Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 73.1
edited by Xiaoling
on 2022/07/09 08:47
Change comment: There is no comment for this version
To version 32.5
edited by Xiaoling
on 2022/06/07 11:33
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,710 +1,721 @@
1 -
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 -(% style="display:none" %) [[image:image-20220709084458-4.png||height="521" width="487"]]
4 4  
5 5  
6 +**Contents:**
6 6  
8 +{{toc/}}
7 7  
8 8  
9 9  
10 -**Table of Contents:**
11 11  
12 12  
13 13  
15 += 1. Introduction =
14 14  
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
15 15  
19 +(((
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
16 16  
23 +(((
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
25 +)))
17 17  
18 -= 1.  Introduction =
19 -
20 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
21 -
22 22  (((
23 -
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
29 +)))
24 24  
25 25  (((
26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
27 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
28 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
29 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
30 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
31 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
32 32  )))
33 33  
34 -
35 +(((
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
35 35  )))
36 36  
39 +
37 37  [[image:1654503236291-817.png]]
38 38  
39 39  
40 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
41 41  
42 42  
43 43  
44 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
45 45  
46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
47 47  * Monitor Soil Moisture
48 48  * Monitor Soil Temperature
49 49  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
50 50  * AT Commands to change parameters
51 51  * Uplink on periodically
52 52  * Downlink to change configure
53 53  * IP66 Waterproof Enclosure
54 -* Ultra-Low Power consumption
55 -* AT Commands to change parameters
56 -* Micro SIM card slot for NB-IoT SIM
57 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
58 58  
59 -== 1.3  Specification ==
61 +== 1.3 Specification ==
60 60  
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
61 61  
62 -(% style="color:#037691" %)**Common DC Characteristics:**
65 +[[image:image-20220606162220-5.png]]
63 63  
64 -* Supply Voltage: 2.1v ~~ 3.6v
65 -* Operating Temperature: -40 ~~ 85°C
66 66  
67 -(% style="color:#037691" %)**NB-IoT Spec:**
68 68  
69 -* - B1 @H-FDD: 2100MHz
70 -* - B3 @H-FDD: 1800MHz
71 -* - B8 @H-FDD: 900MHz
72 -* - B5 @H-FDD: 850MHz
73 -* - B20 @H-FDD: 800MHz
74 -* - B28 @H-FDD: 700MHz
69 +== ​1.4 Applications ==
75 75  
76 -Probe(% style="color:#037691" %)** Specification:**
71 +* Smart Agriculture
77 77  
78 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
79 79  
80 -[[image:image-20220708101224-1.png]]
76 +== 1.5 Firmware Change log ==
81 81  
82 82  
79 +**LSE01 v1.0 :**  Release
83 83  
84 -== ​1.4  Applications ==
85 85  
86 -* Smart Agriculture
87 87  
88 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
89 -​
83 += 2. Configure LSE01 to connect to LoRaWAN network =
90 90  
91 -== 1. Pin Definitions ==
85 +== 2.1 How it works ==
92 92  
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
93 93  
94 -[[image:1657246476176-652.png]]
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
95 95  
96 96  
97 97  
98 -= 2.  Use NSE01 to communicate with IoT Server =
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
99 99  
100 -== 2. How it works ==
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
101 101  
102 102  
102 +[[image:1654503992078-669.png]]
103 +
104 +
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 +
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +=== 2.3.1 MOD~=0(Default Mode) ===
146 +
147 +LSE01 will uplink payload via LoRaWAN with below payload format: 
148 +
149 +
150 +Uplink payload includes in total 11 bytes.
151 +
152 +
153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
154 +|(((
155 +**Size**
156 +
157 +**(bytes)**
158 +)))|**2**|**2**|**2**|**2**|**2**|**1**
159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
160 +Temperature
161 +
162 +(Reserve, Ignore now)
163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
164 +MOD & Digital Interrupt
165 +
166 +(Optional)
167 +)))
168 +
169 +
170 +
171 +=== 2.3.2 MOD~=1(Original value) ===
172 +
173 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
174 +
175 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
176 +|(((
177 +**Size**
178 +
179 +**(bytes)**
180 +)))|**2**|**2**|**2**|**2**|**2**|**1**
181 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
182 +Temperature
183 +
184 +(Reserve, Ignore now)
185 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
186 +MOD & Digital Interrupt
187 +
188 +(Optional)
189 +)))
190 +
191 +
192 +
193 +=== 2.3.3 Battery Info ===
194 +
195 +Check the battery voltage for LSE01.
