Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 29 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,710 +1,773 @@ 1 - 1 +(% style="text-align:center" %) 2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 2 2 3 -(% style="display:none" %) [[image:image-20220709084458-4.png||height="521" width="487"]] 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 10 -**Table of Contents:** 11 11 12 12 13 13 15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 18 -= 1. Introduction = 19 - 20 -== 1.1 What is NDDS75 Distance Detection Sensor == 21 - 22 22 ((( 23 - 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 24 24 25 25 ((( 26 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 27 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 28 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 29 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 30 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 31 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 32 32 ))) 33 33 34 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 35 35 ))) 36 36 39 + 37 37 [[image:1654503236291-817.png]] 38 38 39 39 40 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 41 41 42 42 43 43 44 -== 1.2 47 +== 1.2 Features == 45 45 46 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 47 47 * Monitor Soil Moisture 48 48 * Monitor Soil Temperature 49 49 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 50 50 * AT Commands to change parameters 51 51 * Uplink on periodically 52 52 * Downlink to change configure 53 53 * IP66 Waterproof Enclosure 54 -* Ultra-Low Power consumption 55 -* AT Commands to change parameters 56 -* Micro SIM card slot for NB-IoT SIM 57 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 58 58 59 -== 1.3 61 +== 1.3 Specification == 60 60 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 61 61 62 - (% style="color:#037691" %)**CommonDC Characteristics:**65 +[[image:image-20220606162220-5.png]] 63 63 64 -* Supply Voltage: 2.1v ~~ 3.6v 65 -* Operating Temperature: -40 ~~ 85°C 66 66 67 -(% style="color:#037691" %)**NB-IoT Spec:** 68 68 69 -* - B1 @H-FDD: 2100MHz 70 -* - B3 @H-FDD: 1800MHz 71 -* - B8 @H-FDD: 900MHz 72 -* - B5 @H-FDD: 850MHz 73 -* - B20 @H-FDD: 800MHz 74 -* - B28 @H-FDD: 700MHz 69 +== 1.4 Applications == 75 75 76 - Probe(%style="color:#037691"%)** Specification:**71 +* Smart Agriculture 77 77 78 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 79 79 80 - [[image:image-20220708101224-1.png]]76 +== 1.5 Firmware Change log == 81 81 82 82 79 +**LSE01 v1.0 :** Release 83 83 84 -== 1.4 Applications == 85 85 86 -* Smart Agriculture 87 87 88 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 89 - 83 += 2. Configure LSE01 to connect to LoRaWAN network = 90 90 91 -== 1.5PinDefinitions ==85 +== 2.1 How it works == 92 92 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 93 93 94 -[[image:1657246476176-652.png]] 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 95 95 96 96 97 97 98 -= 2. UseNSE01to communicatewithIoTServer =97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 99 99 100 - ==2.1How it works==99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 101 101 102 102 102 +[[image:1654503992078-669.png]] 103 + 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 103 103 ((( 104 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 105 105 ))) 106 106 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 107 107 108 -((( 109 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 110 110 ))) 111 111 112 -[[image:image-20220708101605-2.png]] 113 113 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 114 114 ((( 115 - 199 +Check the battery voltage for LSE01. 116 116 ))) 117 117 202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 118 118 206 +((( 207 +Ex2: 0x0B49 = 2889mV 208 +))) 119 119 120 -== 2.2 Configure the NSE01 == 121 121 122 122 123 -=== 2. 