905236-553.png]] 236 236 237 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 238 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 239 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 240 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 241 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 242 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 243 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 244 244 245 - [[image:1657249978444-674.png]]387 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 246 246 389 +[[image:1654505925508-181.png]] 247 247 248 -[[image:1657249990869-686.png]] 249 249 250 250 251 -((( 252 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 253 -))) 393 +== 2.7 Frequency Plans == 254 254 395 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 255 255 256 256 257 -=== 2. 2.7seTCP protocol to uplink data===398 +=== 2.7.1 EU863-870 (EU868) === 258 258 259 - Thisfeatureis supportedsincefirmware versionv110400 +(% style="color:#037691" %)** Uplink:** 260 260 402 +868.1 - SF7BW125 to SF12BW125 261 261 262 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 263 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 404 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 264 264 265 - [[image:1657250217799-140.png]]406 +868.5 - SF7BW125 to SF12BW125 266 266 408 +867.1 - SF7BW125 to SF12BW125 267 267 268 - [[image:1657250255956-604.png]]410 +867.3 - SF7BW125 to SF12BW125 269 269 412 +867.5 - SF7BW125 to SF12BW125 270 270 414 +867.7 - SF7BW125 to SF12BW125 271 271 272 - === 2.2.8ChangeUpdateInterval ===416 +867.9 - SF7BW125 to SF12BW125 273 273 274 - User can use below command to change the (% style="color:green" %)**uplink interval**.418 +868.8 - FSK 275 275 276 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 277 277 278 -((( 279 -(% style="color:red" %)**NOTE:** 280 -))) 421 +(% style="color:#037691" %)** Downlink:** 281 281 282 -((( 283 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 284 -))) 423 +Uplink channels 1-9 (RX1) 285 285 425 +869.525 - SF9BW125 (RX2 downlink only) 286 286 287 287 288 -== 2.3 Uplink Payload == 289 289 290 - Inthismode, uplink payload includes in total 18bytes429 +=== 2.7.2 US902-928(US915) === 291 291 292 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 293 -|=(% style="width: 60px;" %)((( 294 -**Size(bytes)** 295 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 296 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 431 +Used in USA, Canada and South America. Default use CHE=2 297 297 298 -((( 299 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 300 -))) 433 +(% style="color:#037691" %)**Uplink:** 301 301 435 +903.9 - SF7BW125 to SF10BW125 302 302 303 - [[image:image-20220708111918-4.png]]437 +904.1 - SF7BW125 to SF10BW125 304 304 439 +904.3 - SF7BW125 to SF10BW125 305 305 306 - Thepayloadis ASCIIstring,representative same HEX:441 +904.5 - SF7BW125 to SF10BW125 307 307 308 - 0x72403155615900640c7817075e0a8c02f900 where:443 +904.7 - SF7BW125 to SF10BW125 309 309 310 -* Device ID: 0x 724031556159 = 724031556159 311 -* Version: 0x0064=100=1.0.0 445 +904.9 - SF7BW125 to SF10BW125 312 312 313 -* BAT: 0x0c78 = 3192 mV = 3.192V 314 -* Singal: 0x17 = 23 315 -* Soil Moisture: 0x075e= 1886 = 18.86 % 316 -* Soil Temperature:0x0a8c =2700=27 °C 317 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 318 -* Interrupt: 0x00 = 0 447 +905.1 - SF7BW125 to SF10BW125 319 319 320 - == 2.4PayloadExplanation andSensorInterface==449 +905.3 - SF7BW125 to SF10BW125 321 321 322 322 323 - ===2.4.1 DeviceID===452 +(% style="color:#037691" %)**Downlink:** 324 324 325 -((( 326 -By default, the Device ID equal to the last 6 bytes of IMEI. 327 -))) 454 +923.3 - SF7BW500 to SF12BW500 328 328 329 -((( 330 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 331 -))) 456 +923.9 - SF7BW500 to SF12BW500 332 332 333 -((( 334 -**Example:** 335 -))) 458 +924.5 - SF7BW500 to SF12BW500 336 336 337 -((( 338 -AT+DEUI=A84041F15612 339 -))) 460 +925.1 - SF7BW500 to SF12BW500 340 340 341 -((( 342 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 343 -))) 462 +925.7 - SF7BW500 to SF12BW500 344 344 464 +926.3 - SF7BW500 to SF12BW500 345 345 466 +926.9 - SF7BW500 to SF12BW500 346 346 347 - ===2.4.2VersionInfo===468 +927.5 - SF7BW500 to SF12BW500 348 348 349 -((( 350 -Specify the software version: 0x64=100, means firmware version 1.00. 