196 +
197 +Ex1: 0x0B45 = 2885mV
198 +
199 +Ex2: 0x0B49 = 2889mV
200 +
201 +
202 +
203 +=== 2.3.4 Soil Moisture ===
204 +
205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
206 +
207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
208 +
209 +
210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
211 +
212 +
213 +
214 +=== 2.3.5 Soil Temperature ===
215 +
216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
217 +
218 +**Example**:
219 +
220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
221 +
222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
223 +
224 +
225 +
226 +=== 2.3.6 Soil Conductivity (EC) ===
227 +
103 103  (((
104 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
105 105  )))
106 106  
232 +(((
233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
234 +)))
107 107  
108 108  (((
109 -The diagram below shows the working flow in default firmware of NSE01:
237 +Generally, the EC value of irrigation water is less than 800uS / cm.
110 110  )))
111 111  
112 -[[image:image-20220708101605-2.png]]
240 +(((
241 +
242 +)))
113 113  
114 114  (((
115 115  
116 116  )))
117 117  
248 +=== 2.3.7 MOD ===
118 118  
250 +Firmware version at least v2.1 supports changing mode.
119 119  
120 -== 2.2 ​ Configure the NSE01 ==
252 +For example, bytes[10]=90
121 121  
254 +mod=(bytes[10]>>7)&0x01=1.
122 122  
123 -=== 2.2.1 Test Requirement ===
124 124  
257 +**Downlink Command:**
125 125  
126 -(((
127 -To use NSE01 in your city, make sure meet below requirements:
128 -)))
259 +If payload = 0x0A00, workmode=0
129 129  
130 -* Your local operator has already distributed a NB-IoT Network there.
131 -* The local NB-IoT network used the band that NSE01 supports.
132 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
261 +If** **payload =** **0x0A01, workmode=1
133 133  
134 -(((
135 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
136 -)))
137 137  
138 138  
139 -[[image:1657249419225-449.png]]
265 +=== 2.3.8 ​Decode payload in The Things Network ===
140 140  
267 +While using TTN network, you can add the payload format to decode the payload.
141 141  
142 142  
143 -=== 2.2.2 Insert SIM card ===
270 +[[image:1654505570700-128.png]]
144 144  
145 -(((
146 -Insert the NB-IoT Card get from your provider.
147 -)))
272 +The payload decoder function for TTN is here:
148 148  
149 -(((
150 -User need to take out the NB-IoT module and insert the SIM card like below:
151 -)))
274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
152 152  
153 153  
154 -[[image:1657249468462-536.png]]
155 155  
278 +== 2.4 Uplink Interval ==
156 156  
280 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
157 157  
158 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
159 159  
160 -(((
161 -(((
162 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
163 -)))
164 -)))
165 165  
284 +== 2.5 Downlink Payload ==
166 166  
167 -**Connection:**
286 +By default, LSE50 prints the downlink payload to console port.
168 168  
169 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
288 +[[image:image-20220606165544-8.png]]
170 170  
171 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
172 172  
173 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
291 +**Examples:**
174 174  
175 175  
176 -In the PC, use below serial tool settings:
294 +* **Set TDC**
177 177  
178 -* Baud:  (% style="color:green" %)**9600**
179 -* Data bits:** (% style="color:green" %)8(%%)**
180 -* Stop bits: (% style="color:green" %)**1**
181 -* Parity:  (% style="color:green" %)**None**
182 -* Flow Control: (% style="color:green" %)**None**
296 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
183 183  
184 -(((
185 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
186 -)))
298 +Payload:    01 00 00 1E    TDC=30S
187 187  
188 -[[image:image-20220708110657-3.png]]
300 +Payload:    01 00 00 3C    TDC=60S
189 189  
190 -(((
191 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
192 -)))
193 193  
303 +* **Reset**
194 194  
305 +If payload = 0x04FF, it will reset the LSE01
195 195  
196 -=== 2.2.4 Use CoAP protocol to uplink data ===
197 197  
198 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
308 +* **CFM**
199 199  
310 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
200 200  
201 -**Use below commands:**
202 202  
203 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
205 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
206 206  
207 -For parameter description, please refer to AT command set
314 +== 2.6 ​Show Data in DataCake IoT Server ==
208 208  
209 -[[image:1657249793983-486.png]]
316 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
210 210  
211 211  
212 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
319 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
213 213  
214 -[[image:1657249831934-534.png]]
321 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
215 215  
216 216  
324 +[[image:1654505857935-743.png]]
217 217  
218 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
219 219  
220 -This feature is supported since firmware version v1.0.1
327 +[[image:1654505874829-548.png]]
221 221  
329 +Step 3: Create an account or log in Datacake.