2.1TestRequirement===212 +=== 2.3.4 Soil Moisture === 124 124 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 125 125 126 126 ((( 127 - TouseNSE01inyourcity,make suremeetbelowrequirements:219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 128 128 ))) 129 129 130 - * Your local operator has already distributed a NB-IoT Network there.131 - *The local NB-IoT network used the band that NSE01 supports.132 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.222 +((( 223 + 224 +))) 133 133 134 134 ((( 135 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 136 136 ))) 137 137 138 138 139 -[[image:1657249419225-449.png]] 140 140 232 +=== 2.3.5 Soil Temperature === 141 141 234 +((( 235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 236 +))) 142 142 143 -=== 2.2.2 Insert SIM card === 238 +((( 239 +**Example**: 240 +))) 144 144 145 145 ((( 146 -I nsertthe NB-IoT Cardgetfromyourprovider.243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 147 147 ))) 148 148 149 149 ((( 150 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 151 151 ))) 152 152 153 153 154 -[[image:1657249468462-536.png]] 155 155 252 +=== 2.3.6 Soil Conductivity (EC) === 156 156 254 +((( 255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 +))) 157 157 158 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 258 +((( 259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 260 +))) 159 159 160 160 ((( 263 +Generally, the EC value of irrigation water is less than 800uS / cm. 264 +))) 265 + 161 161 ((( 162 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.267 + 163 163 ))) 269 + 270 +((( 271 + 164 164 ))) 165 165 274 +=== 2.3.7 MOD === 166 166 167 - **Connection:**276 +Firmware version at least v2.1 supports changing mode. 168 168 169 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND278 +For example, bytes[10]=90 170 170 171 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD280 +mod=(bytes[10]>>7)&0x01=1. 172 172 173 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 174 174 283 +**Downlink Command:** 175 175 176 -I nthePC,usebelowserial tool settings:285 +If payload = 0x0A00, workmode=0 177 177 178 -* Baud: (% style="color:green" %)**9600** 179 -* Data bits:** (% style="color:green" %)8(%%)** 180 -* Stop bits: (% style="color:green" %)**1** 181 -* Parity: (% style="color:green" %)**None** 182 -* Flow Control: (% style="color:green" %)**None** 287 +If** **payload =** **0x0A01, workmode=1 183 183 289 + 290 + 291 +=== 2.3.8 Decode payload in The Things Network === 292 + 293 +While using TTN network, you can add the payload format to decode the payload. 294 + 295 + 296 +[[image:1654505570700-128.png]] 297 + 184 184 ((( 185 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.299 +The payload decoder function for TTN is here: 186 186 ))) 187 187 188 -[[image:image-20220708110657-3.png]] 302 +((( 303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 304 +))) 189 189 306 + 307 + 308 +== 2.4 Uplink Interval == 309 + 310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 311 + 312 + 313 + 314 +== 2.5 Downlink Payload == 315 + 316 +By default, LSE50 prints the downlink payload to console port. 317 + 318 +[[image:image-20220606165544-8.png]] 319 + 320 + 190 190 ((( 191 - (% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]322 +**Examples:** 192 192 ))) 193 193 325 +((( 326 + 327 +))) 194 194 329 +* ((( 330 +**Set TDC** 331 +))) 195 195 196 -=== 2.2.4 Use CoAP protocol to uplink data === 333 +((( 334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 335 +))) 197 197 198 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 337 +((( 338 +Payload: 01 00 00 1E TDC=30S 339 +))) 199 199 341 +((( 342 +Payload: 01 00 00 3C TDC=60S 343 +))) 200 200 201 -**Use below commands:** 345 +((( 346 + 347 +))) 202 202 203 -* ( % style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink204 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAPserver address and port205 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path349 +* ((( 350 +**Reset** 351 +))) 206 206 207 -For parameter description, please refer to AT command set 353 +((( 354 +If payload = 0x04FF, it will reset the LSE01 355 +))) 208 208 209 -[[image:1657249793983-486.png]] 210 210 358 +* **CFM** 211 211 212 - After configure the server address and(% style="color:green"%)**resetthe device**(%%) (viaAT+ATZ ), NSE01will starttouplinksensor valuestoCoAP server.360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 213 213 214 -[[image:1657249831934-534.png]] 215 215 216 216 364 +== 2.6 Show Data in DataCake IoT Server == 217 217 218 - === 2.2.5 UseUDPprotocoltouplinkdata(Defaultrotocol)===366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 219 219 220 -This feature is supported since firmware version v1.0.1 221 221 369 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 222 222 223 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 224 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 225 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 371 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 226 226 227 -[[image:1657249864775-321.png]] 228 228 374 +[[image:1654505857935-743.png]] 229 229 230 -[[image:1657249930215-289.png]] 231 231 377 +[[image:1654505874829-548.png]] 232 232 379 +Step 3: Create an account or log in Datacake. 