Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 22 removed)
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
- image-20220709084038-1.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,4 +1,5 @@ 1 -[[image:image-20220709084038-1.jpeg||height="575" width="575"]] 1 +(% style="text-align:center" %) 2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 2 2 3 3 4 4 ... ... @@ -8,30 +8,30 @@ 8 8 9 9 10 10 11 -**Table of Contents:** 12 12 13 13 14 +**Table of Contents:** 14 14 15 15 16 16 17 17 18 18 20 + 19 19 = 1. Introduction = 20 20 21 -== 1.1 What is N DDS75DistanceDetectionSensor ==23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 22 22 23 23 ((( 24 24 25 25 26 -((( 27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 28 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 29 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 30 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 31 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 32 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 -))) 28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 34 34 30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 31 + 32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 + 34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 35 + 35 35 36 36 ))) 37 37 ... ... @@ -42,8 +42,9 @@ 42 42 43 43 44 44 45 -== 1.2 46 +== 1.2 Features == 46 46 48 + 47 47 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 48 * Monitor Soil Moisture 49 49 * Monitor Soil Temperature ... ... @@ -57,6 +57,8 @@ 57 57 * Micro SIM card slot for NB-IoT SIM 58 58 * 8500mAh Battery for long term use 59 59 62 + 63 + 60 60 == 1.3 Specification == 61 61 62 62 ... ... @@ -65,6 +65,7 @@ 65 65 * Supply Voltage: 2.1v ~~ 3.6v 66 66 * Operating Temperature: -40 ~~ 85°C 67 67 72 + 68 68 (% style="color:#037691" %)**NB-IoT Spec:** 69 69 70 70 * - B1 @H-FDD: 2100MHz ... ... @@ -74,8 +74,9 @@ 74 74 * - B20 @H-FDD: 800MHz 75 75 * - B28 @H-FDD: 700MHz 76 76 77 -Probe(% style="color:#037691" %)** Specification:** 78 78 83 +(% style="color:#037691" %)**Probe Specification:** 84 + 79 79 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 80 80 81 81 [[image:image-20220708101224-1.png]] ... ... @@ -96,616 +96,696 @@ 96 96 97 97 98 98 99 -= 2. UseNSE01 to communicatewithIoTServer=105 += 2. Configure LSE01 to connect to LoRaWAN network = 100 100 101 -== 2.1 107 +== 2.1 How it works == 102 102 103 - 104 104 ((( 105 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 106 106 ))) 107 107 108 - 109 109 ((( 110 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 111 111 ))) 112 112 113 -[[image:image-20220708101605-2.png]] 114 114 115 -((( 116 - 117 -))) 118 118 119 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 119 119 121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 120 120 121 -== 2.2 Configure the NSE01 == 122 122 124 +[[image:1654503992078-669.png]] 123 123 124 -=== 2.2.1 Test Requirement === 125 125 127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 126 126 127 -((( 128 -To use NSE01 in your city, make sure meet below requirements: 129 -))) 130 130 131 -* Your local operator has already distributed a NB-IoT Network there. 132 -* The local NB-IoT network used the band that NSE01 supports. 133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 130 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 134 134 135 -((( 136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 137 -))) 132 +Each LSE01 is shipped with a sticker with the default device EUI as below: 138 138 134 +[[image:image-20220606163732-6.jpeg]] 139 139 140 - [[image:1657249419225-449.png]]136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 141 141 138 +**Add APP EUI in the application** 142 142 143 143 144 - === 2.2.2 Insert SIM card ===141 +[[image:1654504596150-405.png]] 145 145 146 -((( 147 -Insert the NB-IoT Card get from your provider. 