222 222  
223 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
225 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
331 +Step 4: Search the LSE01 and add DevEUI.
226 226  
227 -[[image:1657249864775-321.png]]
228 228  
334 +[[image:1654505905236-553.png]]
229 229  
230 -[[image:1657249930215-289.png]]
231 231  
337 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
232 232  
339 +[[image:1654505925508-181.png]]
233 233  
234 -=== 2.2.6 Use MQTT protocol to uplink data ===
235 235  
236 -This feature is supported since firmware version v110
237 237  
343 +== 2.7 Frequency Plans ==
238 238  
239 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
242 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
243 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
345 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
246 246  
247 -[[image:1657249978444-674.png]]
248 248  
348 +=== 2.7.1 EU863-870 (EU868) ===
249 249  
250 -[[image:1657249990869-686.png]]
350 +(% style="color:#037691" %)** Uplink:**
251 251  
352 +868.1 - SF7BW125 to SF12BW125
252 252  
253 -(((
254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
255 -)))
354 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
256 256  
356 +868.5 - SF7BW125 to SF12BW125
257 257  
358 +867.1 - SF7BW125 to SF12BW125
258 258  
259 -=== 2.2.7 Use TCP protocol to uplink data ===
360 +867.3 - SF7BW125 to SF12BW125
260 260  
261 -This feature is supported since firmware version v110
362 +867.5 - SF7BW125 to SF12BW125
262 262  
364 +867.7 - SF7BW125 to SF12BW125
263 263  
264 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
366 +867.9 - SF7BW125 to SF12BW125
266 266  
267 -[[image:1657250217799-140.png]]
368 +868.8 - FSK
268 268  
269 269  
270 -[[image:1657250255956-604.png]]
371 +(% style="color:#037691" %)** Downlink:**
271 271  
373 +Uplink channels 1-9 (RX1)
272 272  
375 +869.525 - SF9BW125 (RX2 downlink only)
273 273  
274 -=== 2.2.8 Change Update Interval ===
275 275  
276 -User can use below command to change the (% style="color:green" %)**uplink interval**.
277 277  
278 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
379 +=== 2.7.2 US902-928(US915) ===
279 279  
280 -(((
281 -(% style="color:red" %)**NOTE:**
282 -)))
381 +Used in USA, Canada and South America. Default use CHE=2
283 283  
284 -(((
285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
286 -)))
383 +(% style="color:#037691" %)**Uplink:**
287 287  
385 +903.9 - SF7BW125 to SF10BW125
288 288  
387 +904.1 - SF7BW125 to SF10BW125
289 289  
290 -== 2.3  Uplink Payload ==
389 +904.3 - SF7BW125 to SF10BW125
291 291  
292 -In this mode, uplink payload includes in total 18 bytes
391 +904.5 - SF7BW125 to SF10BW125
293 293  
294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
295 -|=(% style="width: 60px;" %)(((
296 -**Size(bytes)**
297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
393 +904.7 - SF7BW125 to SF10BW125
299 299  
300 -(((
301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
302 -)))
395 +904.9 - SF7BW125 to SF10BW125
303 303  
397 +905.1 - SF7BW125 to SF10BW125
304 304  
305 -[[image:image-20220708111918-4.png]]
399 +905.3 - SF7BW125 to SF10BW125
306 306  
307 307  
308 -The payload is ASCII string, representative same HEX:
402 +(% style="color:#037691" %)**Downlink:**
309 309  
310 -0x72403155615900640c7817075e0a8c02f900 where:
404 +923.3 - SF7BW500 to SF12BW500
311 311  
312 -* Device ID: 0x 724031556159 = 724031556159
313 -* Version: 0x0064=100=1.0.0
406 +923.9 - SF7BW500 to SF12BW500
314 314  
315 -* BAT: 0x0c78 = 3192 mV = 3.192V
316 -* Singal: 0x17 = 23
317 -* Soil Moisture: 0x075e= 1886 = 18.86  %
318 -* Soil Temperature:0x0a8c =2700=27 °C
319 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
320 -* Interrupt: 0x00 = 0
408 +924.5 - SF7BW500 to SF12BW500
321 321  
322 -== 2. Payload Explanation and Sensor Interface ==
410 +925.1 - SF7BW500 to SF12BW500
323 323  
412 +925.7 - SF7BW500 to SF12BW500
324 324  
325 -=== 2.4.1  Device ID ===
414 +926.3 - SF7BW500 to SF12BW500
326 326  
327 -(((
328 -By default, the Device ID equal to the last 6 bytes of IMEI.
