Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 30 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,87 +1,75 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 2 2 3 -(% style="display:none" %) [[image:image-20220709084458-4.png||height="521" width="487"]] 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 10 -**Table of Contents:** 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 18 -= 1. Introduction = 19 - 20 -== 1.1 What is NDDS75 Distance Detection Sensor == 21 - 22 22 ((( 23 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 25 25 ((( 26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 27 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 28 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 29 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 30 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 31 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 32 32 ))) 33 33 34 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 35 35 ))) 36 36 39 + 37 37 [[image:1654503236291-817.png]] 38 38 39 39 40 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 41 41 42 42 43 43 44 -== 1.2 47 +== 1.2 Features == 45 45 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 50 50 * AT Commands to change parameters 51 51 * Uplink on periodically 52 52 * Downlink to change configure 53 53 * IP66 Waterproof Enclosure 54 -* Ultra-Low Power consumption 55 -* AT Commands to change parameters 56 -* Micro SIM card slot for NB-IoT SIM 57 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 58 58 59 -== 1.3 Specification == 60 60 61 61 62 -(% style="color:#037691" %)**Common DC Characteristics:** 63 63 64 -* Supply Voltage: 2.1v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 64 +== 1.3 Specification == 66 66 67 -(% style="color:#037691" %)**NB-IoT Spec:** 68 - 69 -* - B1 @H-FDD: 2100MHz 70 -* - B3 @H-FDD: 1800MHz 71 -* - B8 @H-FDD: 900MHz 72 -* - B5 @H-FDD: 850MHz 73 -* - B20 @H-FDD: 800MHz 74 -* - B28 @H-FDD: 700MHz 75 - 76 -Probe(% style="color:#037691" %)** Specification:** 77 - 78 78 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 79 79 80 -[[image:image-20220 708101224-1.png]]68 +[[image:image-20220606162220-5.png]] 81 81 82 82 83 83 84 -== 1.4 72 +== 1.4 Applications == 85 85 86 86 * Smart Agriculture 87 87 ... ... @@ -88,623 +88,679 @@ 88 88 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 89 89 90 90 91 -== 1.5 Pin Definitions==79 +== 1.5 Firmware Change log == 92 92 93 93 94 - [[image:1657246476176-652.png]]82 +**LSE01 v1.0 :** Release 95 95 96 96 97 97 98 -= 2. UseNSE01 to communicatewithIoTServer=86 += 2. Configure LSE01 to connect to LoRaWAN network = 99 99 100 -== 2.1 88 +== 2.1 How it works == 101 101 102 - 103 103 ((( 104 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.91 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 105 105 ))) 106 106 107 - 108 108 ((( 109 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:95 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 110 110 ))) 111 111 112 -[[image:image-20220708101605-2.png]] 113 113 114 -((( 115 - 116 -))) 117 117 100 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 118 118 102 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 119 119 120 -== 2.2 Configure the NSE01 == 121 121 105 +[[image:1654503992078-669.png]] 122 122 123 -=== 2.2.1 Test Requirement === 124 124 108 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 125 125 110 + 111 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 112 + 113 +Each LSE01 is shipped with a sticker with the default device EUI as below: 114 + 115 +[[image:image-20220606163732-6.jpeg]] 116 + 117 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 118 + 119 +**Add APP EUI in the application** 120 + 121 + 122 +[[image:1654504596150-405.png]] 123 + 124 + 125 + 126 +**Add APP KEY and DEV EUI** 127 + 128 +[[image:1654504683289-357.png]] 129 + 130 + 131 + 132 +**Step 2**: Power on LSE01 133 + 134 + 135 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 136 + 137 +[[image:image-20220606163915-7.png]] 138 + 139 + 140 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 141 + 142 +[[image:1654504778294-788.png]] 143 + 144 + 145 + 146 +== 2.3 Uplink Payload == 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 152 + 153 +Uplink payload includes in total 11 bytes. 154 + 155 + 156 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 157 +|=((( 158 +**Size** 159 + 160 +**(bytes)** 161 +)))|=(% style="width: 45px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**1** 162 +|**Value**|(% style="width:45px" %)[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(% style="width:80px" %)((( 126 126 ((( 127 -To use NSE01 in your city, make sure meet below requirements: 164 +Temperature 165 + 166 +((( 167 +(Reserve, Ignore now) 128 128 ))) 129 129 130 -* Your local operator has already distributed a NB-IoT Network there. 