Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 71.1
edited by Xiaoling
on 2022/07/09 08:42
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20220709084207-3.jpeg||height="548" width="548"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 3  
4 4  
... ... @@ -6,30 +6,32 @@
6 6  
7 7  
8 8  
9 -**Table of Contents:**
10 10  
11 11  
12 12  
13 13  
14 +**Table of Contents:**
14 14  
15 15  
16 16  
18 +
19 +
20 +
17 17  = 1.  Introduction =
18 18  
19 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
20 20  
21 21  (((
22 22  
23 23  
24 -(((
25 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
26 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
27 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
28 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
29 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
30 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
31 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
32 32  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
33 33  
34 34  )))
35 35  
... ... @@ -40,8 +40,9 @@
40 40  
41 41  
42 42  
43 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
44 44  
48 +
45 45  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
46 46  * Monitor Soil Moisture
47 47  * Monitor Soil Temperature
... ... @@ -55,6 +55,8 @@
55 55  * Micro SIM card slot for NB-IoT SIM
56 56  * 8500mAh Battery for long term use
57 57  
62 +
63 +
58 58  == 1.3  Specification ==
59 59  
60 60  
... ... @@ -63,6 +63,7 @@
63 63  * Supply Voltage: 2.1v ~~ 3.6v
64 64  * Operating Temperature: -40 ~~ 85°C
65 65  
72 +
66 66  (% style="color:#037691" %)**NB-IoT Spec:**
67 67  
68 68  * - B1 @H-FDD: 2100MHz
... ... @@ -72,8 +72,9 @@
72 72  * - B20 @H-FDD: 800MHz
73 73  * - B28 @H-FDD: 700MHz
74 74  
75 -Probe(% style="color:#037691" %)** Specification:**
76 76  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
77 77  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
78 78  
79 79  [[image:image-20220708101224-1.png]]
... ... @@ -94,616 +94,696 @@
94 94  
95 95  
96 96  
97 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
98 98  
99 -== 2.1  How it works ==
107 +== 2.1 How it works ==
100 100  
101 -
102 102  (((
103 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
104 104  )))
105 105  
106 -
107 107  (((
108 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
109 109  )))
110 110  
111 -[[image:image-20220708101605-2.png]]
112 112  
113 -(((
114 -
115 -)))
116 116  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
117 117  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
118 118  
119 -== 2.2 ​ Configure the NSE01 ==
120 120  
124 +[[image:1654503992078-669.png]]
121 121  
122 -=== 2.2.1 Test Requirement ===
123 123  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
124 124  
125 -(((
126 -To use NSE01 in your city, make sure meet below requirements:
127 -)))
128 128  
129 -* Your local operator has already distributed a NB-IoT Network there.
130 -* The local NB-IoT network used the band that NSE01 supports.
131 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
132 132  
133 -(((
134 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
135 -)))
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
136 136  
134 +[[image:image-20220606163732-6.jpeg]]
137 137  
138 -[[image:1657249419225-449.png]]
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
139 139  
138 +**Add APP EUI in the application**
140 140  
141 141  
142 -=== 2.2.2 Insert SIM card ===
141 +[[image:1654504596150-405.png]]
143 143  
144 -(((
145 -Insert the NB-IoT Card get from your provider.
146 -)))
147 147  
148 -(((
149 -User need to take out the NB-IoT module and insert the SIM card like below:
150 -)))
151 151  
145 +**Add APP KEY and DEV EUI**
152 152  
153 -[[image:1657249468462-536.png]]
147 +[[image:1654504683289-357.png]]
154 154  
155 155  
156 156  
157 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
158 158  
159 -(((
160 -(((
161 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 -)))
163 -)))
164 164  
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
165 165  
166 -**Connection:**
156 +[[image:image-20220606163915-7.png]]
167 167  
168 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
169 169  
170 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 171  
172 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
161 +[[image:1654504778294-788.png]]
173 173  
174 174  
175 -In the PC, use below serial tool settings:
176 176  
177 -* Baud:  (% style="color:green" %)**9600**
178 -* Data bits:** (% style="color:green" %)8(%%)**
179 -* Stop bits: (% style="color:green" %)**1**
180 -* Parity:  (% style="color:green" %)**None**
181 -* Flow Control: (% style="color:green" %)**None**
165 +== 2.3 Uplink Payload ==
182 182  
183 -(((
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 -)))
186 186  
187 -[[image:image-20220708110657-3.png]]
168 +=== 2.3.1 MOD~=0(Default Mode) ===
188 188  
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
189 189  (((
190 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
173 +Uplink payload includes in total 11 bytes.