329 -)))
416 +926.9 - SF7BW500 to SF12BW500
330 330  
331 -(((
332 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
333 -)))
418 +927.5 - SF7BW500 to SF12BW500
334 334  
335 -(((
336 -**Example:**
337 -)))
420 +923.3 - SF12BW500(RX2 downlink only)
338 338  
339 -(((
340 -AT+DEUI=A84041F15612
341 -)))
342 342  
343 -(((
344 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
345 -)))
346 346  
424 +=== 2.7.3 CN470-510 (CN470) ===
347 347  
426 +Used in China, Default use CHE=1
348 348  
349 -=== 2.4.2  Version Info ===
428 +(% style="color:#037691" %)**Uplink:**
350 350  
351 -(((
352 -Specify the software version: 0x64=100, means firmware version 1.00.
353 -)))
430 +486.3 - SF7BW125 to SF12BW125
354 354  
355 -(((
356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
357 -)))
432 +486.5 - SF7BW125 to SF12BW125
358 358  
434 +486.7 - SF7BW125 to SF12BW125
359 359  
436 +486.9 - SF7BW125 to SF12BW125
360 360  
361 -=== 2.4. Battery Info ===
438 +487.1 - SF7BW125 to SF12BW125
362 362  
363 -(((
364 -Check the battery voltage for LSE01.
365 -)))
440 +487.3 - SF7BW125 to SF12BW125
366 366  
367 -(((
368 -Ex1: 0x0B45 = 2885mV
369 -)))
442 +487.5 - SF7BW125 to SF12BW125
370 370  
371 -(((
372 -Ex2: 0x0B49 = 2889mV
373 -)))
444 +487.7 - SF7BW125 to SF12BW125
374 374  
375 375  
447 +(% style="color:#037691" %)**Downlink:**
376 376  
377 -=== 2.4.4  Signal Strength ===
449 +506.7 - SF7BW125 to SF12BW125
378 378  
379 -(((
380 -NB-IoT Network signal Strength.
381 -)))
451 +506.9 - SF7BW125 to SF12BW125
382 382  
383 -(((
384 -**Ex1: 0x1d = 29**
385 -)))
453 +507.1 - SF7BW125 to SF12BW125
386 386  
387 -(((
388 -(% style="color:blue" %)**0**(%%)  -113dBm or less
389 -)))
455 +507.3 - SF7BW125 to SF12BW125
390 390  
391 -(((
392 -(% style="color:blue" %)**1**(%%)  -111dBm
393 -)))
457 +507.5 - SF7BW125 to SF12BW125
394 394  
395 -(((
396 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
397 -)))
459 +507.7 - SF7BW125 to SF12BW125
398 398  
399 -(((
400 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
401 -)))
461 +507.9 - SF7BW125 to SF12BW125
402 402  
403 -(((
404 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
405 -)))
463 +508.1 - SF7BW125 to SF12BW125
406 406  
465 +505.3 - SF12BW125 (RX2 downlink only)
407 407  
408 408  
409 -=== 2.4.5  Soil Moisture ===
410 410  
411 -(((
412 -(((
413 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
414 -)))
415 -)))
469 +=== 2.7.4 AU915-928(AU915) ===
416 416  
417 -(((
418 -(((
419 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
420 -)))
421 -)))
471 +Default use CHE=2
422 422  
423 -(((
424 -
425 -)))
473 +(% style="color:#037691" %)**Uplink:**
426 426  
427 -(((
428 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
429 -)))
475 +916.8 - SF7BW125 to SF12BW125
430 430  
477 +917.0 - SF7BW125 to SF12BW125
431 431  
479 +917.2 - SF7BW125 to SF12BW125
432 432  
433 -=== 2.4.6  Soil Temperature ===
481 +917.4 - SF7BW125 to SF12BW125
434 434  
435 -(((
436 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
437 -)))
483 +917.6 - SF7BW125 to SF12BW125
438 438  
439 -(((
440 -**Example**:
441 -)))
485 +917.8 - SF7BW125 to SF12BW125
442 442  
443 -(((
444 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
445 -)))
487 +918.0 - SF7BW125 to SF12BW125
446 446  
447 -(((
448 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
449 -)))
489 +918.2 - SF7BW125 to SF12BW125
450 450  
451 451  
492 +(% style="color:#037691" %)**Downlink:**
452 452  
453 -=== 2.4.7  Soil Conductivity (EC) ===
494 +923.3 - SF7BW500 to SF12BW500
454 454  
455 -(((
456 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
457 -)))
496 +923.9 - SF7BW500 to SF12BW500
458 458  
459 -(((
460 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
461 -)))
498 +924.5 - SF7BW500 to SF12BW500
462 462  
463 -(((
464 -Generally, the EC value of irrigation water is less than 800uS / cm.