351 -))) 470 +923.3 - SF12BW500(RX2 downlink only) 352 352 353 -((( 354 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 355 -))) 356 356 357 357 474 +=== 2.7.3 CN470-510 (CN470) === 358 358 359 - ===2.4.3BatteryInfo===476 +Used in China, Default use CHE=1 360 360 361 -((( 362 -Check the battery voltage for LSE01. 363 -))) 478 +(% style="color:#037691" %)**Uplink:** 364 364 365 -((( 366 -Ex1: 0x0B45 = 2885mV 367 -))) 480 +486.3 - SF7BW125 to SF12BW125 368 368 369 -((( 370 -Ex2: 0x0B49 = 2889mV 371 -))) 482 +486.5 - SF7BW125 to SF12BW125 372 372 484 +486.7 - SF7BW125 to SF12BW125 373 373 486 +486.9 - SF7BW125 to SF12BW125 374 374 375 - === 2.4.4SignalStrength===488 +487.1 - SF7BW125 to SF12BW125 376 376 377 -((( 378 -NB-IoT Network signal Strength. 379 -))) 490 +487.3 - SF7BW125 to SF12BW125 380 380 381 -((( 382 -**Ex1: 0x1d = 29** 383 -))) 492 +487.5 - SF7BW125 to SF12BW125 384 384 385 -((( 386 -(% style="color:blue" %)**0**(%%) -113dBm or less 387 -))) 494 +487.7 - SF7BW125 to SF12BW125 388 388 389 -((( 390 -(% style="color:blue" %)**1**(%%) -111dBm 391 -))) 392 392 393 -((( 394 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 395 -))) 497 +(% style="color:#037691" %)**Downlink:** 396 396 397 -((( 398 -(% style="color:blue" %)**31** (%%) -51dBm or greater 399 -))) 499 +506.7 - SF7BW125 to SF12BW125 400 400 401 -((( 402 -(% style="color:blue" %)**99** (%%) Not known or not detectable 403 -))) 501 +506.9 - SF7BW125 to SF12BW125 404 404 503 +507.1 - SF7BW125 to SF12BW125 405 405 505 +507.3 - SF7BW125 to SF12BW125 406 406 407 - === 2.4.5oilMoisture===507 +507.5 - SF7BW125 to SF12BW125 408 408 409 -((( 410 -((( 411 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 412 -))) 413 -))) 509 +507.7 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -((( 417 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 418 -))) 419 -))) 511 +507.9 - SF7BW125 to SF12BW125 420 420 421 -((( 422 - 423 -))) 513 +508.1 - SF7BW125 to SF12BW125 424 424 425 -((( 426 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 427 -))) 515 +505.3 - SF12BW125 (RX2 downlink only) 428 428 429 429 430 430 431 -=== 2. 4.6SoilTemperature===519 +=== 2.7.4 AU915-928(AU915) === 432 432 433 -((( 434 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 435 -))) 521 +Default use CHE=2 436 436 437 -((( 438 -**Example**: 439 -))) 523 +(% style="color:#037691" %)**Uplink:** 440 440 441 -((( 442 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 443 -))) 525 +916.8 - SF7BW125 to SF12BW125 444 444 445 -((( 446 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 447 -))) 527 +917.0 - SF7BW125 to SF12BW125 448 448 529 +917.2 - SF7BW125 to SF12BW125 449 449 531 +917.4 - SF7BW125 to SF12BW125 450 450 451 - === 2.4.7oilConductivity(EC) ===533 +917.6 - SF7BW125 to SF12BW125 452 452 453 -((( 454 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 455 -))) 535 +917.8 - SF7BW125 to SF12BW125 456 456 457 -((( 458 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 459 -))) 537 +918.0 - SF7BW125 to SF12BW125 460 460 461 -((( 462 -Generally, the EC value of irrigation water is less than 800uS / cm. 463 -))) 539 +918.2 - SF7BW125 to SF12BW125 464 464 465 -((( 466 - 467 -))) 468 468 469 -((( 470 - 471 -))) 542 +(% style="color:#037691" %)**Downlink:** 472 472 473 - ===2.4.8DigitalInterrupt===544 +923.3 - SF7BW500 to SF12BW500 474 474 475 -((( 476 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 477 -))) 546 +923.9 - SF7BW500 to SF12BW500 478 478 479 -((( 480 -The command is: 481 -))) 548 +924.5 - SF7BW500 to SF12BW500 482 482 483 -((( 484 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 485 -))) 550 +925.1 - SF7BW500 to SF12BW500 486 486 552 +925.7 - SF7BW500 to SF12BW500 487 487 488 -((( 489 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 490 -))) 554 +926.3 - SF7BW500 to SF12BW500 491 491 556 +926.9 - SF7BW500 to SF12BW500 492 492 493 -((( 494 -Example: 495 -))) 558 +927.5 - SF7BW500 to SF12BW500 496 496 497 -((( 498 -0x(00): Normal uplink packet. 