131 -* The local NB-IoT network used the band that NSE01 supports. 132 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 170 +~|(% style="width:80px" %)[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]| 133 133 172 +(% style="width:80px" %) 134 134 ((( 135 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 174 +((( 175 +MOD & Digital Interrupt 176 + 177 +((( 178 +(Optional) 136 136 ))) 180 +))) 137 137 182 +[[image:1654504881641-514.png]] 138 138 139 -[[image:1657249419225-449.png]] 140 140 141 141 186 +=== 2.3.2 MOD~=1(Original value) === 142 142 143 - ===2.2.2InsertSIMcard===188 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 144 144 190 +(% border="1" cellspacing="10" style="background-color:#f7faff; width:510px" %) 191 +|=((( 192 +**Size** 193 + 194 +**(bytes)** 195 +)))|=**2**|=**2**|=**2**|=**2**|=**2**|=**1** 196 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 145 145 ((( 146 -Insert the NB-IoT Card get from your provider. 147 -))) 198 +Temperature 148 148 149 149 ((( 150 - Userneedto take out the NB-IoT module and insert theSIM card like below:201 +(Reserve, Ignore now) 151 151 ))) 203 +))) 152 152 205 +~|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]| 153 153 154 -[[image:1657249468462-536.png]] 207 +((( 208 +[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw) 209 +))) 155 155 211 +~| 156 156 157 - 158 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 159 - 160 160 ((( 161 161 ((( 162 - Userneedto configure NSE01 viaserialport to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands,user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.215 +MOD & Digital Interrupt 163 163 ))) 217 + 218 +(Optional) 164 164 ))) 220 +))) 165 165 222 +[[image:1654504907647-967.png]] 166 166 167 -**Connection:** 168 168 169 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 170 170 171 - (%style="background-color:yellow"%)USB TTL TXD <~-~-~-~-> UART_RXD226 +=== 2.3.3 Battery Info === 172 172 173 - (% style="background-color:yellow"%)USB TTLRXD <~-~-~-~-> UART_TXD228 +Check the battery voltage for LSE01. 174 174 230 +Ex1: 0x0B45 = 2885mV 175 175 176 - InthePC,use below serial tool settings:232 +Ex2: 0x0B49 = 2889mV 177 177 178 -* Baud: (% style="color:green" %)**9600** 179 -* Data bits:** (% style="color:green" %)8(%%)** 180 -* Stop bits: (% style="color:green" %)**1** 181 -* Parity: (% style="color:green" %)**None** 182 -* Flow Control: (% style="color:green" %)**None** 183 183 235 + 236 +=== 2.3.4 Soil Moisture === 237 + 238 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 239 + 240 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 241 + 242 + 243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 + 245 + 246 + 247 +=== 2.3.5 Soil Temperature === 248 + 249 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 250 + 251 +**Example**: 252 + 253 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 254 + 255 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 256 + 257 + 258 + 259 +=== 2.3.6 Soil Conductivity (EC) === 260 + 184 184 ((( 185 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.262 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 186 186 ))) 187 187 188 -[[image:image-20220708110657-3.png]] 265 +((( 266 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 267 +))) 189 189 190 190 ((( 191 - (% style="color:red"%)Note: the validAT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]270 +Generally, the EC value of irrigation water is less than 800uS / cm. 192 192 ))) 193 193 273 +((( 274 + 275 +))) 194 194 277 +((( 278 + 279 +))) 195 195 196 -=== 2. 2.4Use CoAP protocol to uplink data===281 +=== 2.3.7 MOD === 197 197 198 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]283 +Firmware version at least v2.1 supports changing mode. 199 199 285 +For example, bytes[10]=90 200 200 201 - **Use below commands:**287 +mod=(bytes[10]>>7)&0x01=1. 202 202 203 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 206 206 207 - For parameter description,please refer toAT commandset290 +**Downlink Command:** 208 208 209 - [[image:1657249793983-486.png]]292 +If payload = 0x0A00, workmode=0 210 210 294 +If** **payload =** **0x0A01, workmode=1 211 211 212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 213 213 214 -[[image:1657249831934-534.png]] 215 215 298 +=== 2.3.8 Decode payload in The Things Network === 216 216 300 +While using TTN network, you can add the payload format to decode the payload. 