148 -))) 149 149 150 -((( 151 -User need to take out the NB-IoT module and insert the SIM card like below: 152 -))) 153 153 145 +**Add APP KEY and DEV EUI** 154 154 155 -[[image:165 7249468462-536.png]]147 +[[image:1654504683289-357.png]] 156 156 157 157 158 158 159 - ===2.2.3 ConnectUSB–TTLtoNSE01to configure it ===151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 160 160 161 -((( 162 -((( 163 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 164 -))) 165 -))) 166 166 154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 167 167 168 - **Connection:**156 +[[image:image-20220606163915-7.png]] 169 169 170 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 171 171 172 - background-color:yellow" %)USBTTL TXD<~-~-~-~->UART_RXD159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 173 173 174 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD161 +[[image:1654504778294-788.png]] 175 175 176 176 177 -In the PC, use below serial tool settings: 178 178 179 -* Baud: (% style="color:green" %)**9600** 180 -* Data bits:** (% style="color:green" %)8(%%)** 181 -* Stop bits: (% style="color:green" %)**1** 182 -* Parity: (% style="color:green" %)**None** 183 -* Flow Control: (% style="color:green" %)**None** 165 +== 2.3 Uplink Payload == 184 184 185 -((( 186 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 187 -))) 188 188 189 - [[image:image-20220708110657-3.png]]168 +=== 2.3.1 MOD~=0(Default Mode) === 190 190 170 +LSE01 will uplink payload via LoRaWAN with below payload format: 171 + 191 191 ((( 192 - (% style="color:red" %)Note: the valid AT Commandscan be foundat: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]173 +Uplink payload includes in total 11 bytes. 193 193 ))) 194 194 176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 177 +|((( 178 +**Size** 195 195 180 +**(bytes)** 181 +)))|**2**|**2**|**2**|**2**|**2**|**1** 182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 183 +Temperature 196 196 197 -=== 2.2.4 Use CoAP protocol to uplink data === 185 +(Reserve, Ignore now) 186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 187 +MOD & Digital Interrupt 198 198 199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 189 +(Optional) 190 +))) 200 200 192 +=== 2.3.2 MOD~=1(Original value) === 201 201 202 - **Usebelowcommands:**194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 203 203 204 - *(%style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to useCoAP protocoltouplink205 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 **(%%)~/~/ to set CoAP server address and port206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0"**(%%) ~/~/Set COAP resource path196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 197 +|((( 198 +**Size** 207 207 208 -For parameter description, please refer to AT command set 200 +**(bytes)** 201 +)))|**2**|**2**|**2**|**2**|**2**|**1** 202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 203 +Temperature 209 209 210 -[[image:1657249793983-486.png]] 205 +(Reserve, Ignore now) 206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 207 +MOD & Digital Interrupt 211 211 209 +(Optional) 210 +))) 212 212 213 - Afterconfigurethe serveraddress and (% style="color:green" %)**resetthedevice**(%%) (via AT+ATZ ), NSE01 will startto uplink sensorvalues to CoAP server.212 +=== 2.3.3 Battery Info === 214 214 215 -[[image:1657249831934-534.png]] 214 +((( 215 +Check the battery voltage for LSE01. 