Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 73.1
edited by Xiaoling
on 2022/07/09 08:47
Change comment: There is no comment for this version
To version 45.3
edited by Xiaoling
on 2022/07/08 10:24
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,6 +1,6 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 -(% style="display:none" %) [[image:image-20220709084458-4.png||height="521" width="487"]]
4 4  
5 5  
6 6  
... ... @@ -7,30 +7,32 @@
7 7  
8 8  
9 9  
10 -**Table of Contents:**
11 11  
12 12  
13 13  
14 14  
14 +**Table of Contents:**
15 15  
16 16  
17 17  
18 +
19 +
20 +
18 18  = 1.  Introduction =
19 19  
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
21 21  
22 22  (((
23 23  
24 24  
25 -(((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
28 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
29 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
30 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
31 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
33 33  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
34 34  
35 35  )))
36 36  
... ... @@ -41,8 +41,9 @@
41 41  
42 42  
43 43  
44 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
45 45  
48 +
46 46  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
... ... @@ -56,6 +56,8 @@
56 56  * Micro SIM card slot for NB-IoT SIM
57 57  * 8500mAh Battery for long term use
58 58  
62 +
63 +
59 59  == 1.3  Specification ==
60 60  
61 61  
... ... @@ -64,6 +64,7 @@
64 64  * Supply Voltage: 2.1v ~~ 3.6v
65 65  * Operating Temperature: -40 ~~ 85°C
66 66  
72 +
67 67  (% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 69  * - B1 @H-FDD: 2100MHz
... ... @@ -73,8 +73,9 @@
73 73  * - B20 @H-FDD: 800MHz
74 74  * - B28 @H-FDD: 700MHz
75 75  
76 -Probe(% style="color:#037691" %)** Specification:**
77 77  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
78 78  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
79 79  
80 80  [[image:image-20220708101224-1.png]]
... ... @@ -117,594 +117,682 @@
117 117  
118 118  
119 119  
120 -== 2.2 ​ Configure the NSE01 ==
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
121 121  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
122 122  
123 -=== 2.2.1 Test Requirement ===
124 124  
132 +[[image:1654503992078-669.png]]
125 125  
126 -(((
127 -To use NSE01 in your city, make sure meet below requirements:
128 -)))
129 129  
130 -* Your local operator has already distributed a NB-IoT Network there.
131 -* The local NB-IoT network used the band that NSE01 supports.
132 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
133 133  
134 -(((
135 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 -)))
137 137  
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
138 138  
139 -[[image:1657249419225-449.png]]
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
142 +[[image:image-20220606163732-6.jpeg]]
141 141  
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
142 142  
143 -=== 2.2.2 Insert SIM card ===
146 +**Add APP EUI in the application**
144 144  
145 -(((
146 -Insert the NB-IoT Card get from your provider.
147 -)))
148 148  
149 -(((
150 -User need to take out the NB-IoT module and insert the SIM card like below:
151 -)))
149 +[[image:1654504596150-405.png]]
152 152  
153 153  
154 -[[image:1657249468462-536.png]]
155 155  
153 +**Add APP KEY and DEV EUI**
156 156  
155 +[[image:1654504683289-357.png]]
157 157  
158 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
159 159  
160 -(((
161 -(((
162 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
163 -)))
164 -)))
165 165  
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
166 166  
167 -**Connection:**
168 168  
169 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
170 170  
171 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
164 +[[image:image-20220606163915-7.png]]
172 172  
173 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
174 174  
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
175 175  
176 -In the PC, use below serial tool settings:
169 +[[image:1654504778294-788.png]]
177 177  
178 -* Baud:  (% style="color:green" %)**9600**
179 -* Data bits:** (% style="color:green" %)8(%%)**
180 -* Stop bits: (% style="color:green" %)**1**
181 -* Parity:  (% style="color:green" %)**None**
182 -* Flow Control: (% style="color:green" %)**None**
183 183  
184 -(((
185 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
186 -)))
187 187  
188 -[[image:image-20220708110657-3.png]]
173 +== 2.3 Uplink Payload ==
189 189  
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
190 190  (((
191 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
181 +Uplink payload includes in total 11 bytes.