217 217 218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 219 219 220 - This feature is supported since firmwareversion v1.0.1303 +[[image:1654505570700-128.png]] 221 221 305 +The payload decoder function for TTN is here: 222 222 223 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 307 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 226 226 227 -[[image:1657249864775-321.png]] 228 228 229 229 230 - [[image:1657249930215-289.png]]311 +== 2.4 Uplink Interval == 231 231 313 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 232 232 233 233 234 -=== 2.2.6 Use MQTT protocol to uplink data === 235 235 236 - Thisfeatureis supported sincefirmware versionv110317 +== 2.5 Downlink Payload == 237 237 319 +By default, LSE50 prints the downlink payload to console port. 238 238 239 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 321 +[[image:image-20220606165544-8.png]] 246 246 247 -[[image:1657249978444-674.png]] 248 248 324 +**Examples:** 249 249 250 -[[image:1657249990869-686.png]] 251 251 327 +* **Set TDC** 252 252 253 -((( 254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 -))) 329 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 256 256 331 +Payload: 01 00 00 1E TDC=30S 257 257 333 +Payload: 01 00 00 3C TDC=60S 258 258 259 -=== 2.2.7 Use TCP protocol to uplink data === 260 260 261 - Thisfeature issupported since firmware version v110336 +* **Reset** 262 262 338 +If payload = 0x04FF, it will reset the LSE01 263 263 264 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 266 266 267 - [[image:1657250217799-140.png]]341 +* **CFM** 268 268 343 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 269 269 270 -[[image:1657250255956-604.png]] 271 271 272 272 347 +== 2.6 Show Data in DataCake IoT Server == 273 273 274 - === 2.2.8ChangeUpdateInterval===349 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 275 275 276 -User can use below command to change the (% style="color:green" %)**uplink interval**. 277 277 278 -* (%style="color:blue"%)**AT+TDC=600**(%%)~/~/ SetUpdateIntervalto600s352 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 279 279 280 -((( 281 -(% style="color:red" %)**NOTE:** 282 -))) 354 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 283 283 284 -((( 285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 -))) 287 287 357 +[[image:1654505857935-743.png]] 288 288 289 289 290 - ==2.3 Uplink Payload ==360 +[[image:1654505874829-548.png]] 291 291 292 - Inthis mode, uplinkpayloadincludes intal18bytes362 +Step 3: Create an account or log in Datacake. 293 293 294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 -|=(% style="width: 60px;" %)((( 296 -**Size(bytes)** 297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 364 +Step 4: Search the LSE01 and add DevEUI. 299 299 300 -((( 301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 302 -))) 303 303 367 +[[image:1654505905236-553.png]] 304 304 305 -[[image:image-20220708111918-4.png]] 306 306 370 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 307 307 308 - The payloadis ASCII string, representative same HEX:372 +[[image:1654505925508-181.png]] 309 309 310 -0x72403155615900640c7817075e0a8c02f900 where: 311 311 312 -* Device ID: 0x 724031556159 = 724031556159 313 -* Version: 0x0064=100=1.0.0 314 314 315 -* BAT: 0x0c78 = 3192 mV = 3.192V 316 -* Singal: 0x17 = 23 317 -* Soil Moisture: 0x075e= 1886 = 18.86 % 318 -* Soil Temperature:0x0a8c =2700=27 °C 319 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 320 -* Interrupt: 0x00 = 0 376 +== 2.7 Frequency Plans == 321 321 322 - ==2.4PayloadExplanationandSensorInterface==378 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 323 323 324 324 325 -=== 2. 4.1DeviceID===381 +=== 2.7.1 EU863-870 (EU868) === 326 326 327 -((( 328 -By default, the Device ID equal to the last 6 bytes of IMEI. 329 -))) 383 +(% style="color:#037691" %)** Uplink:** 330 330 331 -((( 332 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 333 -))) 385 +868.1 - SF7BW125 to SF12BW125 334 334 335 -((( 336 -**Example:** 337 -))) 387 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 338 338 339 -((( 340 -AT+DEUI=A84041F15612 341 -))) 389 +868.5 - SF7BW125 to SF12BW125 342 342 343 -((( 344 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 345 -))) 391 +867.1 - SF7BW125 to SF12BW125 346 346 393 +867.3 - SF7BW125 to SF12BW125 347 347 395 +867.5 - SF7BW125 to SF12BW125 348 348 349 - ===2.4.2VersionInfo ===397 +867.7 - SF7BW125 to SF12BW125 350 350 351 -((( 352 -Specify the software version: 0x64=100, means firmware version 1.00. 