465 -)))
500 +925.1 - SF7BW500 to SF12BW500
466 466  
467 -(((
468 -
469 -)))
502 +925.7 - SF7BW500 to SF12BW500
470 470  
471 -(((
472 -
473 -)))
504 +926.3 - SF7BW500 to SF12BW500
474 474  
475 -=== 2.4.8  Digital Interrupt ===
506 +926.9 - SF7BW500 to SF12BW500
476 476  
477 -(((
478 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
479 -)))
508 +927.5 - SF7BW500 to SF12BW500
480 480  
481 -(((
482 -The command is:
483 -)))
510 +923.3 - SF12BW500(RX2 downlink only)
484 484  
485 -(((
486 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
487 -)))
488 488  
489 489  
490 -(((
491 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
492 -)))
514 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
493 493  
516 +(% style="color:#037691" %)**Default Uplink channel:**
494 494  
495 -(((
496 -Example:
497 -)))
518 +923.2 - SF7BW125 to SF10BW125
498 498  
499 -(((
500 -0x(00): Normal uplink packet.
501 -)))
520 +923.4 - SF7BW125 to SF10BW125
502 502  
503 -(((
504 -0x(01): Interrupt Uplink Packet.
505 -)))
506 506  
523 +(% style="color:#037691" %)**Additional Uplink Channel**:
507 507  
525 +(OTAA mode, channel added by JoinAccept message)
508 508  
509 -=== 2.4.9  ​+5V Output ===
527 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
510 510  
511 -(((
512 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
513 -)))
529 +922.2 - SF7BW125 to SF10BW125
514 514  
531 +922.4 - SF7BW125 to SF10BW125
515 515  
516 -(((
517 -The 5V output time can be controlled by AT Command.
518 -)))
533 +922.6 - SF7BW125 to SF10BW125
519 519  
520 -(((
521 -(% style="color:blue" %)**AT+5VT=1000**
522 -)))
535 +922.8 - SF7BW125 to SF10BW125
523 523  
524 -(((
525 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
526 -)))
537 +923.0 - SF7BW125 to SF10BW125
527 527  
539 +922.0 - SF7BW125 to SF10BW125
528 528  
529 529  
530 -== 2.5  Downlink Payload ==
542 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
531 531  
532 -By default, NSE01 prints the downlink payload to console port.
544 +923.6 - SF7BW125 to SF10BW125
533 533  
534 -[[image:image-20220708133731-5.png]]
546 +923.8 - SF7BW125 to SF10BW125
535 535  
548 +924.0 - SF7BW125 to SF10BW125
536 536  
537 -(((
538 -(% style="color:blue" %)**Examples:**
539 -)))
550 +924.2 - SF7BW125 to SF10BW125
540 540  
541 -(((
542 -
543 -)))
552 +924.4 - SF7BW125 to SF10BW125
544 544  
545 -* (((
546 -(% style="color:blue" %)**Set TDC**
547 -)))
554 +924.6 - SF7BW125 to SF10BW125
548 548  
549 -(((
550 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
551 -)))
552 552  
553 -(((
554 -Payload:    01 00 00 1E    TDC=30S
555 -)))
557 +(% style="color:#037691" %)** Downlink:**
556 556  
557 -(((
558 -Payload:    01 00 00 3C    TDC=60S
559 -)))
559 +Uplink channels 1-8 (RX1)
560 560  
561 -(((
562 -
563 -)))
561 +923.2 - SF10BW125 (RX2)
564 564  
565 -* (((
566 -(% style="color:blue" %)**Reset**
567 -)))
568 568  
569 -(((
570 -If payload = 0x04FF, it will reset the NSE01
571 -)))
572 572  
565 +=== 2.7.6 KR920-923 (KR920) ===
573 573  
574 -* (% style="color:blue" %)**INTMOD**
567 +Default channel:
575 575  
576 -(((
577 -Downlink Payload: 06000003, Set AT+INTMOD=3
578 -)))
569 +922.1 - SF7BW125 to SF12BW125
579 579  
571 +922.3 - SF7BW125 to SF12BW125
580 580  
573 +922.5 - SF7BW125 to SF12BW125
581 581  
582 -== 2.6  ​LED Indicator ==
583 583  
584 -(((
585 -The NSE01 has an internal LED which is to show the status of different state.