216 +))) 216 216 218 +((( 219 +Ex1: 0x0B45 = 2885mV 220 +))) 217 217 222 +((( 223 +Ex2: 0x0B49 = 2889mV 224 +))) 218 218 219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 220 220 221 -This feature is supported since firmware version v1.0.1 222 222 228 +=== 2.3.4 Soil Moisture === 223 223 224 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink225 - *(%style="color:blue"%)**AT+SERVADDR=120.24.4.116,5601**(%%)~/~/tosetUDPserveraddressandport226 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary230 +((( 231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 232 +))) 227 227 228 -[[image:1657249864775-321.png]] 234 +((( 235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 236 +))) 229 229 238 +((( 239 + 240 +))) 230 230 231 -[[image:1657249930215-289.png]] 242 +((( 243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 244 +))) 232 232 233 233 234 234 235 -=== 2. 2.6Use MQTTprotocol touplinkdata===248 +=== 2.3.5 Soil Temperature === 236 236 237 -This feature is supported since firmware version v110 250 +((( 251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 252 +))) 238 238 254 +((( 255 +**Example**: 256 +))) 239 239 240 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 243 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 244 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 258 +((( 259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 260 +))) 247 247 248 -[[image:1657249978444-674.png]] 262 +((( 263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 264 +))) 249 249 250 250 251 -[[image:1657249990869-686.png]] 252 252 268 +=== 2.3.6 Soil Conductivity (EC) === 253 253 254 254 ((( 255 - MQTTprotocolhas amuch higherpower consumption comparevsUDP/CoAP protocol.Pleasecheckthepoweranalyze documentandadjusttheuplink periodtoasuitableinterval.271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 256 256 ))) 257 257 274 +((( 275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 276 +))) 258 258 278 +((( 279 +Generally, the EC value of irrigation water is less than 800uS / cm. 280 +))) 259 259 260 -=== 2.2.7 Use TCP protocol to uplink data === 282 +((( 283 + 284 +))) 261 261 262 -This feature is supported since firmware version v110 286 +((( 287 + 288 +))) 263 263 290 +=== 2.3.7 MOD === 264 264 265 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 292 +Firmware version at least v2.1 supports changing mode. 267 267 268 - [[image:1657250217799-140.png]]294 +For example, bytes[10]=90 269 269 296 +mod=(bytes[10]>>7)&0x01=1. 270 270 271 -[[image:1657250255956-604.png]] 272 272 299 +**Downlink Command:** 273 273 301 +If payload = 0x0A00, workmode=0 274 274 275 - ===2.2.8ChangeUpdateInterval===303 +If** **payload =** **0x0A01, workmode=1 276 276 277 -User can use below command to change the (% style="color:green" %)**uplink interval**. 278 278 279 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 280 280 281 -((( 282 -(% style="color:red" %)**NOTE:** 283 -))) 307 +=== 2.3.8 Decode payload in The Things Network === 284 284 285 -((( 286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 287 -))) 309 +While using TTN network, you can add the payload format to decode the payload. 288 288 289 289 312 +[[image:1654505570700-128.png]] 290 290 291 -== 2.3 Uplink Payload == 314 +((( 315 +The payload decoder function for TTN is here: 316 +))) 292 292 293 -In this mode, uplink payload includes in total 18 bytes 294 - 295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 296 -|=(% style="width: 60px;" %)((( 297 -**Size(bytes)** 298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 300 - 301 301 ((( 302 - Ifwe use the MQTTclient tosubscribe tothisMQTT topic, we canseethe followinginformationwhenthe NSE01 uplink data.319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 303 303 ))) 304 304 305 305 306 - [[image:image-20220708111918-4.png]]323 +== 2.4 Uplink Interval == 307 307 325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 308 308 309 -The payload is ASCII string, representative same HEX: 310 310 311 -0x72403155615900640c7817075e0a8c02f900 where: 312 312 313 -* Device ID: 0x 724031556159 = 724031556159 314 -* Version: 0x0064=100=1.0.0 329 +== 2.5 Downlink Payload == 315 315 316 -* BAT: 0x0c78 = 3192 mV = 3.192V 317 -* Singal: 0x17 = 23 318 -* Soil Moisture: 0x075e= 1886 = 18.86 % 319 -* Soil Temperature:0x0a8c =2700=27 °C 320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 321 -* Interrupt: 0x00 = 0 331 +By default, LSE50 prints the downlink payload to console port. 322 322 323 - == 2.4 Payload Explanationand Sensor Interface==333 +[[image:image-20220606165544-8.png]] 324 324 325 325 326 -=== 2.4.1 Device ID === 327 - 328 328 ((( 329 - Bydefault, theDevice ID equaltothelast 6 bytesof IMEI.337 +(% style="color:blue" %)**Examples:** 330 330 ))) 331 331 332 332 ((( 333 - Usercan use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID341 + 334 334 ))) 335 335 336 -((( 337 - **Example:**344 +* ((( 345 +(% style="color:blue" %)**Set TDC** 338 338 ))) 339 339 340 340 ((( 341 - AT+DEUI=A84041F15612349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 342 342 ))) 343 343 344 344 ((( 345 - The Device ID is stored inanone-erase area, UpgradethefirmwareorrunAT+FDR won't erase Device ID.353 +Payload: 01 00 00 1E TDC=30S 346 346 ))) 347 347 348 - 349 - 350 -=== 2.4.2 Version Info === 351 - 352 352 ((( 353 - Specifythe software version: 0x64=100,meansfirmwareversion 1.00.357 +Payload: 01 00 00 3C TDC=60S 354 354 ))) 355 355 356 356 ((( 357 - Forexample: 0x00 64 : this device is NSE01 with firmware version 1.0.0.361 + 358 358 ))) 359 359 360 - 361 - 362 -=== 2.4.3 Battery Info === 363 - 364 -((( 365 -Check the battery voltage for LSE01. 364 +* ((( 365 +(% style="color:blue" %)**Reset** 366 366 ))) 367 367 368 368 ((( 369 - Ex1:0x0B45=2885mV369 +If payload = 0x04FF, it will reset the LSE01 370 370 ))) 371 371 372 -((( 373 -Ex2: 0x0B49 = 2889mV 374 -))) 375 375 373 +* (% style="color:blue" %)**CFM** 376 376 375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 377 377 378 -=== 2.4.4 Signal Strength === 379 379 380 -((( 381 -NB-IoT Network signal Strength. 382 -))) 383 383 384 -((( 385 -**Ex1: 0x1d = 29** 386 -))) 379 +== 2.6 Show Data in DataCake IoT Server == 387 387 388 388 ((( 389 - (%style="color:blue"%)**0**(%%)-113dBmorless382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 390 390 ))) 391 391 392 392 ((( 393 - (%style="color:blue" %)**1**(%%) -111dBm386 + 394 394 ))) 395 395 396 396 ((( 397 -(% style="color:blue" %)** 2...30**(%%)-109dBm...-53dBm390 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 398 398 ))) 399 399 400 400 ((( 401 -(% style="color:blue" %)** 31**-51dBmor greater394 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 402 402 ))) 403 403 404 -((( 405 -(% style="color:blue" %)**99** (%%) Not known or not detectable 406 -))) 407 407 398 +[[image:1654505857935-743.png]] 408 408 409 409 410 - ===2.4.5 Soil Moisture ===401 +[[image:1654505874829-548.png]] 411 411 412 -((( 413 -((( 414 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 415 -))) 416 -))) 417 417 418 -((( 419 -((( 420 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 421 -))) 422 -))) 404 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 423 423 424 -((( 425 - 426 -))) 406 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 427 427 428 -((( 429 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 430 -))) 431 431 409 +[[image:1654505905236-553.png]] 432 432 433 433 434 - ===2.4.6SoilTemperature===412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 435 435 436 -((( 437 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 438 -))) 414 +[[image:1654505925508-181.png]] 439 439 440 -((( 441 -**Example**: 442 -))) 443 443 444 -((( 445 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 446 -))) 447 447 448 -((( 449 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 450 -))) 418 +== 2.7 Frequency Plans == 451 451 420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 452 452 453 453 454 -=== 2. 