353 -))) 399 +867.9 - SF7BW125 to SF12BW125 354 354 355 -((( 356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 357 -))) 401 +868.8 - FSK 358 358 359 359 404 +(% style="color:#037691" %)** Downlink:** 360 360 361 - ===2.4.3 BatteryInfo===406 +Uplink channels 1-9 (RX1) 362 362 363 -((( 364 -Check the battery voltage for LSE01. 365 -))) 408 +869.525 - SF9BW125 (RX2 downlink only) 366 366 367 -((( 368 -Ex1: 0x0B45 = 2885mV 369 -))) 370 370 371 -((( 372 -Ex2: 0x0B49 = 2889mV 373 -))) 374 374 412 +=== 2.7.2 US902-928(US915) === 375 375 414 +Used in USA, Canada and South America. Default use CHE=2 376 376 377 - ===2.4.4 Signal Strength===416 +(% style="color:#037691" %)**Uplink:** 378 378 379 -((( 380 -NB-IoT Network signal Strength. 381 -))) 418 +903.9 - SF7BW125 to SF10BW125 382 382 383 -((( 384 -**Ex1: 0x1d = 29** 385 -))) 420 +904.1 - SF7BW125 to SF10BW125 386 386 387 -((( 388 -(% style="color:blue" %)**0**(%%) -113dBm or less 389 -))) 422 +904.3 - SF7BW125 to SF10BW125 390 390 391 -((( 392 -(% style="color:blue" %)**1**(%%) -111dBm 393 -))) 424 +904.5 - SF7BW125 to SF10BW125 394 394 395 -((( 396 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 397 -))) 426 +904.7 - SF7BW125 to SF10BW125 398 398 399 -((( 400 -(% style="color:blue" %)**31** (%%) -51dBm or greater 401 -))) 428 +904.9 - SF7BW125 to SF10BW125 402 402 403 -((( 404 -(% style="color:blue" %)**99** (%%) Not known or not detectable 405 -))) 430 +905.1 - SF7BW125 to SF10BW125 406 406 432 +905.3 - SF7BW125 to SF10BW125 407 407 408 408 409 - ===2.4.5 SoilMoisture===435 +(% style="color:#037691" %)**Downlink:** 410 410 411 -((( 412 -((( 413 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 414 -))) 415 -))) 437 +923.3 - SF7BW500 to SF12BW500 416 416 417 -((( 418 -((( 419 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 420 -))) 421 -))) 439 +923.9 - SF7BW500 to SF12BW500 422 422 423 -((( 424 - 425 -))) 441 +924.5 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 429 -))) 443 +925.1 - SF7BW500 to SF12BW500 430 430 445 +925.7 - SF7BW500 to SF12BW500 431 431 447 +926.3 - SF7BW500 to SF12BW500 432 432 433 - ===2.4.6oilTemperature===449 +926.9 - SF7BW500 to SF12BW500 434 434 435 -((( 436 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 437 -))) 451 +927.5 - SF7BW500 to SF12BW500 438 438 439 -((( 440 -**Example**: 441 -))) 453 +923.3 - SF12BW500(RX2 downlink only) 442 442 443 -((( 444 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 445 -))) 446 446 447 -((( 448 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 449 -))) 450 450 457 +=== 2.7.3 CN470-510 (CN470) === 451 451 459 +Used in China, Default use CHE=1 452 452 453 - ===2.4.7 SoilConductivity(EC)===461 +(% style="color:#037691" %)**Uplink:** 454 454 455 -((( 456 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 457 -))) 463 +486.3 - SF7BW125 to SF12BW125 458 458 459 -((( 460 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 461 -))) 465 +486.5 - SF7BW125 to SF12BW125 462 462 463 -((( 464 -Generally, the EC value of irrigation water is less than 800uS / cm. 465 -))) 467 +486.7 - SF7BW125 to SF12BW125 466 466 467 -((( 468 - 469 -))) 469 +486.9 - SF7BW125 to SF12BW125 470 470 471 -((( 472 - 473 -))) 471 +487.1 - SF7BW125 to SF12BW125 474 474 475 - === 2.4.8DigitalInterrupt===473 +487.3 - SF7BW125 to SF12BW125 476 476 477 -((( 478 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 479 -))) 475 +487.5 - SF7BW125 to SF12BW125 480 480 481 -((( 482 -The command is: 483 -))) 477 +487.7 - SF7BW125 to SF12BW125 484 484 485 -((( 486 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 487 -))) 488 488 480 +(% style="color:#037691" %)**Downlink:** 489 489 490 -((( 491 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 492 -))) 482 +506.7 - SF7BW125 to SF12BW125 493 493 484 +506.9 - SF7BW125 to SF12BW125 494 494 495 -((( 496 -Example: 497 -))) 486 +507.1 - SF7BW125 to SF12BW125 498 498 499 -((( 500 -0x(00): Normal uplink packet. 501 -))) 488 +507.3 - SF7BW125 to SF12BW125 502 502 503 -((( 504 -0x(01): Interrupt Uplink Packet. 505 -))) 490 +507.5 - SF7BW125 to SF12BW125 506 506 492 +507.7 - SF7BW125 to SF12BW125 507 507 494 +507.9 - SF7BW125 to SF12BW125 508 508 509 - === 2.4.9+5VOutput===496 +508.1 - SF7BW125 to SF12BW125 510 510 511 -((( 512 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 513 -))) 498 +505.3 - SF12BW125 (RX2 downlink only) 514 514 515 515 516 -((( 517 -The 5V output time can be controlled by AT Command. 