233 233 234 - === 2.2.6 UseMQTTprotocoltouplinkdata===381 +Step 4: Search the LSE01 and add DevEUI. 235 235 236 -This feature is supported since firmware version v110 237 237 384 +[[image:1654505905236-553.png]] 238 238 239 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 240 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 241 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 242 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 243 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 244 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 245 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 246 246 247 - [[image:1657249978444-674.png]]387 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 248 248 389 +[[image:1654505925508-181.png]] 249 249 250 -[[image:1657249990869-686.png]] 251 251 252 252 253 -((( 254 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 255 -))) 393 +== 2.7 Frequency Plans == 256 256 395 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 257 257 258 258 259 -=== 2. 2.7seTCP protocol to uplink data===398 +=== 2.7.1 EU863-870 (EU868) === 260 260 261 - Thisfeatureis supportedsincefirmware versionv110400 +(% style="color:#037691" %)** Uplink:** 262 262 402 +868.1 - SF7BW125 to SF12BW125 263 263 264 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 265 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 404 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 266 266 267 - [[image:1657250217799-140.png]]406 +868.5 - SF7BW125 to SF12BW125 268 268 408 +867.1 - SF7BW125 to SF12BW125 269 269 270 - [[image:1657250255956-604.png]]410 +867.3 - SF7BW125 to SF12BW125 271 271 412 +867.5 - SF7BW125 to SF12BW125 272 272 414 +867.7 - SF7BW125 to SF12BW125 273 273 274 - === 2.2.8ChangeUpdateInterval ===416 +867.9 - SF7BW125 to SF12BW125 275 275 276 - User can use below command to change the (% style="color:green" %)**uplink interval**.418 +868.8 - FSK 277 277 278 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 279 279 280 -((( 281 -(% style="color:red" %)**NOTE:** 282 -))) 421 +(% style="color:#037691" %)** Downlink:** 283 283 284 -((( 285 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 286 -))) 423 +Uplink channels 1-9 (RX1) 287 287 425 +869.525 - SF9BW125 (RX2 downlink only) 288 288 289 289 290 -== 2.3 Uplink Payload == 291 291 292 - Inthismode, uplink payload includes in total 18bytes429 +=== 2.7.2 US902-928(US915) === 293 293 294 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 295 -|=(% style="width: 60px;" %)((( 296 -**Size(bytes)** 297 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 298 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 431 +Used in USA, Canada and South America. Default use CHE=2 299 299 300 -((( 301 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 302 -))) 433 +(% style="color:#037691" %)**Uplink:** 303 303 435 +903.9 - SF7BW125 to SF10BW125 304 304 305 - [[image:image-20220708111918-4.png]]437 +904.1 - SF7BW125 to SF10BW125 306 306 439 +904.3 - SF7BW125 to SF10BW125 307 307 308 - Thepayloadis ASCIIstring,representative same HEX:441 +904.5 - SF7BW125 to SF10BW125 309 309 310 - 0x72403155615900640c7817075e0a8c02f900 where:443 +904.7 - SF7BW125 to SF10BW125 311 311 312 -* Device ID: 0x 724031556159 = 724031556159 313 -* Version: 0x0064=100=1.0.0 445 +904.9 - SF7BW125 to SF10BW125 314 314 315 -* BAT: 0x0c78 = 3192 mV = 3.192V 316 -* Singal: 0x17 = 23 317 -* Soil Moisture: 0x075e= 1886 = 18.86 % 318 -* Soil Temperature:0x0a8c =2700=27 °C 319 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 320 -* Interrupt: 0x00 = 0 447 +905.1 - SF7BW125 to SF10BW125 321 321 322 - == 2.4PayloadExplanation andSensorInterface==449 +905.3 - SF7BW125 to