192 192  )))
193 193  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
194 194  
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
195 195  
196 -=== 2.2.4 Use CoAP protocol to uplink data ===
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
197 197  
198 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
197 +(Optional)
198 +)))
199 199  
200 +=== 2.3.2 MOD~=1(Original value) ===
200 200  
201 -**Use below commands:**
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
202 202  
203 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
206 206  
207 -For parameter description, please refer to AT command set
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
208 208  
209 -[[image:1657249793983-486.png]]
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
210 210  
217 +(Optional)
218 +)))
211 211  
212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
220 +=== 2.3.3 Battery Info ===
213 213  
214 -[[image:1657249831934-534.png]]
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
215 215  
226 +(((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
216 216  
230 +(((
231 +Ex2: 0x0B49 = 2889mV
232 +)))
217 217  
218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
219 219  
220 -This feature is supported since firmware version v1.0.1
221 221  
236 +=== 2.3.4 Soil Moisture ===
222 222  
223 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
240 +)))
226 226  
227 -[[image:1657249864775-321.png]]
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
228 228  
246 +(((
247 +
248 +)))
229 229  
230 -[[image:1657249930215-289.png]]
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
231 231  
232 232  
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
256 +=== 2.3.5 Soil Temperature ===
235 235  
236 -This feature is supported since firmware version v110
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
237 237  
262 +(((
263 +**Example**:
264 +)))
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
266 +(((
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
268 +)))
246 246  
247 -[[image:1657249978444-674.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
248 248  
249 249  
250 -[[image:1657249990869-686.png]]
251 251  
276 +=== 2.3.6 Soil Conductivity (EC) ===
252 252  
253 253  (((
254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
255 255  )))
256 256  
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
257 257  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
258 258  
259 -=== 2.2.7 Use TCP protocol to uplink data ===
290 +(((
291 +
292 +)))
260 260  
261 -This feature is supported since firmware version v110
294 +(((
295 +
296 +)))
262 262  
298 +=== 2.3.7 MOD ===
263 263  
264 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
300 +Firmware version at least v2.1 supports changing mode.
266 266  
267 -[[image:1657250217799-140.png]]
302 +For example, bytes[10]=90
268 268  
304 +mod=(bytes[10]>>7)&0x01=1.
269 269  
270 -[[image:1657250255956-604.png]]
271 271  
307 +**Downlink Command:**
272 272  
309 +If payload = 0x0A00, workmode=0
273 273  
274 -=== 2.2.8 Change Update Interval ===
311 +If** **payload =** **0x0A01, workmode=1
275 275  
276 -User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
279 279  
280 -(((
281 -(% style="color:red" %)**NOTE:**
282 -)))
315 +=== 2.3.8 ​Decode payload in The Things Network ===
283 283  
284 -(((
285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
286 -)))
317 +While using TTN network, you can add the payload format to decode the payload.
287 287  
288 288  
320 +[[image:1654505570700-128.png]]
289 289  
290 -== 2.3  Uplink Payload ==
322 +(((
323 +The payload decoder function for TTN is here:
324 +)))
291 291  
292 -In this mode, uplink payload includes in total 18 bytes
293 -
294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 -|=(% style="width: 60px;" %)(((
296 -**Size(bytes)**
297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
299 -
300 300  (((
301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
302 302  )))
303 303  
304 304  
305 -[[image:image-20220708111918-4.png]]
331 +== 2.4 Uplink Interval ==
306 306  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
307 307  
308 -The payload is ASCII string, representative same HEX:
309 309  
310 -0x72403155615900640c7817075e0a8c02f900 where:
311 311  
312 -* Device ID: 0x 724031556159 = 724031556159
313 -* Version: 0x0064=100=1.0.0
337 +== 2.5 Downlink Payload ==
314 314  
315 -* BAT: 0x0c78 = 3192 mV = 3.192V
316 -* Singal: 0x17 = 23
317 -* Soil Moisture: 0x075e= 1886 = 18.86  %
318 -* Soil Temperature:0x0a8c =2700=27 °C
319 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
320 -* Interrupt: 0x00 = 0
339 +By default, LSE50 prints the downlink payload to console port.