191 191  )))
192 192  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
193 193  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
194 194  
195 -=== 2.2.4 Use CoAP protocol to uplink data ===
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
196 196  
197 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
189 +(Optional)
190 +)))
198 198  
192 +=== 2.3.2 MOD~=1(Original value) ===
199 199  
200 -**Use below commands:**
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
201 201  
202 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
203 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
204 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
205 205  
206 -For parameter description, please refer to AT command set
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
207 207  
208 -[[image:1657249793983-486.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
209 209  
209 +(Optional)
210 +)))
210 210  
211 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
212 +=== 2.3.3 Battery Info ===
212 212  
213 -[[image:1657249831934-534.png]]
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
214 214  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
215 215  
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
216 216  
217 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
218 218  
219 -This feature is supported since firmware version v1.0.1
220 220  
228 +=== 2.3.4 Soil Moisture ===
221 221  
222 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
223 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
224 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
225 225  
226 -[[image:1657249864775-321.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
227 227  
238 +(((
239 +
240 +)))
228 228  
229 -[[image:1657249930215-289.png]]
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
230 230  
231 231  
232 232  
233 -=== 2.2.6 Use MQTT protocol to uplink data ===
248 +=== 2.3.5 Soil Temperature ===
234 234  
235 -This feature is supported since firmware version v110
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
236 236  
254 +(((
255 +**Example**:
256 +)))
237 237  
238 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
239 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
240 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
241 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
242 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
243 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
244 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
245 245  
246 -[[image:1657249978444-674.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
247 247  
248 248  
249 -[[image:1657249990869-686.png]]
250 250  
268 +=== 2.3.6 Soil Conductivity (EC) ===
251 251  
252 252  (((
253 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
254 254  )))
255 255  
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
256 256  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
257 257  
258 -=== 2.2.7 Use TCP protocol to uplink data ===
282 +(((
283 +
284 +)))
259 259  
260 -This feature is supported since firmware version v110
286 +(((
287 +
288 +)))
261 261  
290 +=== 2.3.7 MOD ===
262 262  
263 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
264 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
292 +Firmware version at least v2.1 supports changing mode.
265 265  
266 -[[image:1657250217799-140.png]]
294 +For example, bytes[10]=90
267 267  
296 +mod=(bytes[10]>>7)&0x01=1.
268 268  
269 -[[image:1657250255956-604.png]]
270 270  
299 +**Downlink Command:**
271 271  
301 +If payload = 0x0A00, workmode=0
272 272  
273 -=== 2.2.8 Change Update Interval ===
303 +If** **payload =** **0x0A01, workmode=1
274 274  
275 -User can use below command to change the (% style="color:green" %)**uplink interval**.
276 276  
277 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
278 278  
279 -(((
280 -(% style="color:red" %)**NOTE:**
281 -)))
307 +=== 2.3.8 ​Decode payload in The Things Network ===
282 282  
283 -(((
284 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
285 -)))
309 +While using TTN network, you can add the payload format to decode the payload.