576 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
586 586  
578 +922.1 - SF7BW125 to SF12BW125
587 587  
588 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
589 -* Then the LED will be on for 1 second means device is boot normally.
590 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
591 -* For each uplink probe, LED will be on for 500ms.
592 -)))
580 +922.3 - SF7BW125 to SF12BW125
593 593  
582 +922.5 - SF7BW125 to SF12BW125
594 594  
584 +922.7 - SF7BW125 to SF12BW125
595 595  
586 +922.9 - SF7BW125 to SF12BW125
596 596  
597 -== 2.7  Installation in Soil ==
588 +923.1 - SF7BW125 to SF12BW125
598 598  
599 -__**Measurement the soil surface**__
590 +923.3 - SF7BW125 to SF12BW125
600 600  
601 -(((
602 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
603 -)))
604 604  
605 -[[image:1657259653666-883.png]]
593 +(% style="color:#037691" %)**Downlink:**
606 606  
595 +Uplink channels 1-7(RX1)
607 607  
608 -(((
609 -
597 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
610 610  
611 -(((
612 -Dig a hole with diameter > 20CM.
613 -)))
614 614  
615 -(((
616 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
617 -)))
618 -)))
619 619  
620 -[[image:1654506665940-119.png]]
601 +=== 2.7.7 IN865-867 (IN865) ===
621 621  
622 -(((
623 -
624 -)))
603 +(% style="color:#037691" %)** Uplink:**
625 625  
605 +865.0625 - SF7BW125 to SF12BW125
626 626  
627 -== 2.8  Firmware Change Log ==
607 +865.4025 - SF7BW125 to SF12BW125
628 628  
609 +865.9850 - SF7BW125 to SF12BW125
629 629  
630 -Download URL & Firmware Change log
631 631  
632 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
612 +(% style="color:#037691" %) **Downlink:**
633 633  
614 +Uplink channels 1-3 (RX1)
634 634  
635 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
616 +866.550 - SF10BW125 (RX2)
636 636  
637 637  
638 638  
639 -== 2.9  ​Battery Analysis ==
640 640  
641 -=== 2.9.1  ​Battery Type ===
621 +== 2.8 LED Indicator ==
642 642  
623 +The LSE01 has an internal LED which is to show the status of different state.
643 643  
625 +* Blink once when device power on.
626 +* Solid ON for 5 seconds once device successful Join the network.
627 +* Blink once when device transmit a packet.
628 +
629 +== 2.9 Installation in Soil ==
630 +
631 +**Measurement the soil surface**
632 +
633 +
634 +[[image:1654506634463-199.png]] ​
635 +
644 644  (((
645 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
637 +(((
638 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
646 646  )))
640 +)))
647 647  
648 648  
643 +[[image:1654506665940-119.png]]
644 +
649 649  (((
650 -The battery is designed to last for several years depends on the actually use environment and update interval. 
646 +Dig a hole with diameter > 20CM.
651 651  )))
652 652  
649 +(((
650 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
651 +)))
653 653  
653 +
654 +== 2.10 ​Firmware Change Log ==
655 +
654 654  (((
655 -The battery related documents as below:
657 +**Firmware download link:**
656 656  )))
657 657  
658 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 +(((
661 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
662 +)))
661 661  
662 662  (((
663 -[[image:image-20220708140453-6.png]]
665 +
664 664  )))
665 665  
668 +(((
669 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
670 +)))
666 666  
672 +(((
673 +
674 +)))
667 667  
668 -=== 2.9.2  Power consumption Analyze ===
676 +(((
677 +**V1.0.**
678 +)))
669 669  
670 670  (((
671 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
681 +Release
672 672  )))
673 673  
674 674  
685 +== 2.11 ​Battery Analysis ==
686 +
687 +=== 2.11.1 ​Battery Type ===
688 +
675 675  (((
676 -Instruction to use as below:
690 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
677 677  )))
678 678  
679 679  (((
680 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
694 +The battery is designed to last for more than 5 years for the LSN50.
681 681  )))
682 682  
683 -
684 684  (((
685 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
698 +(((
699 +The battery-related documents are as below:
686 686  )))
701 +)))
687 687  
688 688  * (((
689 -Product Model
704 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
690 690  )))
691 691  * (((
692 -Uplink Interval
707 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
693 693  )))
694 694  * (((
695 -Working Mode
710 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
696 696  )))
697 697  
698 -(((
699 -And the Life expectation in difference case will be shown on the right.