518 -))) 519 519 520 -((( 521 -(% style="color:blue" %)**AT+5VT=1000** 522 -))) 502 +=== 2.7.4 AU915-928(AU915) === 523 523 524 -((( 525 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 526 -))) 504 +Default use CHE=2 527 527 506 +(% style="color:#037691" %)**Uplink:** 528 528 508 +916.8 - SF7BW125 to SF12BW125 529 529 530 - ==2.5DownlinkPayload ==510 +917.0 - SF7BW125 to SF12BW125 531 531 532 - Bydefault,NSE01prints the downlinkpayload to console port.512 +917.2 - SF7BW125 to SF12BW125 533 533 534 - [[image:image-20220708133731-5.png]]514 +917.4 - SF7BW125 to SF12BW125 535 535 516 +917.6 - SF7BW125 to SF12BW125 536 536 537 -((( 538 -(% style="color:blue" %)**Examples:** 539 -))) 518 +917.8 - SF7BW125 to SF12BW125 540 540 541 -((( 542 - 543 -))) 520 +918.0 - SF7BW125 to SF12BW125 544 544 545 -* ((( 546 -(% style="color:blue" %)**Set TDC** 547 -))) 522 +918.2 - SF7BW125 to SF12BW125 548 548 549 -((( 550 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 551 -))) 552 552 553 -((( 554 -Payload: 01 00 00 1E TDC=30S 555 -))) 525 +(% style="color:#037691" %)**Downlink:** 556 556 557 -((( 558 -Payload: 01 00 00 3C TDC=60S 559 -))) 527 +923.3 - SF7BW500 to SF12BW500 560 560 561 -((( 562 - 563 -))) 529 +923.9 - SF7BW500 to SF12BW500 564 564 565 -* ((( 566 -(% style="color:blue" %)**Reset** 567 -))) 531 +924.5 - SF7BW500 to SF12BW500 568 568 569 -((( 570 -If payload = 0x04FF, it will reset the NSE01 571 -))) 533 +925.1 - SF7BW500 to SF12BW500 572 572 535 +925.7 - SF7BW500 to SF12BW500 573 573 574 - *(%style="color:blue"%)**INTMOD**537 +926.3 - SF7BW500 to SF12BW500 575 575 576 -((( 577 -Downlink Payload: 06000003, Set AT+INTMOD=3 578 -))) 539 +926.9 - SF7BW500 to SF12BW500 579 579 541 +927.5 - SF7BW500 to SF12BW500 580 580 543 +923.3 - SF12BW500(RX2 downlink only) 581 581 582 -== 2.6 LED Indicator == 583 583 584 -((( 585 -The NSE01 has an internal LED which is to show the status of different state. 586 586 547 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 587 587 588 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 589 -* Then the LED will be on for 1 second means device is boot normally. 590 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 591 -* For each uplink probe, LED will be on for 500ms. 592 -))) 549 +(% style="color:#037691" %)**Default Uplink channel:** 593 593 551 +923.2 - SF7BW125 to SF10BW125 594 594 553 +923.4 - SF7BW125 to SF10BW125 595 595 596 596 597 - ==2.7 Installation inSoil==556 +(% style="color:#037691" %)**Additional Uplink Channel**: 598 598 599 - __**Measurementthesoilsurface**__558 +(OTAA mode, channel added by JoinAccept message) 600 600 601 -((( 602 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 603 -))) 560 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 604 604 605 - [[image:1657259653666-883.png]]562 +922.2 - SF7BW125 to SF10BW125 606 606 564 +922.4 - SF7BW125 to SF10BW125 607 607 608 -((( 609 - 566 +922.6 - SF7BW125 to SF10BW125 610 610 611 -((( 612 -Dig a hole with diameter > 20CM. 613 -))) 568 +922.8 - SF7BW125 to SF10BW125 614 614 615 -((( 616 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 617 -))) 618 -))) 570 +923.0 - SF7BW125 to SF10BW125 619 619 620 - [[image:1654506665940-119.png]]572 +922.0 - SF7BW125 to SF10BW125 621 621 622 -((( 623 - 624 -))) 625 625 575 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 626 626 627 - ==2.8FirmwareChange Log==577 +923.6 - SF7BW125 to SF10BW125 628 628 579 +923.8 - SF7BW125 to SF10BW125 629 629 630 - DownloadURL&FirmwareChange log581 +924.0 - SF7BW125 to SF10BW125 631 631 632 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]583 +924.2 - SF7BW125 to SF10BW125 633 633 585 +924.4 - SF7BW125 to SF10BW125 634 634 635 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]587 +924.6 - SF7BW125 to SF10BW125 636 636 637 637 590 +(% style="color:#037691" %)** Downlink:** 638 638 639 - ==2.9 Battery Analysis==592 +Uplink channels 1-8 (RX1) 640 640 641 - ===2.9.1BatteryType ===594 +923.2 - SF10BW125 (RX2) 642 642 643 643 597 + 598 +=== 2.7.6 KR920-923 (KR920) === 599 + 600 +Default channel: 601 + 602 +922.1 - SF7BW125 to SF12BW125 603 + 604 +922.3 - SF7BW125 to SF12BW125 605 + 606 +922.5 - SF7BW125 to SF12BW125 607 + 608 + 609 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 610 + 611 +922.1 - SF7BW125 to SF12BW125 612 + 613 +922.3 - SF7BW125 to SF12BW125 614 + 615 +922.5 - SF7BW125 to SF12BW125 616 + 617 +922.7 - SF7BW125 to SF12BW125 618 + 619 +922.9 - SF7BW125 to SF12BW125 620 + 621 +923.1 - SF7BW125 to SF12BW125 622 + 623 +923.3 - SF7BW125 to SF12BW125 624 + 625 + 626 +(% style="color:#037691" %)**Downlink:** 627 + 628 +Uplink channels 1-7(RX1) 629 + 630 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 631 + 632 + 633 + 634 +=== 2.7.7 IN865-867 (IN865) === 635 + 636 +(% style="color:#037691" %)** Uplink:** 637 + 638 +865.0625 - SF7BW125 to SF12BW125 639 + 640 +865.4025 - SF7BW125 to SF12BW125 641 + 642 +865.9850 - SF7BW125 to SF12BW125 643 + 644 + 645 +(% style="color:#037691" %) **Downlink:** 646 + 647 +Uplink channels 1-3 (RX1) 648 + 649 +866.550 - SF10BW125 (RX2) 650 + 651 + 652 + 653 + 654 +== 2.8 LED Indicator == 655 + 656 +The LSE01 has an internal LED which is to show the status of different state. 