SF10BW125 323 323 324 324 325 - ===2.4.1 DeviceID===452 +(% style="color:#037691" %)**Downlink:** 326 326 327 -((( 328 -By default, the Device ID equal to the last 6 bytes of IMEI. 329 -))) 454 +923.3 - SF7BW500 to SF12BW500 330 330 331 -((( 332 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 333 -))) 456 +923.9 - SF7BW500 to SF12BW500 334 334 335 -((( 336 -**Example:** 337 -))) 458 +924.5 - SF7BW500 to SF12BW500 338 338 339 -((( 340 -AT+DEUI=A84041F15612 341 -))) 460 +925.1 - SF7BW500 to SF12BW500 342 342 343 -((( 344 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 345 -))) 462 +925.7 - SF7BW500 to SF12BW500 346 346 464 +926.3 - SF7BW500 to SF12BW500 347 347 466 +926.9 - SF7BW500 to SF12BW500 348 348 349 - ===2.4.2VersionInfo===468 +927.5 - SF7BW500 to SF12BW500 350 350 351 -((( 352 -Specify the software version: 0x64=100, means firmware version 1.00. 353 -))) 470 +923.3 - SF12BW500(RX2 downlink only) 354 354 355 -((( 356 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 357 -))) 358 358 359 359 474 +=== 2.7.3 CN470-510 (CN470) === 360 360 361 - ===2.4.3BatteryInfo===476 +Used in China, Default use CHE=1 362 362 363 -((( 364 -Check the battery voltage for LSE01. 365 -))) 478 +(% style="color:#037691" %)**Uplink:** 366 366 367 -((( 368 -Ex1: 0x0B45 = 2885mV 369 -))) 480 +486.3 - SF7BW125 to SF12BW125 370 370 371 -((( 372 -Ex2: 0x0B49 = 2889mV 373 -))) 482 +486.5 - SF7BW125 to SF12BW125 374 374 484 +486.7 - SF7BW125 to SF12BW125 375 375 486 +486.9 - SF7BW125 to SF12BW125 376 376 377 - === 2.4.4SignalStrength===488 +487.1 - SF7BW125 to SF12BW125 378 378 379 -((( 380 -NB-IoT Network signal Strength. 381 -))) 490 +487.3 - SF7BW125 to SF12BW125 382 382 383 -((( 384 -**Ex1: 0x1d = 29** 385 -))) 492 +487.5 - SF7BW125 to SF12BW125 386 386 387 -((( 388 -(% style="color:blue" %)**0**(%%) -113dBm or less 389 -))) 494 +487.7 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -(% style="color:blue" %)**1**(%%) -111dBm 393 -))) 394 394 395 -((( 396 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 397 -))) 497 +(% style="color:#037691" %)**Downlink:** 398 398 399 -((( 400 -(% style="color:blue" %)**31** (%%) -51dBm or greater 401 -))) 499 +506.7 - SF7BW125 to SF12BW125 402 402 403 -((( 404 -(% style="color:blue" %)**99** (%%) Not known or not detectable 405 -))) 501 +506.9 - SF7BW125 to SF12BW125 406 406 503 +507.1 - SF7BW125 to SF12BW125 407 407 505 +507.3 - SF7BW125 to SF12BW125 408 408 409 - === 2.4.5oilMoisture===507 +507.5 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -((( 413 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 414 -))) 415 -))) 509 +507.7 - SF7BW125 to SF12BW125 416 416 417 -((( 418 -((( 419 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 420 -))) 421 -))) 511 +507.9 - SF7BW125 to SF12BW125 422 422 423 -((( 424 - 425 -))) 513 +508.1 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 429 -))) 515 +505.3 - SF12BW125 (RX2 downlink only) 430 430 431 431 432 432 433 -=== 2. 4.6SoilTemperature===519 +=== 2.7.4 AU915-928(AU915) === 434 434 435 -((( 436 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 437 -))) 521 +Default use CHE=2 438 438 439 -((( 440 -**Example**: 441 -))) 523 +(% style="color:#037691" %)**Uplink:** 442 442 443 -((( 444 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 445 -))) 525 +916.8 - SF7BW125 to SF12BW125 446 446 447 -((( 448 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 449 -))) 527 +917.0 - SF7BW125 to SF12BW125 450 450 529 +917.2 - SF7BW125 to SF12BW125 451 451 531 +917.4 - SF7BW125 to SF12BW125 452 452 453 - === 2.4.7oilConductivity(EC) ===533 +917.6 - SF7BW125 to SF12BW125 454 454 455 -((( 456 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 457 -))) 535 +917.8 - SF7BW125 to SF12BW125 458 458 459 -((( 460 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 461 -))) 537 +918.0 - SF7BW125 to SF12BW125 462 462 463 -((( 464 -Generally, the EC value of irrigation water is less than 800uS / cm. 465 -))) 539 +918.2 - SF7BW125 to SF12BW125 466 466 467 -((( 468 - 469 -))) 470 470 471 -((( 472 - 473 -))) 542 +(% style="color:#037691" %)**Downlink:** 474 474 475 - ===2.4.8DigitalInterrupt===544 +923.3 - SF7BW500 to SF12BW500 476 476 477 -((( 478 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 479 -))) 546 +923.9 - SF7BW500 to SF12BW500 480 480 481 -((( 482 -The command is: 483 -))) 548 +924.5 - SF7BW500 to SF12BW500 484 484 485 -((( 486 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 487 -))) 550 +925.1 - SF7BW500 to SF12BW500 488 488 552 +925.7 - SF7BW500 to SF12BW500 489 489 490 -((( 491 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 492 -))) 554 +926.3 - SF7BW500 to SF12BW500 493 493 556 +926.9 - SF7BW500 to SF12BW500 494 494 495 -((( 496 -Example: 497 -))) 558 +927.5 - SF7BW500 to SF12BW500 498 498 499 -((( 500 -0x(00): Normal uplink packet. 