4.7Soil Conductivity(EC) ===423 +=== 2.7.1 EU863-870 (EU868) === 455 455 456 -((( 457 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 458 -))) 425 +(% style="color:#037691" %)** Uplink:** 459 459 460 -((( 461 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 462 -))) 427 +868.1 - SF7BW125 to SF12BW125 463 463 464 -((( 465 -Generally, the EC value of irrigation water is less than 800uS / cm. 466 -))) 429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 467 467 468 -((( 469 - 470 -))) 431 +868.5 - SF7BW125 to SF12BW125 471 471 472 -((( 473 - 474 -))) 433 +867.1 - SF7BW125 to SF12BW125 475 475 476 - ===2.4.8DigitalInterrupt ===435 +867.3 - SF7BW125 to SF12BW125 477 477 478 -((( 479 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 480 -))) 437 +867.5 - SF7BW125 to SF12BW125 481 481 482 -((( 483 -The command is: 484 -))) 439 +867.7 - SF7BW125 to SF12BW125 485 485 486 -((( 487 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 488 -))) 441 +867.9 - SF7BW125 to SF12BW125 489 489 443 +868.8 - FSK 490 490 491 -((( 492 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 493 -))) 494 494 446 +(% style="color:#037691" %)** Downlink:** 495 495 496 -((( 497 -Example: 498 -))) 448 +Uplink channels 1-9 (RX1) 499 499 500 -((( 501 -0x(00): Normal uplink packet. 502 -))) 450 +869.525 - SF9BW125 (RX2 downlink only) 503 503 504 -((( 505 -0x(01): Interrupt Uplink Packet. 506 -))) 507 507 508 508 454 +=== 2.7.2 US902-928(US915) === 509 509 510 - ===2.4.9+5VOutput ===456 +Used in USA, Canada and South America. Default use CHE=2 511 511 512 -((( 513 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 514 -))) 458 +(% style="color:#037691" %)**Uplink:** 515 515 460 +903.9 - SF7BW125 to SF10BW125 516 516 517 -((( 518 -The 5V output time can be controlled by AT Command. 519 -))) 462 +904.1 - SF7BW125 to SF10BW125 520 520 521 -((( 522 -(% style="color:blue" %)**AT+5VT=1000** 523 -))) 464 +904.3 - SF7BW125 to SF10BW125 524 524 525 -((( 526 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 527 -))) 466 +904.5 - SF7BW125 to SF10BW125 528 528 468 +904.7 - SF7BW125 to SF10BW125 529 529 470 +904.9 - SF7BW125 to SF10BW125 530 530 531 - ==2.5DownlinkPayload ==472 +905.1 - SF7BW125 to SF10BW125 532 532 533 - Bydefault,NSE01prints the downlinkpayload to console port.474 +905.3 - SF7BW125 to SF10BW125 534 534 535 -[[image:image-20220708133731-5.png]] 536 536 477 +(% style="color:#037691" %)**Downlink:** 537 537 538 -((( 539 -(% style="color:blue" %)**Examples:** 540 -))) 479 +923.3 - SF7BW500 to SF12BW500 541 541 542 -((( 543 - 544 -))) 481 +923.9 - SF7BW500 to SF12BW500 545 545 546 -* ((( 547 -(% style="color:blue" %)**Set TDC** 548 -))) 483 +924.5 - SF7BW500 to SF12BW500 549 549 550 -((( 551 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 552 -))) 485 +925.1 - SF7BW500 to SF12BW500 553 553 554 -((( 555 -Payload: 01 00 00 1E TDC=30S 556 -))) 487 +925.7 - SF7BW500 to SF12BW500 557 557 558 -((( 559 -Payload: 01 00 00 3C TDC=60S 560 -))) 489 +926.3 - SF7BW500 to SF12BW500 561 561 562 -((( 563 - 564 -))) 491 +926.9 - SF7BW500 to SF12BW500 565 565 566 -* ((( 567 -(% style="color:blue" %)**Reset** 568 -))) 493 +927.5 - SF7BW500 to SF12BW500 569 569 570 -((( 571 -If payload = 0x04FF, it will reset the NSE01 572 -))) 495 +923.3 - SF12BW500(RX2 downlink only) 573 573 574 574 575 -* (% style="color:blue" %)**INTMOD** 576 576 577 -((( 578 -Downlink Payload: 06000003, Set AT+INTMOD=3 579 -))) 499 +=== 2.7.3 CN470-510 (CN470) === 580 580 501 +Used in China, Default use CHE=1 581 581 503 +(% style="color:#037691" %)**Uplink:** 582 582 583 - == 2.6LEDIndicator==505 +486.3 - SF7BW125 to SF12BW125 584 584 585 -((( 586 -The NSE01 has an internal LED which is to show the status of different state. 