657 + 658 +* Blink once when device power on. 659 +* Solid ON for 5 seconds once device successful Join the network. 660 +* Blink once when device transmit a packet. 661 + 662 +== 2.9 Installation in Soil == 663 + 664 +**Measurement the soil surface** 665 + 666 + 667 +[[image:1654506634463-199.png]] 668 + 644 644 ((( 645 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 670 +((( 671 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 646 646 ))) 673 +))) 647 647 648 648 676 +[[image:1654506665940-119.png]] 677 + 649 649 ((( 650 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.679 +Dig a hole with diameter > 20CM. 651 651 ))) 652 652 682 +((( 683 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 684 +))) 653 653 686 + 687 +== 2.10 Firmware Change Log == 688 + 654 654 ((( 655 - The battery relateddocumentsasbelow:690 +**Firmware download link:** 656 656 ))) 657 657 658 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]659 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]660 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]693 +((( 694 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 695 +))) 661 661 662 662 ((( 663 - [[image:image-20220708140453-6.png]]698 + 664 664 ))) 665 665 701 +((( 702 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 703 +))) 666 666 705 +((( 706 + 707 +))) 667 667 668 -=== 2.9.2 Power consumption Analyze === 709 +((( 710 +**V1.0.** 711 +))) 669 669 670 670 ((( 671 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.714 +Release 672 672 ))) 673 673 674 674 718 +== 2.11 Battery Analysis == 719 + 720 +=== 2.11.1 Battery Type === 721 + 675 675 ((( 676 - Instruction touse as below:723 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 677 677 ))) 678 678 679 679 ((( 680 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]727 +The battery is designed to last for more than 5 years for the LSN50. 681 681 ))) 682 682 683 - 684 684 ((( 685 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 731 +((( 732 +The battery-related documents are as below: 686 686 ))) 734 +))) 687 687 688 688 * ((( 689 - ProductModel737 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 690 690 ))) 691 691 * ((( 692 - UplinkInterval740 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 693 693 ))) 694 694 * ((( 695 - WorkingMode743 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 696 696 ))) 697 697 698 -((( 699 -And the Life expectation in difference case will be shown on the right. 700 -))) 746 + [[image:image-20220606171726-9.png]] 701 701 702 -[[image:image-20220708141352-7.jpeg]] 703 703 704 704 750 +=== 2.11.2 Battery Note === 705 705 706 -=== 2.9.3 Battery Note === 707 - 708 708 ((( 709 709 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 710 710 ))) ... ... @@ -711,176 +711,303 @@ 711 711 712 712 713 713 714 -=== 2. 9.4Replace the battery ===758 +=== 2.11.3 Replace the battery === 715 715 716 716 ((( 717 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).761 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 718 718 ))) 719 719 720 - 721 - 722 -= 3. Access NB-IoT Module = 723 - 724 724 ((( 725 - Userscan directly accesstheATcommand set of theNB-IoTmodule.765 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 726 726 ))) 727 727 728 728 ((( 729 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]769 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 730 730 ))) 731 731 732 -[[image:1657261278785-153.png]] 733 733 734 734 774 += 3. Using the AT Commands = 735 735 736 -= 4.UsingtheAT Commands =776 +== 3.1 Access AT Commands == 737 737 738 -== 4.1 Access AT Commands == 739 739 740 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]779 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 741 741 781 +[[image:1654501986557-872.png||height="391" width="800"]] 742 742 743 -AT+<CMD>? : Help on <CMD> 744 744 745 - AT+<CMD>: Run<CMD>784 +Or if you have below board, use below connection: 746 746 747 -AT+<CMD>=<value> : Set the value 748 748 749 - AT+<CMD>=?:Get the value787 +[[image:1654502005655-729.png||height="503" width="801"]] 750 750 751 751 790 + 791 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 792 + 793 + 794 + [[image:1654502050864-459.png||height="564" width="806"]] 795 + 796 + 797 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 