501 -))) 560 +923.3 - SF12BW500(RX2 downlink only) 502 502 503 -((( 504 -0x(01): Interrupt Uplink Packet. 505 -))) 506 506 507 507 564 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 508 508 509 - ===2.4.9+5V Output===566 +(% style="color:#037691" %)**Default Uplink channel:** 510 510 511 -((( 512 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 513 -))) 568 +923.2 - SF7BW125 to SF10BW125 514 514 570 +923.4 - SF7BW125 to SF10BW125 515 515 516 -((( 517 -The 5V output time can be controlled by AT Command. 518 -))) 519 519 520 -((( 521 -(% style="color:blue" %)**AT+5VT=1000** 522 -))) 573 +(% style="color:#037691" %)**Additional Uplink Channel**: 523 523 524 -((( 525 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 526 -))) 575 +(OTAA mode, channel added by JoinAccept message) 527 527 577 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 528 528 579 +922.2 - SF7BW125 to SF10BW125 529 529 530 - ==2.5DownlinkPayload ==581 +922.4 - SF7BW125 to SF10BW125 531 531 532 - Bydefault,NSE01prints the downlinkpayload to console port.583 +922.6 - SF7BW125 to SF10BW125 533 533 534 - [[image:image-20220708133731-5.png]]585 +922.8 - SF7BW125 to SF10BW125 535 535 587 +923.0 - SF7BW125 to SF10BW125 536 536 537 -((( 538 -(% style="color:blue" %)**Examples:** 539 -))) 589 +922.0 - SF7BW125 to SF10BW125 540 540 541 -((( 542 - 543 -))) 544 544 545 -* ((( 546 -(% style="color:blue" %)**Set TDC** 547 -))) 592 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 548 548 549 -((( 550 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 551 -))) 594 +923.6 - SF7BW125 to SF10BW125 552 552 553 -((( 554 -Payload: 01 00 00 1E TDC=30S 555 -))) 596 +923.8 - SF7BW125 to SF10BW125 556 556 557 -((( 558 -Payload: 01 00 00 3C TDC=60S 559 -))) 598 +924.0 - SF7BW125 to SF10BW125 560 560 561 -((( 562 - 563 -))) 600 +924.2 - SF7BW125 to SF10BW125 564 564 565 -* ((( 566 -(% style="color:blue" %)**Reset** 567 -))) 602 +924.4 - SF7BW125 to SF10BW125 568 568 569 -((( 570 -If payload = 0x04FF, it will reset the NSE01 571 -))) 604 +924.6 - SF7BW125 to SF10BW125 572 572 573 573 574 - *(% style="color:blue" %)**INTMOD**607 +(% style="color:#037691" %)** Downlink:** 575 575 576 -((( 577 -Downlink Payload: 06000003, Set AT+INTMOD=3 578 -))) 609 +Uplink channels 1-8 (RX1) 579 579 611 +923.2 - SF10BW125 (RX2) 580 580 581 581 582 -== 2.6 LED Indicator == 583 583 584 -((( 585 -The NSE01 has an internal LED which is to show the status of different state. 615 +=== 2.7.6 KR920-923 (KR920) === 586 586 617 +Default channel: 587 587 588 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 589 -* Then the LED will be on for 1 second means device is boot normally. 590 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 591 -* For each uplink probe, LED will be on for 500ms. 592 -))) 619 +922.1 - SF7BW125 to SF12BW125 593 593 621 +922.3 - SF7BW125 to SF12BW125 594 594 623 +922.5 - SF7BW125 to SF12BW125 595 595 596 596 597 - ==2.7 InstallationinSoil==626 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 598 598 599 - __**Measurementthesoilsurface**__628 +922.1 - SF7BW125 to SF12BW125 600 600 601 -((( 602 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 603 -))) 630 +922.3 - SF7BW125 to SF12BW125 604 604 605 - [[image:1657259653666-883.png]]632 +922.5 - SF7BW125 to SF12BW125 606 606 634 +922.7 - SF7BW125 to SF12BW125 607 607 608 -((( 609 - 636 +922.9 - SF7BW125 to SF12BW125 610 610 611 -((( 612 -Dig a hole with diameter > 20CM. 613 -))) 638 +923.1 - SF7BW125 to SF12BW125 614 614 615 -((( 616 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 617 -))) 618 -))) 640 +923.3 - SF7BW125 to SF12BW125 619 619 620 -[[image:1654506665940-119.png]] 621 621 622 -((( 623 - 624 -))) 643 +(% style="color:#037691" %)**Downlink:** 