286 286  
287 287  
312 +[[image:1654505570700-128.png]]
288 288  
289 -== 2.3  Uplink Payload ==
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
290 290  
291 -In this mode, uplink payload includes in total 18 bytes
292 -
293 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
294 -|=(% style="width: 60px;" %)(((
295 -**Size(bytes)**
296 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
297 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
298 -
299 299  (((
300 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
301 301  )))
302 302  
303 303  
304 -[[image:image-20220708111918-4.png]]
323 +== 2.4 Uplink Interval ==
305 305  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
306 306  
307 -The payload is ASCII string, representative same HEX:
308 308  
309 -0x72403155615900640c7817075e0a8c02f900 where:
310 310  
311 -* Device ID: 0x 724031556159 = 724031556159
312 -* Version: 0x0064=100=1.0.0
329 +== 2.5 Downlink Payload ==
313 313  
314 -* BAT: 0x0c78 = 3192 mV = 3.192V
315 -* Singal: 0x17 = 23
316 -* Soil Moisture: 0x075e= 1886 = 18.86  %
317 -* Soil Temperature:0x0a8c =2700=27 °C
318 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
319 -* Interrupt: 0x00 = 0
331 +By default, LSE50 prints the downlink payload to console port.
320 320  
321 -== 2.4  Payload Explanation and Sensor Interface ==
333 +[[image:image-20220606165544-8.png]]
322 322  
323 323  
324 -=== 2.4.1  Device ID ===
325 -
326 326  (((
327 -By default, the Device ID equal to the last 6 bytes of IMEI.
337 +(% style="color:blue" %)**Examples:**
328 328  )))
329 329  
330 330  (((
331 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
341 +
332 332  )))
333 333  
334 -(((
335 -**Example:**
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
336 336  )))
337 337  
338 338  (((
339 -AT+DEUI=A84041F15612
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
340 340  )))
341 341  
342 342  (((
343 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
353 +Payload:    01 00 00 1E    TDC=30S
344 344  )))
345 345  
346 -
347 -
348 -=== 2.4.2  Version Info ===
349 -
350 350  (((
351 -Specify the software version: 0x64=100, means firmware version 1.00.
357 +Payload:    01 00 00 3C    TDC=60S
352 352  )))
353 353  
354 354  (((
355 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
361 +
356 356  )))
357 357  
358 -
359 -
360 -=== 2.4.3  Battery Info ===
361 -
362 -(((
363 -Check the battery voltage for LSE01.
364 +* (((
365 +(% style="color:blue" %)**Reset**
364 364  )))
365 365  
366 366  (((
367 -Ex1: 0x0B45 = 2885mV
369 +If payload = 0x04FF, it will reset the LSE01
368 368  )))
369 369  
370 -(((
371 -Ex2: 0x0B49 = 2889mV
372 -)))
373 373  
373 +* (% style="color:blue" %)**CFM**
374 374  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
375 375  
376 -=== 2.4.4  Signal Strength ===
377 377  
378 -(((
379 -NB-IoT Network signal Strength.
380 -)))
381 381  
382 -(((
383 -**Ex1: 0x1d = 29**
384 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
385 385  
386 386  (((
387 -(% style="color:blue" %)**0**(%%)  -113dBm or less
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
388 388  )))
389 389  
390 390  (((
391 -(% style="color:blue" %)**1**(%%)  -111dBm
386 +
392 392  )))
393 393  
394 394  (((
395 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
390 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
396 396  )))
397 397  
398 398  (((
399 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
394 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
400 400  )))
401 401  
402 -(((
403 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
404 -)))
405 405  
398 +[[image:1654505857935-743.png]]
406 406  
407 407  
408 -=== 2.4.5  Soil Moisture ===
401 +[[image:1654505874829-548.png]]
409 409  
410 -(((
411 -(((
412 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
413 -)))
414 -)))
415 415  
416 -(((
417 -(((
418 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
419 -)))
420 -)))
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
421 421  
422 -(((
423 -
424 -)))
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
425 425  
426 -(((
427 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
428 -)))
429 429  
409 +[[image:1654505905236-553.png]]
430 430  
431 431  
432 -=== 2.4.6  Soil Temperature ===
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
433 433  
434 -(((
435 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
436 -)))
414 +[[image:1654505925508-181.png]]
437 437  
438 -(((
439 -**Example**:
440 -)))
441 441  
442 -(((
443 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
444 -)))
445 445  
446 -(((
447 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
448 -)))
418 +== 2.7 Frequency Plans ==
449 449  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
450 450  
451 451  
452 -=== 2.4.7  Soil Conductivity (EC) ===
423 +=== 2.7.1 EU863-870 (EU868) ===
453 453  
454 -(((
455 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
456 -)))
425 +(% style="color:#037691" %)** Uplink:**
457 457  
458 -(((
459 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
460 -)))
427 +868.1 - SF7BW125 to SF12BW125
461 461  
462 -(((
463 -Generally, the EC value of irrigation water is less than 800uS / cm.