798 + 799 + 800 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 801 + 802 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 803 + 804 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 805 + 806 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 807 + 808 + 752 752 (% style="color:#037691" %)**General Commands**(%%) 753 753 754 -AT 811 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 755 755 756 -AT? 813 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 757 757 758 -ATZ 815 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 759 759 760 -AT+TDC 817 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 761 761 762 -AT+CFG : Print all configurations 763 763 764 - AT+CFGMOD: Workingmode selection820 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 765 765 766 -AT+I NTMOD:Setthe trigger interruptmode822 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 767 767 768 -AT+ 5VTSetextend the timeof5V power824 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 769 769 770 -AT+P ROChooseagreement826 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 771 771 772 -AT+ WEIGREGet weightorsetweight to 0828 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 773 773 774 -AT+ WEIGAPGet or SettheGapValue of weight830 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 775 775 776 -AT+ RXDL: Extendthe sendingandreceivingtime832 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 777 777 778 -AT+ CNTFACGettcountingparameters834 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 779 779 780 -AT+ SERVADDR:ServerAddress836 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 781 781 838 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 782 782 783 -(% style="color:# 037691" %)**COAPManagement**840 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 784 784 785 -AT+ URIsourceparameters842 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 786 786 844 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 787 787 788 -(% style="color:# 037691" %)**UDPManagement**846 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 789 789 790 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)848 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 791 791 850 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 792 792 793 -(% style="color:# 037691" %)**MQTTManagement**852 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 794 794 795 -AT+CLIENT : Get or Set MQTT client 796 796 797 - AT+UNAMEGetSetMQTT Username855 +(% style="color:#037691" %)**LoRa Network Management** 798 798 799 -AT+ PWDGetor SetMQTT password857 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 800 800 801 -AT+ PUBTOPICGetorSetMQTTpublishtopic859 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 802 802 803 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic861 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 804 804 863 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 805 805 806 -(% style="color:# 037691" %)**Information**865 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 807 807 808 -AT+F DRctoryDataReset867 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 809 809 810 -AT+ PWORDSerialAccessPassword869 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 811 811 871 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 812 812 873 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 813 813 814 -= 5.FAQ=875 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 815 815 816 -= =5.1HowtoUpgradeFirmware==877 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 817 817 879 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 818 818 881 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 886 + 887 + 888 +(% style="color:#037691" %)**Information** 889 + 890 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 891 + 892 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 893 + 894 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 895 + 896 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 897 + 898 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 899 + 900 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 901 + 902 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 903 + 904 + 905 += 4. FAQ = 906 + 907 +== 4.1 How to change the LoRa Frequency Bands/Region? == 908 + 819 819 ((( 820 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 910 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 911 +When downloading the images, choose the required image file for download. 