625 625 645 +Uplink channels 1-7(RX1) 626 626 627 - ==2.8FirmwareChangeLog==647 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 628 628 629 629 630 -Download URL & Firmware Change log 631 631 632 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]651 +=== 2.7.7 IN865-867 (IN865) === 633 633 653 +(% style="color:#037691" %)** Uplink:** 634 634 635 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]655 +865.0625 - SF7BW125 to SF12BW125 636 636 657 +865.4025 - SF7BW125 to SF12BW125 637 637 659 +865.9850 - SF7BW125 to SF12BW125 638 638 639 -== 2.9 Battery Analysis == 640 640 641 - ===2.9.1 BatteryType===662 +(% style="color:#037691" %) **Downlink:** 642 642 664 +Uplink channels 1-3 (RX1) 643 643 666 +866.550 - SF10BW125 (RX2) 667 + 668 + 669 + 670 + 671 +== 2.8 LED Indicator == 672 + 673 +The LSE01 has an internal LED which is to show the status of different state. 674 + 675 +* Blink once when device power on. 676 +* Solid ON for 5 seconds once device successful Join the network. 677 +* Blink once when device transmit a packet. 678 + 679 + 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 644 644 ((( 645 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 646 646 ))) 692 +))) 647 647 648 648 695 +[[image:1654506665940-119.png]] 696 + 649 649 ((( 650 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.698 +Dig a hole with diameter > 20CM. 651 651 ))) 652 652 701 +((( 702 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 703 +))) 653 653 705 + 706 +== 2.10 Firmware Change Log == 707 + 654 654 ((( 655 - The battery relateddocumentsasbelow:709 +**Firmware download link:** 656 656 ))) 657 657 658 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]659 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]660 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]712 +((( 713 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 714 +))) 661 661 662 662 ((( 663 - [[image:image-20220708140453-6.png]]717 + 664 664 ))) 665 665 720 +((( 721 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 722 +))) 666 666 724 +((( 725 + 726 +))) 667 667 668 -=== 2.9.2 Power consumption Analyze === 728 +((( 729 +**V1.0.** 730 +))) 669 669 670 670 ((( 671 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.733 +Release 672 672 ))) 673 673 674 674 737 +== 2.11 Battery Analysis == 738 + 739 +=== 2.11.1 Battery Type === 740 + 675 675 ((( 676 - Instruction touse as below:742 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 677 677 ))) 678 678 679 679 ((( 680 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]746 +The battery is designed to last for more than 5 years for the LSN50. 681 681 ))) 682 682 683 - 684 684 ((( 685 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 750 +((( 751 +The battery-related documents are as below: 686 686 ))) 753 +))) 687 687 688 688 * ((( 689 - ProductModel756 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 690 690 ))) 691 691 * ((( 692 - UplinkInterval759 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 693 693 ))) 694 694 * ((( 695 - WorkingMode762 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 696 696 ))) 697 697 698 -((( 699 -And the Life expectation in difference case will be shown on the right. 700 -))) 765 + [[image:image-20220606171726-9.png]] 701 701 702 -[[image:image-20220708141352-7.jpeg]] 703 703 704 704 769 +=== 2.11.2 Battery Note === 705 705 706 -=== 2.9.3 Battery Note === 707 - 708 708 ((( 709 709 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 710 710 ))) ... ... @@ -711,176 +711,303 @@ 711 711 712 712 713 713 714 -=== 2. 9.4Replace the battery ===777 +=== 2.11.3 Replace the battery === 715 715 716 716 ((( 717 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).780 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 718 718 ))) 719 719 720 - 721 - 722 -= 3. Access NB-IoT Module = 723 - 724 724 ((( 725 - Userscan directly accesstheATcommand set of theNB-IoTmodule.784 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 726 726 ))) 727 727 728 728 ((( 729 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]788 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 730 730 ))) 731 731 732 -[[image:1657261278785-153.png]] 733 733 734 734 793 += 3. Using the AT Commands = 735 735 736 -= 4.UsingtheAT Commands =795 +== 3.1 Access