700 -)))
713 + [[image:image-20220606171726-9.png]]
701 701  
702 -[[image:image-20220708141352-7.jpeg]]
703 703  
704 704  
717 +=== 2.11.2 ​Battery Note ===
705 705  
706 -=== 2.9.3  ​Battery Note ===
707 -
708 708  (((
709 709  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
710 710  )))
... ... @@ -711,176 +711,303 @@
711 711  
712 712  
713 713  
714 -=== 2.9. Replace the battery ===
725 +=== 2.11.3 Replace the battery ===
715 715  
716 716  (((
717 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
728 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
718 718  )))
719 719  
720 -
721 -
722 -= 3. ​ Access NB-IoT Module =
723 -
724 724  (((
725 -Users can directly access the AT command set of the NB-IoT module.
732 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
726 726  )))
727 727  
728 728  (((
729 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
736 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
730 730  )))
731 731  
732 -[[image:1657261278785-153.png]]
733 733  
734 734  
741 += 3. ​Using the AT Commands =
735 735  
736 -= 4.  Using the AT Commands =
743 +== 3.1 Access AT Commands ==
737 737  
738 -== 4.1  Access AT Commands ==
739 739  
740 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
746 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
741 741  
748 +[[image:1654501986557-872.png||height="391" width="800"]]
742 742  
743 -AT+<CMD>?  : Help on <CMD>
744 744  
745 -AT+<CMD>         : Run <CMD>
751 +Or if you have below board, use below connection:
746 746  
747 -AT+<CMD>=<value> : Set the value
748 748  
749 -AT+<CMD>=?  : Get the value
754 +[[image:1654502005655-729.png||height="503" width="801"]]
750 750  
751 751  
757 +
758 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
759 +
760 +
761 + [[image:1654502050864-459.png||height="564" width="806"]]
762 +
763 +
764 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
765 +
766 +
767 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
768 +
769 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
770 +
771 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
772 +
773 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
774 +
775 +
752 752  (% style="color:#037691" %)**General Commands**(%%)      
753 753  
754 -AT  : Attention       
778 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
755 755  
756 -AT?  : Short Help     
780 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
757 757  
758 -ATZ  : MCU Reset    
782 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
759 759  
760 -AT+TDC  : Application Data Transmission Interval
784 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
761 761  
762 -AT+CFG  : Print all configurations
763 763  
764 -AT+CFGMOD           : Working mode selection
787 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
765 765  
766 -AT+INTMOD            : Set the trigger interrupt mode
789 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
767 767  
768 -AT+5VT  : Set extend the time of 5V power  
791 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
769 769  
770 -AT+PRO  : Choose agreement
793 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
771 771  
772 -AT+WEIGRE  : Get weight or set weight to 0
795 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
773 773  
774 -AT+WEIGAP  : Get or Set the GapValue of weight
797 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
775 775  
776 -AT+RXDL  : Extend the sending and receiving time
799 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
777 777  
778 -AT+CNTFAC  : Get or set counting parameters
801 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
779 779  
780 -AT+SERVADDR  : Server Address
803 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
781 781  
805 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
782 782  
783 -(% style="color:#037691" %)**COAP Management**      
807 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
784 784  
785 -AT+URI            : Resource parameters
809 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
786 786  
811 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
787 787  
788 -(% style="color:#037691" %)**UDP Management**
813 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
789 789  
790 -AT+CFM          : Upload confirmation mode (only valid for UDP)
815 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
791 791  
817 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
792 792  
793 -(% style="color:#037691" %)**MQTT Management**
819 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
794 794  
795 -AT+CLIENT               : Get or Set MQTT client
796 796  
797 -AT+UNAME  : Get or Set MQTT Username
822 +(% style="color:#037691" %)**LoRa Network Management**
798 798  
799 -AT+PWD                  : Get or Set MQTT password
824 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
800 800  
801 -AT+PUBTOPI : Get or Set MQTT publish topic
826 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
802 802  
803 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
828 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
804 804  
830 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
805 805  
806 -(% style="color:#037691" %)**Information**          
832 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
807 807  
808 -AT+FDR  : Factory Data Reset
834 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
809 809  
810 -AT+PWOR : Serial Access Password
836 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
811 811  
838 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
812 812  
840 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
813 813  
814 -= ​5.  FAQ =
842 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
815 815  
816 -== 5.1 How to Upgrade Firmware ==
844 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
817 817  
846 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
818 818  