321 321  
322 -== 2.4  Payload Explanation and Sensor Interface ==
341 +[[image:image-20220606165544-8.png]]
323 323  
324 324  
325 -=== 2.4.1  Device ID ===
326 -
327 327  (((
328 -By default, the Device ID equal to the last 6 bytes of IMEI.
345 +(% style="color:blue" %)**Examples:**
329 329  )))
330 330  
331 331  (((
332 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
349 +
333 333  )))
334 334  
335 -(((
336 -**Example:**
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
337 337  )))
338 338  
339 339  (((
340 -AT+DEUI=A84041F15612
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
341 341  )))
342 342  
343 343  (((
344 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
361 +Payload:    01 00 00 1E    TDC=30S
345 345  )))
346 346  
347 -
348 -
349 -=== 2.4.2  Version Info ===
350 -
351 351  (((
352 -Specify the software version: 0x64=100, means firmware version 1.00.
365 +Payload:    01 00 00 3C    TDC=60S
353 353  )))
354 354  
355 355  (((
356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 +
357 357  )))
358 358  
359 -
360 -
361 -=== 2.4.3  Battery Info ===
362 -
363 -(((
364 -Check the battery voltage for LSE01.
372 +* (((
373 +(% style="color:blue" %)**Reset**
365 365  )))
366 366  
367 367  (((
368 -Ex1: 0x0B45 = 2885mV
377 +If payload = 0x04FF, it will reset the LSE01
369 369  )))
370 370  
371 -(((
372 -Ex2: 0x0B49 = 2889mV
373 -)))
374 374  
381 +* (% style="color:blue" %)**CFM**
375 375  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
376 376  
377 -=== 2.4.4  Signal Strength ===
378 378  
379 -(((
380 -NB-IoT Network signal Strength.
381 -)))
382 382  
383 -(((
384 -**Ex1: 0x1d = 29**
385 -)))
387 +== 2.6 ​Show Data in DataCake IoT Server ==
386 386  
387 387  (((
388 -(% style="color:blue" %)**0**(%%)  -113dBm or less
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
389 389  )))
390 390  
391 391  (((
392 -(% style="color:blue" %)**1**(%%)  -111dBm
394 +
393 393  )))
394 394  
395 395  (((
396 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
398 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
397 397  )))
398 398  
399 399  (((
400 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
402 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
401 401  )))
402 402  
403 -(((
404 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
405 -)))
406 406  
406 +[[image:1654505857935-743.png]]
407 407  
408 408  
409 -=== 2.4.5  Soil Moisture ===
409 +[[image:1654505874829-548.png]]
410 410  
411 -(((
412 -(((
413 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
414 -)))
415 -)))
416 416  
417 -(((
418 -(((
419 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
420 -)))
421 -)))
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
422 422  
423 -(((
424 -
425 -)))
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
426 426  
427 -(((
428 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
429 -)))
430 430  
417 +[[image:1654505905236-553.png]]
431 431  
432 432  
433 -=== 2.4.6  Soil Temperature ===
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
434 434  
435 -(((
436 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
437 -)))
422 +[[image:1654505925508-181.png]]
438 438  
439 -(((
440 -**Example**:
441 -)))
442 442  
443 -(((
444 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
445 -)))
446 446  
447 -(((
448 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
449 -)))
426 +== 2.7 Frequency Plans ==
450 450  
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
451 451  
452 452  
453 -=== 2.4.7  Soil Conductivity (EC) ===
431 +=== 2.7.1 EU863-870 (EU868) ===
454 454  
455 -(((
456 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
457 -)))
433 +(% style="color:#037691" %)** Uplink:**
458 458  
459 -(((
460 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
461 -)))
435 +868.1 - SF7BW125 to SF12BW125
462 462  
463 -(((
464 -Generally, the EC value of irrigation water is less than 800uS / cm.