464 -)))
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
465 465  
466 -(((
467 -
468 -)))
431 +868.5 - SF7BW125 to SF12BW125
469 469  
470 -(((
471 -
472 -)))
433 +867.1 - SF7BW125 to SF12BW125
473 473  
474 -=== 2.4.8  Digital Interrupt ===
435 +867.3 - SF7BW125 to SF12BW125
475 475  
476 -(((
477 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
478 -)))
437 +867.5 - SF7BW125 to SF12BW125
479 479  
480 -(((
481 -The command is:
482 -)))
439 +867.7 - SF7BW125 to SF12BW125
483 483  
484 -(((
485 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
486 -)))
441 +867.9 - SF7BW125 to SF12BW125
487 487  
443 +868.8 - FSK
488 488  
489 -(((
490 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
491 -)))
492 492  
446 +(% style="color:#037691" %)** Downlink:**
493 493  
494 -(((
495 -Example:
496 -)))
448 +Uplink channels 1-9 (RX1)
497 497  
498 -(((
499 -0x(00): Normal uplink packet.
500 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
501 501  
502 -(((
503 -0x(01): Interrupt Uplink Packet.
504 -)))
505 505  
506 506  
454 +=== 2.7.2 US902-928(US915) ===
507 507  
508 -=== 2.4.9  ​+5V Output ===
456 +Used in USA, Canada and South America. Default use CHE=2
509 509  
510 -(((
511 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
512 -)))
458 +(% style="color:#037691" %)**Uplink:**
513 513  
460 +903.9 - SF7BW125 to SF10BW125
514 514  
515 -(((
516 -The 5V output time can be controlled by AT Command.
517 -)))
462 +904.1 - SF7BW125 to SF10BW125
518 518  
519 -(((
520 -(% style="color:blue" %)**AT+5VT=1000**
521 -)))
464 +904.3 - SF7BW125 to SF10BW125
522 522  
523 -(((
524 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
525 -)))
466 +904.5 - SF7BW125 to SF10BW125
526 526  
468 +904.7 - SF7BW125 to SF10BW125
527 527  
470 +904.9 - SF7BW125 to SF10BW125
528 528  
529 -== 2.5  Downlink Payload ==
472 +905.1 - SF7BW125 to SF10BW125
530 530  
531 -By default, NSE01 prints the downlink payload to console port.
474 +905.3 - SF7BW125 to SF10BW125
532 532  
533 -[[image:image-20220708133731-5.png]]
534 534  
477 +(% style="color:#037691" %)**Downlink:**
535 535  
536 -(((
537 -(% style="color:blue" %)**Examples:**
538 -)))
479 +923.3 - SF7BW500 to SF12BW500
539 539  
540 -(((
541 -
542 -)))
481 +923.9 - SF7BW500 to SF12BW500
543 543  
544 -* (((
545 -(% style="color:blue" %)**Set TDC**
546 -)))
483 +924.5 - SF7BW500 to SF12BW500
547 547  
548 -(((
549 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
550 -)))
485 +925.1 - SF7BW500 to SF12BW500
551 551  
552 -(((
553 -Payload:    01 00 00 1E    TDC=30S
554 -)))
487 +925.7 - SF7BW500 to SF12BW500
555 555  
556 -(((
557 -Payload:    01 00 00 3C    TDC=60S
558 -)))
489 +926.3 - SF7BW500 to SF12BW500
559 559  
560 -(((
561 -
562 -)))
491 +926.9 - SF7BW500 to SF12BW500
563 563  
564 -* (((
565 -(% style="color:blue" %)**Reset**
566 -)))
493 +927.5 - SF7BW500 to SF12BW500
567 567  
568 -(((
569 -If payload = 0x04FF, it will reset the NSE01
570 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
571 571  
572 572  
573 -* (% style="color:blue" %)**INTMOD**
574 574  
575 -(((
576 -Downlink Payload: 06000003, Set AT+INTMOD=3
577 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
578 578  
501 +Used in China, Default use CHE=1
579 579  
503 +(% style="color:#037691" %)**Uplink:**
580 580  
581 -== 2.6  ​LED Indicator ==
505 +486.3 - SF7BW125 to SF12BW125
582 582  
583 -(((
584 -The NSE01 has an internal LED which is to show the status of different state.