499 -))) 560 +923.3 - SF12BW500(RX2 downlink only) 500 500 501 -((( 502 -0x(01): Interrupt Uplink Packet. 503 -))) 504 504 505 505 564 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 506 506 507 - ===2.4.9+5V Output===566 +(% style="color:#037691" %)**Default Uplink channel:** 508 508 509 -((( 510 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 511 -))) 568 +923.2 - SF7BW125 to SF10BW125 512 512 570 +923.4 - SF7BW125 to SF10BW125 513 513 514 -((( 515 -The 5V output time can be controlled by AT Command. 516 -))) 517 517 518 -((( 519 -(% style="color:blue" %)**AT+5VT=1000** 520 -))) 573 +(% style="color:#037691" %)**Additional Uplink Channel**: 521 521 522 -((( 523 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 524 -))) 575 +(OTAA mode, channel added by JoinAccept message) 525 525 577 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 526 526 579 +922.2 - SF7BW125 to SF10BW125 527 527 528 - ==2.5DownlinkPayload ==581 +922.4 - SF7BW125 to SF10BW125 529 529 530 - Bydefault,NSE01prints the downlinkpayload to console port.583 +922.6 - SF7BW125 to SF10BW125 531 531 532 - [[image:image-20220708133731-5.png]]585 +922.8 - SF7BW125 to SF10BW125 533 533 587 +923.0 - SF7BW125 to SF10BW125 534 534 535 -((( 536 -(% style="color:blue" %)**Examples:** 537 -))) 589 +922.0 - SF7BW125 to SF10BW125 538 538 539 -((( 540 - 541 -))) 542 542 543 -* ((( 544 -(% style="color:blue" %)**Set TDC** 545 -))) 592 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 546 546 547 -((( 548 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 549 -))) 594 +923.6 - SF7BW125 to SF10BW125 550 550 551 -((( 552 -Payload: 01 00 00 1E TDC=30S 553 -))) 596 +923.8 - SF7BW125 to SF10BW125 554 554 555 -((( 556 -Payload: 01 00 00 3C TDC=60S 557 -))) 598 +924.0 - SF7BW125 to SF10BW125 558 558 559 -((( 560 - 561 -))) 600 +924.2 - SF7BW125 to SF10BW125 562 562 563 -* ((( 564 -(% style="color:blue" %)**Reset** 565 -))) 602 +924.4 - SF7BW125 to SF10BW125 566 566 567 -((( 568 -If payload = 0x04FF, it will reset the NSE01 569 -))) 604 +924.6 - SF7BW125 to SF10BW125 570 570 571 571 572 - *(% style="color:blue" %)**INTMOD**607 +(% style="color:#037691" %)** Downlink:** 573 573 574 -((( 575 -Downlink Payload: 06000003, Set AT+INTMOD=3 576 -))) 609 +Uplink channels 1-8 (RX1) 577 577 611 +923.2 - SF10BW125 (RX2) 578 578 579 579 580 -== 2.6 LED Indicator == 581 581 582 -((( 583 -The NSE01 has an internal LED which is to show the status of different state. 615 +=== 2.7.6 KR920-923 (KR920) === 584 584 617 +Default channel: 585 585 586 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 587 -* Then the LED will be on for 1 second means device is boot normally. 588 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 589 -* For each uplink probe, LED will be on for 500ms. 590 -))) 619 +922.1 - SF7BW125 to SF12BW125 591 591 621 +922.3 - SF7BW125 to SF12BW125 592 592 623 +922.5 - SF7BW125 to SF12BW125 593 593 594 594 595 - ==2.7 InstallationinSoil==626 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 596 596 597 - __**Measurementthesoilsurface**__628 +922.1 - SF7BW125 to SF12BW125 598 598 599 -((( 600 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 601 -))) 630 +922.3 - SF7BW125 to SF12BW125 602 602 603 - [[image:1657259653666-883.png]]632 +922.5 - SF7BW125 to SF12BW125 604 604 634 +922.7 - SF7BW125 to SF12BW125 605 605 606 -((( 607 - 636 +922.9 - SF7BW125 to SF12BW125 608 608 609 -((( 610 -Dig a hole with diameter > 20CM. 611 -))) 638 +923.1 - SF7BW125 to SF12BW125 612 612 613 -((( 614 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 615 -))) 616 -))) 640 +923.3 - SF7BW125 to SF12BW125 617 617 618 -[[image:1654506665940-119.png]] 619 619 620 -((( 621 - 622 -))) 643 +(% style="color:#037691" %)**Downlink:** 623 623 645 +Uplink channels 1-7(RX1) 624 624 625 - ==2.8FirmwareChangeLog==647 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 626 626 627 627 628 -Download URL & Firmware Change log 629 629 630 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]651 +=== 2.7.7 IN865-867 (IN865) === 631 631 653 +(% style="color:#037691" %)** Uplink:** 632 632 633 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]655 +865.0625 - SF7BW125 to SF12BW125 634 634 657 +865.4025 - SF7BW125 to SF12BW125 635 635 659 +865.9850 - SF7BW125 to SF12BW125 636 636 637 -== 2.9 Battery Analysis == 638 638 639 - ===2.9.1 BatteryType===662 +(% style="color:#037691" %) **Downlink:** 640 640 664 +Uplink channels 1-3 (RX1) 641 641 666 +866.550 - SF10BW125 (RX2) 667 + 668 + 669 + 670 + 671 +== 2.8 LED Indicator == 672 + 673 +The LSE01 has an internal LED which is to show the status of different state. 