465 -)))
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
466 466  
467 -(((
468 -
469 -)))
439 +868.5 - SF7BW125 to SF12BW125
470 470  
471 -(((
472 -
473 -)))
441 +867.1 - SF7BW125 to SF12BW125
474 474  
475 -=== 2.4.8  Digital Interrupt ===
443 +867.3 - SF7BW125 to SF12BW125
476 476  
477 -(((
478 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
479 -)))
445 +867.5 - SF7BW125 to SF12BW125
480 480  
481 -(((
482 -The command is:
483 -)))
447 +867.7 - SF7BW125 to SF12BW125
484 484  
485 -(((
486 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
487 -)))
449 +867.9 - SF7BW125 to SF12BW125
488 488  
451 +868.8 - FSK
489 489  
490 -(((
491 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
492 -)))
493 493  
454 +(% style="color:#037691" %)** Downlink:**
494 494  
495 -(((
496 -Example:
497 -)))
456 +Uplink channels 1-9 (RX1)
498 498  
499 -(((
500 -0x(00): Normal uplink packet.
501 -)))
458 +869.525 - SF9BW125 (RX2 downlink only)
502 502  
503 -(((
504 -0x(01): Interrupt Uplink Packet.
505 -)))
506 506  
507 507  
462 +=== 2.7.2 US902-928(US915) ===
508 508  
509 -=== 2.4.9  ​+5V Output ===
464 +Used in USA, Canada and South America. Default use CHE=2
510 510  
511 -(((
512 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
513 -)))
466 +(% style="color:#037691" %)**Uplink:**
514 514  
468 +903.9 - SF7BW125 to SF10BW125
515 515  
516 -(((
517 -The 5V output time can be controlled by AT Command.
518 -)))
470 +904.1 - SF7BW125 to SF10BW125
519 519  
520 -(((
521 -(% style="color:blue" %)**AT+5VT=1000**
522 -)))
472 +904.3 - SF7BW125 to SF10BW125
523 523  
524 -(((
525 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
526 -)))
474 +904.5 - SF7BW125 to SF10BW125
527 527  
476 +904.7 - SF7BW125 to SF10BW125
528 528  
478 +904.9 - SF7BW125 to SF10BW125
529 529  
530 -== 2.5  Downlink Payload ==
480 +905.1 - SF7BW125 to SF10BW125
531 531  
532 -By default, NSE01 prints the downlink payload to console port.
482 +905.3 - SF7BW125 to SF10BW125
533 533  
534 -[[image:image-20220708133731-5.png]]
535 535  
485 +(% style="color:#037691" %)**Downlink:**
536 536  
537 -(((
538 -(% style="color:blue" %)**Examples:**
539 -)))
487 +923.3 - SF7BW500 to SF12BW500
540 540  
541 -(((
542 -
543 -)))
489 +923.9 - SF7BW500 to SF12BW500
544 544  
545 -* (((
546 -(% style="color:blue" %)**Set TDC**
547 -)))
491 +924.5 - SF7BW500 to SF12BW500
548 548  
549 -(((
550 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
551 -)))
493 +925.1 - SF7BW500 to SF12BW500
552 552  
553 -(((
554 -Payload:    01 00 00 1E    TDC=30S
555 -)))
495 +925.7 - SF7BW500 to SF12BW500
556 556  
557 -(((
558 -Payload:    01 00 00 3C    TDC=60S
559 -)))
497 +926.3 - SF7BW500 to SF12BW500
560 560  
561 -(((
562 -
563 -)))
499 +926.9 - SF7BW500 to SF12BW500
564 564  
565 -* (((
566 -(% style="color:blue" %)**Reset**
567 -)))
501 +927.5 - SF7BW500 to SF12BW500
568 568  
569 -(((
570 -If payload = 0x04FF, it will reset the NSE01
571 -)))
503 +923.3 - SF12BW500(RX2 downlink only)
572 572  
573 573  
574 -* (% style="color:blue" %)**INTMOD**
575 575  
576 -(((
577 -Downlink Payload: 06000003, Set AT+INTMOD=3
578 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
579 579  
509 +Used in China, Default use CHE=1
580 580  
511 +(% style="color:#037691" %)**Uplink:**
581 581  
582 -== 2.6  ​LED Indicator ==
513 +486.3 - SF7BW125 to SF12BW125
583 583  
584 -(((
585 -The NSE01 has an internal LED which is to show the status of different state.