821 821 ))) 822 822 823 823 ((( 824 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]915 + 825 825 ))) 826 826 827 827 ((( 828 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.919 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 829 829 ))) 830 830 922 +((( 923 + 924 +))) 831 831 926 +((( 927 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 928 +))) 832 832 833 -== 5.2 Can I calibrate NSE01 to different soil types? == 930 +((( 931 + 932 +))) 834 834 835 835 ((( 836 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].935 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 837 837 ))) 838 838 938 +[[image:image-20220606154726-3.png]] 839 839 840 -= 6. Trouble Shooting = 841 841 842 - ==6.1 Connection problemwhenuploadingfirmware==941 +When you use the TTN network, the US915 frequency bands use are: 843 843 943 +* 903.9 - SF7BW125 to SF10BW125 944 +* 904.1 - SF7BW125 to SF10BW125 945 +* 904.3 - SF7BW125 to SF10BW125 946 +* 904.5 - SF7BW125 to SF10BW125 947 +* 904.7 - SF7BW125 to SF10BW125 948 +* 904.9 - SF7BW125 to SF10BW125 949 +* 905.1 - SF7BW125 to SF10BW125 950 +* 905.3 - SF7BW125 to SF10BW125 951 +* 904.6 - SF8BW500 844 844 845 845 ((( 846 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]954 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 847 847 ))) 848 848 849 -(% class=" wikigeneratedid" %)957 +(% class="box infomessage" %) 850 850 ((( 959 +**AT+CHE=2** 960 +))) 961 + 962 +(% class="box infomessage" %) 963 +((( 964 +**ATZ** 965 +))) 966 + 967 +((( 968 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 969 +))) 970 + 971 +((( 851 851 852 852 ))) 853 853 975 +((( 976 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 977 +))) 854 854 855 - == 6.2 AT Commandinput doesn't work ==979 +[[image:image-20220606154825-4.png]] 856 856 981 + 982 + 983 += 5. Trouble Shooting = 984 + 985 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 986 + 987 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 988 + 989 + 990 +== 5.2 AT Command input doesn’t work == 991 + 857 857 ((( 858 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 993 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 994 +))) 859 859 860 - 996 + 997 +== 5.3 Device rejoin in at the second uplink packet == 998 + 999 +(% style="color:#4f81bd" %)**Issue describe as below:** 1000 + 1001 +[[image:1654500909990-784.png]] 1002 + 1003 + 1004 +(% style="color:#4f81bd" %)**Cause for this issue:** 1005 + 1006 +((( 1007 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 861 861 ))) 862 862 863 863 864 - =7. OrderInfo=1011 +(% style="color:#4f81bd" %)**Solution: ** 865 865 1013 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 866 866 867 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1015 +[[image:1654500929571-736.png||height="458" width="832"]] 868 868 869 869 1018 += 6. Order Info = 1019 + 1020 + 1021 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1022 + 1023 + 1024 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1025 + 1026 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1027 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1028 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1029 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1030 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1031 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1032 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1033 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1034 + 1035 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1036 + 1037 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1038 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1039 + 870 870 (% class="wikigeneratedid" %) 871 871 ((( 872 872 873 873 ))) 874 874 875 -= 8.1045 += 7. Packing Info = 876 876 877 877 ((( 878 878 879 879 880 880 (% style="color:#037691" %)**Package Includes**: 1051 +))) 881 881 882 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1883 - *Externalantennax 11053 +* ((( 1054 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 884 884 ))) 885 885 886 886 ((( ... ... @@ -887,19 +887,30 @@ 887 887 888 888 889 889 (% style="color:#037691" %)**Dimension and weight**: 1061 +))) 890 890 891 -* Size: 195 x 125 x 55 mm892 - * Weight:420g1063 +* ((( 1064 +Device Size: cm 893 893 ))) 1066 +* ((( 1067 +Device Weight: g 1068 +))) 1069 +* ((( 1070 +Package Size / pcs : cm 1071 +))) 1072 +* ((( 1073 +Weight / pcs : g 894 894 895 -((( 896 - 897 897 898 - 899 899 900 900 ))) 901 901 902 -= 9.1079 += 8. Support = 903 903 904 904 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 905 905 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1083 + 1084 + 1085 +))) 1086 +))) 1087 +)))
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -200.4 KB - Content