674 + 675 +* Blink once when device power on. 676 +* Solid ON for 5 seconds once device successful Join the network. 677 +* Blink once when device transmit a packet. 678 + 679 + 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 642 642 ((( 643 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 644 644 ))) 692 +))) 645 645 646 646 695 +[[image:1654506665940-119.png]] 696 + 647 647 ((( 648 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.698 +Dig a hole with diameter > 20CM. 649 649 ))) 650 650 701 +((( 702 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 703 +))) 651 651 705 + 706 +== 2.10 Firmware Change Log == 707 + 652 652 ((( 653 - The battery relateddocumentsasbelow:709 +**Firmware download link:** 654 654 ))) 655 655 656 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]657 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]658 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]712 +((( 713 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 714 +))) 659 659 660 660 ((( 661 - [[image:image-20220708140453-6.png]]717 + 662 662 ))) 663 663 720 +((( 721 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 722 +))) 664 664 724 +((( 725 + 726 +))) 665 665 666 -=== 2.9.2 Power consumption Analyze === 728 +((( 729 +**V1.0.** 730 +))) 667 667 668 668 ((( 669 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.733 +Release 670 670 ))) 671 671 672 672 737 +== 2.11 Battery Analysis == 738 + 739 +=== 2.11.1 Battery Type === 740 + 673 673 ((( 674 - Instruction touse as below:742 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 675 675 ))) 676 676 677 677 ((( 678 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]746 +The battery is designed to last for more than 5 years for the LSN50. 679 679 ))) 680 680 681 - 682 682 ((( 683 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 750 +((( 751 +The battery-related documents are as below: 684 684 ))) 753 +))) 685 685 686 686 * ((( 687 - ProductModel756 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 688 688 ))) 689 689 * ((( 690 - UplinkInterval759 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 691 691 ))) 692 692 * ((( 693 - WorkingMode762 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 694 694 ))) 695 695 696 -((( 697 -And the Life expectation in difference case will be shown on the right. 698 -))) 765 + [[image:image-20220606171726-9.png]] 699 699 700 -[[image:image-20220708141352-7.jpeg]] 701 701 702 702 769 +=== 2.11.2 Battery Note === 703 703 704 -=== 2.9.3 Battery Note === 705 - 706 706 ((( 707 707 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 708 708 ))) ... ... @@ -709,176 +709,303 @@ 709 709 710 710 711 711 712 -=== 2. 9.4Replace the battery ===777 +=== 2.11.3 Replace the battery === 713 713 714 714 ((( 715 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).780 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 716 716 ))) 717 717 718 - 719 - 720 -= 3. Access NB-IoT Module = 721 - 722 722 ((( 723 - Userscan directly accesstheATcommand set of theNB-IoTmodule.784 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 724 724 ))) 725 725 726 726 ((( 727 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]788 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 728 728 ))) 729 729 730 -[[image:1657261278785-153.png]] 731 731 732 732 793 += 3. Using the AT Commands = 733 733 734 -= 4.UsingtheAT Commands =795 +== 3.1 Access AT Commands == 735 735 736 -== 4.1 Access AT Commands == 737 737 738 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]798 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 739 739 800 +[[image:1654501986557-872.png||height="391" width="800"]] 740 740 741 -AT+<CMD>? : Help on <CMD> 742 742 743 - AT+<CMD>: Run<CMD>803 +Or if you have below board, use below connection: 744 744 745 -AT+<CMD>=<value> : Set the value 746 746 747 - AT+<CMD>=?:Get the value806 +[[image:1654502005655-729.png||height="503" width="801"]] 748 748 749 749 809 + 810 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 811 + 812 + 813 + [[image:1654502050864-459.png||height="564" width="806"]] 814 + 815 + 816 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 817 + 818 + 819 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 820 + 821 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 822 + 823 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 824 + 825 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 826 + 827 + 750 750 (% style="color:#037691" %)**General Commands**(%%) 751 751 752 -AT 830 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 753 753 754 -AT? 832 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 755 755 756 -ATZ 834 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 757 757 758 -AT+TDC 836 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 759 759 760 -AT+CFG : Print all configurations 761 761 762 - AT+CFGMOD: Workingmode selection839 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 763 763 764 -AT+I NTMOD:Setthe trigger interruptmode841 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 765 765 766 -AT+ 5VTSetextend the timeof5V power843 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 767 767 768 -AT+P ROChooseagreement845 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 769 769 770 -AT+ WEIGREGet weightorsetweight to 0847 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 771 771 772 -AT+ WEIGAPGet or SettheGapValue of weight849 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 773 773 774 -AT+ RXDL: Extendthe sendingandreceivingtime851 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 775 775 776 -AT+ CNTFACGettcountingparameters853 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 777 777 778 -AT+ SERVADDR:ServerAddress855 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 779 779 857 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 780 780 781 -(% style="color:# 037691" %)**COAPManagement**859 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 782 782 783 -AT+ URIsourceparameters861 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 784 784 863 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 785 785 786 -(% style="color:# 037691" %)**UDPManagement**865 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 787 787 788 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)867 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 789 789 869 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 790 790 791 -(% style="color:# 037691" %)**MQTTManagement**871 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 792 792 793 -AT+CLIENT : Get or Set MQTT client 794 794 795 - AT+UNAMEGetSetMQTT Username874 +(% style="color:#037691" %)**LoRa Network Management** 796 796 797 -AT+ PWDGetor SetMQTT password876 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 798 798 799 -AT+ PUBTOPICGetorSetMQTTpublishtopic878 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 800 800 801 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic880 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 802 802 882 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 803 803 804 -(% style="color:# 037691" %)**Information**884 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 805 805 806 -AT+F DRctoryDataReset886 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 807 807 808 -AT+ PWORDSerialAccessPassword888 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 809 809 890 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 810 810 892 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 811 811 812 -= 5.FAQ=894 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 813 813 814 -= =5.1HowtoUpgradeFirmware==896 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 815 815 898 