507 +486.5 - SF7BW125 to SF12BW125
585 585  
509 +486.7 - SF7BW125 to SF12BW125
586 586  
587 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
588 -* Then the LED will be on for 1 second means device is boot normally.
589 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
590 -* For each uplink probe, LED will be on for 500ms.
591 -)))
511 +486.9 - SF7BW125 to SF12BW125
592 592  
513 +487.1 - SF7BW125 to SF12BW125
593 593  
515 +487.3 - SF7BW125 to SF12BW125
594 594  
517 +487.5 - SF7BW125 to SF12BW125
595 595  
596 -== 2.7  Installation in Soil ==
519 +487.7 - SF7BW125 to SF12BW125
597 597  
598 -__**Measurement the soil surface**__
599 599  
600 -(((
601 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
602 -)))
522 +(% style="color:#037691" %)**Downlink:**
603 603  
604 -[[image:1657259653666-883.png]]
524 +506.7 - SF7BW125 to SF12BW125
605 605  
526 +506.9 - SF7BW125 to SF12BW125
606 606  
607 -(((
608 -
528 +507.1 - SF7BW125 to SF12BW125
609 609  
610 -(((
611 -Dig a hole with diameter > 20CM.
612 -)))
530 +507.3 - SF7BW125 to SF12BW125
613 613  
614 -(((
615 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
616 -)))
617 -)))
532 +507.5 - SF7BW125 to SF12BW125
618 618  
619 -[[image:1654506665940-119.png]]
534 +507.7 - SF7BW125 to SF12BW125
620 620  
621 -(((
622 -
623 -)))
536 +507.9 - SF7BW125 to SF12BW125
624 624  
538 +508.1 - SF7BW125 to SF12BW125
625 625  
626 -== 2. Firmware Change Log ==
540 +505.3 - SF12BW125 (RX2 downlink only)
627 627  
628 628  
629 -Download URL & Firmware Change log
630 630  
631 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
544 +=== 2.7.4 AU915-928(AU915) ===
632 632  
546 +Default use CHE=2
633 633  
634 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
548 +(% style="color:#037691" %)**Uplink:**
635 635  
550 +916.8 - SF7BW125 to SF12BW125
636 636  
552 +917.0 - SF7BW125 to SF12BW125
637 637  
638 -== 2.9  Battery Analysis ==
554 +917.2 - SF7BW125 to SF12BW125
639 639  
640 -=== 2.9.1  Battery Type ===
556 +917.4 - SF7BW125 to SF12BW125
641 641  
558 +917.6 - SF7BW125 to SF12BW125
642 642  
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
643 643  (((
644 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
645 645  )))
715 +)))
646 646  
647 647  
718 +
719 +[[image:1654506665940-119.png]]
720 +
648 648  (((
649 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
650 650  )))
651 651  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
652 652  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
653 653  (((
654 -The battery related documents as below:
733 +**Firmware download link:**
655 655  )))
656 656  
657 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
658 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
659 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
660 660  
661 661  (((
662 -[[image:image-20220708140453-6.png]]
741 +
663 663  )))
664 664  
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
665 665  
748 +(((
749 +
750 +)))
666 666  
667 -=== 2.9.2  Power consumption Analyze ===
752 +(((
753 +**V1.0.**
754 +)))
668 668  
669 669  (((
670 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
671 671  )))
672 672  
673 673  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
674 674  (((
675 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
676 676  )))
677 677  
678 678  (((
679 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
680 680  )))
681 681  
682 -
683 683  (((
684 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
685 685  )))
777 +)))
686 686  
687 687  * (((
688 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
689 689  )))
690 690  * (((
691 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
692 692  )))
693 693  * (((
694 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
695 695  )))
696 696  
697 -(((
698 -And the Life expectation in difference case will be shown on the right.