848 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
849 +
850 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
851 +
852 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
853 +
854 +
855 +(% style="color:#037691" %)**Information** 
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
858 +
859 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
860 +
861 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
862 +
863 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
864 +
865 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
866 +
867 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
868 +
869 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
870 +
871 +
872 += ​4. FAQ =
873 +
874 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
875 +
819 819  (((
820 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
877 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
878 +When downloading the images, choose the required image file for download. ​
821 821  )))
822 822  
823 823  (((
824 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
882 +
825 825  )))
826 826  
827 827  (((
828 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
886 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
829 829  )))
830 830  
889 +(((
890 +
891 +)))
831 831  
893 +(((
894 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
895 +)))
832 832  
833 -== 5.2  Can I calibrate NSE01 to different soil types? ==
897 +(((
898 +
899 +)))
834 834  
835 835  (((
836 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
902 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
837 837  )))
838 838  
905 +[[image:image-20220606154726-3.png]]
839 839  
840 -= 6.  Trouble Shooting =
841 841  
842 -== 6.1  ​Connection problem when uploading firmware ==
908 +When you use the TTN network, the US915 frequency bands use are:
843 843  
910 +* 903.9 - SF7BW125 to SF10BW125
911 +* 904.1 - SF7BW125 to SF10BW125
912 +* 904.3 - SF7BW125 to SF10BW125
913 +* 904.5 - SF7BW125 to SF10BW125
914 +* 904.7 - SF7BW125 to SF10BW125
915 +* 904.9 - SF7BW125 to SF10BW125
916 +* 905.1 - SF7BW125 to SF10BW125
917 +* 905.3 - SF7BW125 to SF10BW125
918 +* 904.6 - SF8BW500
844 844  
845 845  (((
846 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
921 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
847 847  )))
848 848  
849 -(% class="wikigeneratedid" %)
924 +(% class="box infomessage" %)
850 850  (((
926 +**AT+CHE=2**
927 +)))
928 +
929 +(% class="box infomessage" %)
930 +(((
931 +**ATZ**
932 +)))
933 +
934 +(((
935 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
936 +)))
937 +
938 +(((
851 851  
852 852  )))
853 853  
942 +(((
943 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
944 +)))
854 854  
855 -== 6.2  AT Command input doesn't work ==
946 +[[image:image-20220606154825-4.png]]
856 856  
948 +
949 +
950 += 5. Trouble Shooting =
951 +
952 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
953 +
954 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
955 +
956 +
957 +== 5.2 AT Command input doesn’t work ==
958 +
857 857  (((
858 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
960 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
961 +)))
859 859  
860 -
963 +
964 +== 5.3 Device rejoin in at the second uplink packet ==
965 +
966 +(% style="color:#4f81bd" %)**Issue describe as below:**
967 +
968 +[[image:1654500909990-784.png]]
969 +
970 +
971 +(% style="color:#4f81bd" %)**Cause for this issue:**
972 +
973 +(((
974 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
861 861  )))
862 862  
863 863  
864 -= 7. ​ Order Info =
978 +(% style="color:#4f81bd" %)**Solution: **
865 865  
980 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
866 866  
867 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
982 +[[image:1654500929571-736.png||height="458" width="832"]]
868 868  
869 869  
985 += 6. ​Order Info =
986 +
987 +
988 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
989 +
990 +
991 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
992 +
993 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
994 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
995 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
996 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
997 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
998 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
999 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1000 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1001 +
1002 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1003 +
1004 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1005 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1006 +
870 870  (% class="wikigeneratedid" %)
871 871  (((
872 872  
873 873  )))
874 874  
875 -= 8.  Packing Info =
1012 += 7. Packing Info =
876 876  
877 877  (((
878 878  
879 879  
880 880  (% style="color:#037691" %)**Package Includes**:
1018 +)))
881 881  
882 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
883 -* External antenna x 1
1020 +* (((
1021 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
884 884  )))
885 885  
886 886  (((
... ... @@ -887,19 +887,30 @@
887 887  
888 888  
889 889  (% style="color:#037691" %)**Dimension and weight**:
1028 +)))
890 890  
891 -* Size: 195 x 125 x 55 mm
892 -* Weight:   420g
1030 +* (((
1031 +Device Size: cm
893 893  )))
1033 +* (((
1034 +Device Weight: g
1035 +)))
1036 +* (((
1037 +Package Size / pcs : cm
1038 +)))
1039 +* (((
1040 +Weight / pcs : g
894 894  
895 -(((
896 -
897 897  
898 -
899 899  
900 900  )))
901 901  
902 -= 9.  Support =
1046 += 8. Support =
903 903  
904 904  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
905 905  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1050 +
1051 +
1052 +~)~)~)
1053 +~)~)~)
1054 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084458-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -199.5 KB
Content