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 816 816 900 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 901 + 902 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 903 + 904 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 905 + 906 + 907 +(% style="color:#037691" %)**Information** 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 912 + 913 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 918 + 919 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 920 + 921 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 922 + 923 + 924 += 4. FAQ = 925 + 926 +== 4.1 How to change the LoRa Frequency Bands/Region? == 927 + 817 817 ((( 818 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 929 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 930 +When downloading the images, choose the required image file for download. 819 819 ))) 820 820 821 821 ((( 822 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]934 + 823 823 ))) 824 824 825 825 ((( 826 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.938 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 827 827 ))) 828 828 941 +((( 942 + 943 +))) 829 829 945 +((( 946 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 947 +))) 830 830 831 -== 5.2 Can I calibrate NSE01 to different soil types? == 949 +((( 950 + 951 +))) 832 832 833 833 ((( 834 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].954 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 835 835 ))) 836 836 957 +[[image:image-20220606154726-3.png]] 837 837 838 -= 6. Trouble Shooting = 839 839 840 - ==6.1 Connection problemwhenuploadingfirmware==960 +When you use the TTN network, the US915 frequency bands use are: 841 841 962 +* 903.9 - SF7BW125 to SF10BW125 963 +* 904.1 - SF7BW125 to SF10BW125 964 +* 904.3 - SF7BW125 to SF10BW125 965 +* 904.5 - SF7BW125 to SF10BW125 966 +* 904.7 - SF7BW125 to SF10BW125 967 +* 904.9 - SF7BW125 to SF10BW125 968 +* 905.1 - SF7BW125 to SF10BW125 969 +* 905.3 - SF7BW125 to SF10BW125 970 +* 904.6 - SF8BW500 842 842 843 843 ((( 844 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]973 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 845 845 ))) 846 846 847 -(% class=" wikigeneratedid" %)976 +(% class="box infomessage" %) 848 848 ((( 978 +**AT+CHE=2** 979 +))) 980 + 981 +(% class="box infomessage" %) 982 +((( 983 +**ATZ** 984 +))) 985 + 986 +((( 987 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 988 +))) 989 + 990 +((( 849 849 850 850 ))) 851 851 994 +((( 995 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 996 +))) 852 852 853 - == 6.2 AT Commandinput doesn't work ==998 +[[image:image-20220606154825-4.png]] 854 854 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn’t work == 1010 + 855 855 ((( 856 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1012 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 857 857 858 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 859 859 ))) 860 860 861 861 862 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 863 863 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 864 864 865 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 866 866 867 867 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 868 868 (% class="wikigeneratedid" %) 869 869 ((( 870 870 871 871 ))) 872 872 873 -= 8.1064 += 7. Packing Info = 874 874 875 875 ((( 876 876 877 877 878 878 (% style="color:#037691" %)**Package Includes**: 1070 +))) 879 879 880 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1881 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 882 882 ))) 883 883 884 884 ((( ... ... @@ -885,19 +885,30 @@ 885 885 886 886 887 887 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 888 888 889 -* Size: 195 x 125 x 55 mm890 - * Weight:420g1082 +* ((( 1083 +Device Size: cm 891 891 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 892 892 893 -((( 894 - 895 895 896 - 897 897 898 898 ))) 899 899 900 -= 9.1098 += 8. Support = 901 901 902 902 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 903 903 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1102 + 1103 + 1104 +~)~)~) 1105 +~)~)~) 1106 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content