AT Commands == 737 737 738 -== 4.1 Access AT Commands == 739 739 740 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]798 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 741 741 800 +[[image:1654501986557-872.png||height="391" width="800"]] 742 742 743 -AT+<CMD>? : Help on <CMD> 744 744 745 - AT+<CMD>: Run<CMD>803 +Or if you have below board, use below connection: 746 746 747 -AT+<CMD>=<value> : Set the value 748 748 749 - AT+<CMD>=?:Get the value806 +[[image:1654502005655-729.png||height="503" width="801"]] 750 750 751 751 809 + 810 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 811 + 812 + 813 + [[image:1654502050864-459.png||height="564" width="806"]] 814 + 815 + 816 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 817 + 818 + 819 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 820 + 821 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 822 + 823 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 824 + 825 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 826 + 827 + 752 752 (% style="color:#037691" %)**General Commands**(%%) 753 753 754 -AT 830 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 755 755 756 -AT? 832 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 757 757 758 -ATZ 834 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 759 759 760 -AT+TDC 836 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 761 761 762 -AT+CFG : Print all configurations 763 763 764 - AT+CFGMOD: Workingmode selection839 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 765 765 766 -AT+I NTMOD:Setthe trigger interruptmode841 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 767 767 768 -AT+ 5VTSetextend the timeof5V power843 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 769 769 770 -AT+P ROChooseagreement845 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 771 771 772 -AT+ WEIGREGet weightorsetweight to 0847 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 773 773 774 -AT+ WEIGAPGet or SettheGapValue of weight849 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 775 775 776 -AT+ RXDL: Extendthe sendingandreceivingtime851 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 777 777 778 -AT+ CNTFACGettcountingparameters853 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 779 779 780 -AT+ SERVADDR:ServerAddress855 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 781 781 857 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 782 782 783 -(% style="color:# 037691" %)**COAPManagement**859 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 784 784 785 -AT+ URIsourceparameters861 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 786 786 863 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 787 787 788 -(% style="color:# 037691" %)**UDPManagement**865 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 789 789 790 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)867 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 791 791 869 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 792 792 793 -(% style="color:# 037691" %)**MQTTManagement**871 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 794 794 795 -AT+CLIENT : Get or Set MQTT client 796 796 797 - AT+UNAMEGetSetMQTT Username874 +(% style="color:#037691" %)**LoRa Network Management** 798 798 799 -AT+ PWDGetor SetMQTT password876 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 800 800 801 -AT+ PUBTOPICGetorSetMQTTpublishtopic878 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 802 802 803 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic880 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 804 804 882 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 805 805 806 -(% style="color:# 037691" %)**Information**884 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 807 807 808 -AT+F DRctoryDataReset886 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 809 809 810 -AT+ PWORDSerialAccessPassword888 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 811 811 890 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 812 812 892 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 813 813 814 -= 5.FAQ=894 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 815 815 816 -= =5.1HowtoUpgradeFirmware==896 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 