515 +486.5 - SF7BW125 to SF12BW125
586 586  
517 +486.7 - SF7BW125 to SF12BW125
587 587  
588 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
589 -* Then the LED will be on for 1 second means device is boot normally.
590 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
591 -* For each uplink probe, LED will be on for 500ms.
592 -)))
519 +486.9 - SF7BW125 to SF12BW125
593 593  
521 +487.1 - SF7BW125 to SF12BW125
594 594  
523 +487.3 - SF7BW125 to SF12BW125
595 595  
525 +487.5 - SF7BW125 to SF12BW125
596 596  
597 -== 2.7  Installation in Soil ==
527 +487.7 - SF7BW125 to SF12BW125
598 598  
599 -__**Measurement the soil surface**__
600 600  
601 -(((
602 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
603 -)))
530 +(% style="color:#037691" %)**Downlink:**
604 604  
605 -[[image:1657259653666-883.png]]
532 +506.7 - SF7BW125 to SF12BW125
606 606  
534 +506.9 - SF7BW125 to SF12BW125
607 607  
608 -(((
609 -
536 +507.1 - SF7BW125 to SF12BW125
610 610  
611 -(((
612 -Dig a hole with diameter > 20CM.
613 -)))
538 +507.3 - SF7BW125 to SF12BW125
614 614  
615 -(((
616 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
617 -)))
618 -)))
540 +507.5 - SF7BW125 to SF12BW125
619 619  
620 -[[image:1654506665940-119.png]]
542 +507.7 - SF7BW125 to SF12BW125
621 621  
622 -(((
623 -
624 -)))
544 +507.9 - SF7BW125 to SF12BW125
625 625  
546 +508.1 - SF7BW125 to SF12BW125
626 626  
627 -== 2. Firmware Change Log ==
548 +505.3 - SF12BW125 (RX2 downlink only)
628 628  
629 629  
630 -Download URL & Firmware Change log
631 631  
632 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
552 +=== 2.7.4 AU915-928(AU915) ===
633 633  
554 +Default use CHE=2
634 634  
635 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
556 +(% style="color:#037691" %)**Uplink:**
636 636  
558 +916.8 - SF7BW125 to SF12BW125
637 637  
560 +917.0 - SF7BW125 to SF12BW125
638 638  
639 -== 2.9  Battery Analysis ==
562 +917.2 - SF7BW125 to SF12BW125
640 640  
641 -=== 2.9.1  Battery Type ===
564 +917.4 - SF7BW125 to SF12BW125
642 642  
566 +917.6 - SF7BW125 to SF12BW125
643 643  
568 +917.8 - SF7BW125 to SF12BW125
569 +
570 +918.0 - SF7BW125 to SF12BW125
571 +
572 +918.2 - SF7BW125 to SF12BW125
573 +
574 +
575 +(% style="color:#037691" %)**Downlink:**
576 +
577 +923.3 - SF7BW500 to SF12BW500
578 +
579 +923.9 - SF7BW500 to SF12BW500
580 +
581 +924.5 - SF7BW500 to SF12BW500
582 +
583 +925.1 - SF7BW500 to SF12BW500
584 +
585 +925.7 - SF7BW500 to SF12BW500
586 +
587 +926.3 - SF7BW500 to SF12BW500
588 +
589 +926.9 - SF7BW500 to SF12BW500
590 +
591 +927.5 - SF7BW500 to SF12BW500
592 +
593 +923.3 - SF12BW500(RX2 downlink only)
594 +
595 +
596 +
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
598 +
599 +(% style="color:#037691" %)**Default Uplink channel:**
600 +
601 +923.2 - SF7BW125 to SF10BW125
602 +
603 +923.4 - SF7BW125 to SF10BW125
604 +
605 +
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
607 +
608 +(OTAA mode, channel added by JoinAccept message)
609 +
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
611 +
612 +922.2 - SF7BW125 to SF10BW125
613 +
614 +922.4 - SF7BW125 to SF10BW125
615 +
616 +922.6 - SF7BW125 to SF10BW125
617 +
618 +922.8 - SF7BW125 to SF10BW125
619 +
620 +923.0 - SF7BW125 to SF10BW125
621 +
622 +922.0 - SF7BW125 to SF10BW125
623 +
624 +