699 -)))
789 + [[image:image-20220610172436-1.png]]
700 700  
701 -[[image:image-20220708141352-7.jpeg]]
702 702  
703 703  
793 +=== 2.11.2 ​Battery Note ===
704 704  
705 -=== 2.9.3  ​Battery Note ===
706 -
707 707  (((
708 708  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
709 709  )))
... ... @@ -710,176 +710,302 @@
710 710  
711 711  
712 712  
713 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
714 714  
715 715  (((
716 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
717 717  )))
718 718  
719 -
720 -
721 -= 3. ​ Access NB-IoT Module =
722 -
723 723  (((
724 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
725 725  )))
726 726  
727 727  (((
728 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
729 729  )))
730 730  
731 -[[image:1657261278785-153.png]]
732 732  
733 733  
817 += 3. ​Using the AT Commands =
734 734  
735 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
736 736  
737 -== 4.1  Access AT Commands ==
738 738  
739 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
740 740  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
741 741  
742 -AT+<CMD>?  : Help on <CMD>
743 743  
744 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
745 745  
746 -AT+<CMD>=<value> : Set the value
747 747  
748 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
749 749  
750 750  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
751 751  (% style="color:#037691" %)**General Commands**(%%)      
752 752  
753 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
754 754  
755 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
756 756  
757 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
758 758  
759 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
760 760  
761 -AT+CFG  : Print all configurations
762 762  
763 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
764 764  
765 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
766 766  
767 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
768 768  
769 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
770 770  
771 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
772 772  
773 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
774 774  
775 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
776 776  
777 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
778 778  
779 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
780 780  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
781 781  
782 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
783 783  
784 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
785 785  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
786 786  
787 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
788 788  
789 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
790 790  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
791 791  
792 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
793 793  
794 -AT+CLIENT               : Get or Set MQTT client
795 795  
796 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
797 797  
798 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
799 799  
800 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
801 801  
802 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
803 803  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
804 804  
805 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
806 806  
807 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
808 808  
809 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
810 810  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
811 811  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
812 812  
813 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
814 814  
815 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
816 816  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
817 817  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
818 818  (((
819 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
820 820  )))
821 821  
822 822  (((
823 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
824 824  )))
825 825  
826 826  (((
827 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
828 828  )))
829 829  
965 +(((
966 +
967 +)))
830 830  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
831 831  
832 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
833 833  
834 834  (((
835 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
836 836  )))
837 837  
981 +[[image:image-20220606154726-3.png]]
838 838  
839 -= 6.  Trouble Shooting =
840 840  
841 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
842 842  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
843 843  
844 844  (((
845 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
846 846  )))
847 847  
848 -(% class="wikigeneratedid" %)
849 849  (((
850 850  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
851 851  )))
852 852  
1009 +(((
1010 +
1011 +)))
853 853  
854 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
855 855  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
856 856  (((
857 857  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
858 858  
859 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
860 860  )))
861 861  
862 862  
863 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
864 864  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
865 865  
866 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
867 867  
868 868  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
869 869  (% class="wikigeneratedid" %)
870 870  (((
871 871  
872 872  )))
873 873  
874 -= 8.  Packing Info =
1087 += 7. Packing Info =
875 875  
876 876  (((
877 877  
878 878  
879 879  (% style="color:#037691" %)**Package Includes**:
1093 +)))
880 880  
881 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
882 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
883 883  )))
884 884  
885 885  (((
... ... @@ -886,19 +886,24 @@
886 886  
887 887  
888 888  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
889 889  
890 -* Size: 195 x 125 x 55 mm
891 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
892 892  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
893 893  
894 -(((
895 895  
896 -
897 -
898 -
899 899  )))
900 900  
901 -= 9.  Support =
1120 += 8. Support =
902 902  
903 903  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
904 904  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084137-2.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content
image-20220709084207-3.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content