817 817 898 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 818 818 900 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 901 + 902 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 903 + 904 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 905 + 906 + 907 +(% style="color:#037691" %)**Information** 908 + 909 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 910 + 911 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 912 + 913 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 918 + 919 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 920 + 921 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 922 + 923 + 924 += 4. FAQ = 925 + 926 +== 4.1 How to change the LoRa Frequency Bands/Region? == 927 + 819 819 ((( 820 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 929 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 930 +When downloading the images, choose the required image file for download. 821 821 ))) 822 822 823 823 ((( 824 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]934 + 825 825 ))) 826 826 827 827 ((( 828 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.938 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 829 829 ))) 830 830 941 +((( 942 + 943 +))) 831 831 945 +((( 946 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 947 +))) 832 832 833 -== 5.2 Can I calibrate NSE01 to different soil types? == 949 +((( 950 + 951 +))) 834 834 835 835 ((( 836 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].954 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 837 837 ))) 838 838 957 +[[image:image-20220606154726-3.png]] 839 839 840 -= 6. Trouble Shooting = 841 841 842 - ==6.1 Connection problemwhenuploadingfirmware==960 +When you use the TTN network, the US915 frequency bands use are: 843 843 962 +* 903.9 - SF7BW125 to SF10BW125 963 +* 904.1 - SF7BW125 to SF10BW125 964 +* 904.3 - SF7BW125 to SF10BW125 965 +* 904.5 - SF7BW125 to SF10BW125 966 +* 904.7 - SF7BW125 to SF10BW125 967 +* 904.9 - SF7BW125 to SF10BW125 968 +* 905.1 - SF7BW125 to SF10BW125 969 +* 905.3 - SF7BW125 to SF10BW125 970 +* 904.6 - SF8BW500 844 844 845 845 ((( 846 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]973 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 847 847 ))) 848 848 849 -(% class=" wikigeneratedid" %)976 +(% class="box infomessage" %) 850 850 ((( 978 +**AT+CHE=2** 979 +))) 980 + 981 +(% class="box infomessage" %) 982 +((( 983 +**ATZ** 984 +))) 985 + 986 +((( 987 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 988 +))) 989 + 990 +((( 851 851 852 852 ))) 853 853 994 +((( 995 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 996 +))) 854 854 855 - == 6.2 AT Commandinput doesn't work ==998 +[[image:image-20220606154825-4.png]] 856 856 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn’t work == 1010 + 857 857 ((( 858 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1012 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 859 859 860 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 861 861 ))) 862 862 863 863 864 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 865 865 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 866 866 867 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 868 868 869 869 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 870 870 (% class="wikigeneratedid" %) 871 871 ((( 872 872 873 873 ))) 874 874 875 -= 8.1064 += 7. Packing Info = 876 876 877 877 ((( 878 878 879 879 880 880 (% style="color:#037691" %)**Package Includes**: 1070 +))) 881 881 882 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1883 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 884 884 ))) 885 885 886 886 ((( ... ... @@ -887,19 +887,30 @@ 887 887 888 888 889 889 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 890 890 891 -* Size: 195 x 125 x 55 mm892 - * Weight:420g1082 +* ((( 1083 +Device Size: cm 893 893 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 894 894 895 -((( 896 - 897 897 898 - 899 899 900 900 ))) 901 901 902 -= 9.1098 += 8. Support = 903 903 904 904 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 905 905 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1102 + 1103 + 1104 +~)~)~) 1105 +~)~)~) 1106 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -199.5 KB - Content