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
626 +
627 +923.6 - SF7BW125 to SF10BW125
628 +
629 +923.8 - SF7BW125 to SF10BW125
630 +
631 +924.0 - SF7BW125 to SF10BW125
632 +
633 +924.2 - SF7BW125 to SF10BW125
634 +
635 +924.4 - SF7BW125 to SF10BW125
636 +
637 +924.6 - SF7BW125 to SF10BW125
638 +
639 +
640 +(% style="color:#037691" %)** Downlink:**
641 +
642 +Uplink channels 1-8 (RX1)
643 +
644 +923.2 - SF10BW125 (RX2)
645 +
646 +
647 +
648 +=== 2.7.6 KR920-923 (KR920) ===
649 +
650 +Default channel:
651 +
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
644 644  (((
645 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 646  )))
723 +)))
647 647  
648 648  
726 +
727 +[[image:1654506665940-119.png]]
728 +
649 649  (((
650 -The battery is designed to last for several years depends on the actually use environment and update interval. 
730 +Dig a hole with diameter > 20CM.
651 651  )))
652 652  
733 +(((
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 +)))
653 653  
737 +
738 +== 2.10 ​Firmware Change Log ==
739 +
654 654  (((
655 -The battery related documents as below:
741 +**Firmware download link:**
656 656  )))
657 657  
658 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
744 +(((
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
746 +)))
661 661  
662 662  (((
663 -[[image:image-20220708140453-6.png]]
749 +
664 664  )))
665 665  
752 +(((
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
754 +)))
666 666  
756 +(((
757 +
758 +)))
667 667  
668 -=== 2.9.2  Power consumption Analyze ===
760 +(((
761 +**V1.0.**
762 +)))
669 669  
670 670  (((
671 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
765 +Release
672 672  )))
673 673  
674 674  
769 +== 2.11 ​Battery Analysis ==
770 +
771 +=== 2.11.1 ​Battery Type ===
772 +
675 675  (((
676 -Instruction to use as below:
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 677  )))
678 678  
679 679  (((
680 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
778 +The battery is designed to last for more than 5 years for the LSN50.
681 681  )))
682 682  
683 -
684 684  (((
685 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
782 +(((
783 +The battery-related documents are as below:
686 686  )))
785 +)))
687 687  
688 688  * (((
689 -Product Model
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
690 690  )))
691 691  * (((
692 -Uplink Interval
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
693 693  )))
694 694  * (((
695 -Working Mode
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
696 696  )))
697 697  
698 -(((
699 -And the Life expectation in difference case will be shown on the right.
700 -)))
797 + [[image:image-20220610172436-1.png]]
701 701  
702 -[[image:image-20220708141352-7.jpeg]]
703 703  
704 704  
801 +=== 2.11.2 ​Battery Note ===
705 705  
706 -=== 2.9.3  ​Battery Note ===
707 -
708 708  (((
709 709  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
710 710  )))
... ... @@ -711,176 +711,302 @@
711 711  
712 712  
713 713  
714 -=== 2.9. Replace the battery ===
809 +=== 2.11.3 Replace the battery ===
715 715  
716 716  (((
717 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 718  )))
719 719  
720 -
721 -
722 -= 3. ​ Access NB-IoT Module =
723 -
724 724  (((
725 -Users can directly access the AT command set of the NB-IoT module.
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 726  )))
727 727  
728 728  (((
729 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 730  )))
731 731  
732 -[[image:1657261278785-153.png]]
733 733  
734 734  
825 += 3. ​Using the AT Commands =
735 735  
736 -= 4.  Using the AT Commands =
827 +== 3.1 Access AT Commands ==
737 737  
738 -== 4.1  Access AT Commands ==
739 739  
740 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 741  
832 +[[image:1654501986557-872.png||height="391" width="800"]]
742 742  
743 -AT+<CMD>?  : Help on <CMD>
744 744  
745 -AT+<CMD>         : Run <CMD>
835 +Or if you have below board, use below connection:
746 746  
747 -AT+<CMD>=<value> : Set the value
748 748  
749 -AT+<CMD>=?  : Get the value
838 +[[image:1654502005655-729.png||height="503" width="801"]]
750 750  
751 751  
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
752 752  (% style="color:#037691" %)**General Commands**(%%)      
753 753  
754 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 755  
756 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 757  
758 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 759  
760 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 761  
762 -AT+CFG  : Print all configurations
763 763  
764 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 765  
766 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 767  
768 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 769  
770 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 771  
772 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 773  
774 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 775  
776 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
777 777  
778 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 779  
780 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 781  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
782 782  
783 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 784  
785 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 786  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
787 787  
788 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 789  
790 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 791  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
792 792  
793 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 794  
795 -AT+CLIENT               : Get or Set MQTT client
796 796  
797 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
798 798  
799 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 800  
801 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 802  
803 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 804  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
805 805  
806 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 807  
808 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 809  
810 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 811  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
812 812  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
813 813  
814 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 815  
816 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 817  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
818 818  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
819 819  (((
820 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
821 821  )))
822 822  
823 823  (((
824 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
825 825  )))
826 826  
827 827  (((
828 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 829  )))
830 830  
973 +(((
974 +
975 +)))
831 831  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
832 832  
833 -== 5.2  Can I calibrate NSE01 to different soil types? ==
981 +(((
982 +
983 +)))
834 834  
835 835  (((
836 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 837  )))
838 838  
989 +[[image:image-20220606154726-3.png]]
839 839  
840 -= 6.  Trouble Shooting =
841 841  
842 -== 6.1  ​Connection problem when uploading firmware ==
992 +When you use the TTN network, the US915 frequency bands use are:
843 843  
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
844 844  
845 845  (((
846 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
847 847  )))
848 848  
849 -(% class="wikigeneratedid" %)
850 850  (((
851 851  
1013 +
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
852 852  )))
853 853  
1017 +(((
1018 +
1019 +)))
854 854  
855 -== 6.2  AT Command input doesn't work ==
1021 +(((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
856 856  
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
857 857  (((
858 858  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1044 +)))
859 859  
860 -
1046 +
1047 +== 5.3 Device rejoin in at the second uplink packet ==
1048 +
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
1050 +
1051 +[[image:1654500909990-784.png]]
1052 +
1053 +
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
1055 +
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 861  )))
862 862  
863 863  
864 -= 7. ​ Order Info =
1061 +(% style="color:#4f81bd" %)**Solution: **
865 865  
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
866 866  
867 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
868 868  
869 869  
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
870 870  (% class="wikigeneratedid" %)
871 871  (((
872 872  
873 873  )))
874 874  
875 -= 8.  Packing Info =
1095 += 7. Packing Info =
876 876  
877 877  (((
878 878  
879 879  
880 880  (% style="color:#037691" %)**Package Includes**:
1101 +)))
881 881  
882 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
883 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
884 884  )))
885 885  
886 886  (((
... ... @@ -887,19 +887,24 @@
887 887  
888 888  
889 889  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
890 890  
891 -* Size: 195 x 125 x 55 mm
892 -* Weight:   420g
1113 +* (((
1114 +Device Size: cm
893 893  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
894 894  
895 -(((
896 896  
897 -
898 -
899 -
900 900  )))
901 901  
902 -= 9.  Support =
1128 += 8. Support =
903 903  
904 904  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
905 905  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content