507 +486.5 - SF7BW125 to SF12BW125 587 587 509 +486.7 - SF7BW125 to SF12BW125 588 588 589 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 590 -* Then the LED will be on for 1 second means device is boot normally. 591 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 592 -* For each uplink probe, LED will be on for 500ms. 593 -))) 511 +486.9 - SF7BW125 to SF12BW125 594 594 513 +487.1 - SF7BW125 to SF12BW125 595 595 515 +487.3 - SF7BW125 to SF12BW125 596 596 517 +487.5 - SF7BW125 to SF12BW125 597 597 598 - == 2.7InstallationinSoil==519 +487.7 - SF7BW125 to SF12BW125 599 599 600 -__**Measurement the soil surface**__ 601 601 602 -((( 603 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 604 -))) 522 +(% style="color:#037691" %)**Downlink:** 605 605 606 - [[image:1657259653666-883.png]]524 +506.7 - SF7BW125 to SF12BW125 607 607 526 +506.9 - SF7BW125 to SF12BW125 608 608 609 -((( 610 - 528 +507.1 - SF7BW125 to SF12BW125 611 611 612 -((( 613 -Dig a hole with diameter > 20CM. 614 -))) 530 +507.3 - SF7BW125 to SF12BW125 615 615 616 -((( 617 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 618 -))) 619 -))) 532 +507.5 - SF7BW125 to SF12BW125 620 620 621 - [[image:1654506665940-119.png]]534 +507.7 - SF7BW125 to SF12BW125 622 622 623 -((( 624 - 625 -))) 536 +507.9 - SF7BW125 to SF12BW125 626 626 538 +508.1 - SF7BW125 to SF12BW125 627 627 628 - == 2.8FirmwareChangeLog==540 +505.3 - SF12BW125 (RX2 downlink only) 629 629 630 630 631 -Download URL & Firmware Change log 632 632 633 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]544 +=== 2.7.4 AU915-928(AU915) === 634 634 546 +Default use CHE=2 635 635 636 - UpgradeInstruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]548 +(% style="color:#037691" %)**Uplink:** 637 637 550 +916.8 - SF7BW125 to SF12BW125 638 638 552 +917.0 - SF7BW125 to SF12BW125 639 639 640 - == 2.9BatteryAnalysis ==554 +917.2 - SF7BW125 to SF12BW125 641 641 642 - === 2.9.1BatteryType ===556 +917.4 - SF7BW125 to SF12BW125 643 643 558 +917.6 - SF7BW125 to SF12BW125 644 644 560 +917.8 - SF7BW125 to SF12BW125 561 + 562 +918.0 - SF7BW125 to SF12BW125 563 + 564 +918.2 - SF7BW125 to SF12BW125 565 + 566 + 567 +(% style="color:#037691" %)**Downlink:** 568 + 569 +923.3 - SF7BW500 to SF12BW500 570 + 571 +923.9 - SF7BW500 to SF12BW500 572 + 573 +924.5 - SF7BW500 to SF12BW500 574 + 575 +925.1 - SF7BW500 to SF12BW500 576 + 577 +925.7 - SF7BW500 to SF12BW500 578 + 579 +926.3 - SF7BW500 to SF12BW500 580 + 581 +926.9 - SF7BW500 to SF12BW500 582 + 583 +927.5 - SF7BW500 to SF12BW500 584 + 585 +923.3 - SF12BW500(RX2 downlink only) 586 + 587 + 588 + 589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 590 + 591 +(% style="color:#037691" %)**Default Uplink channel:** 592 + 593 +923.2 - SF7BW125 to SF10BW125 594 + 595 +923.4 - SF7BW125 to SF10BW125 596 + 597 + 598 +(% style="color:#037691" %)**Additional Uplink Channel**: 599 + 600 +(OTAA mode, channel added by JoinAccept message) 601 + 602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 603 + 604 +922.2 - SF7BW125 to SF10BW125 605 + 606 +922.4 - SF7BW125 to SF10BW125 607 + 608 +922.6 - SF7BW125 to SF10BW125 609 + 610 +922.8 - SF7BW125 to SF10BW125 611 + 612 +923.0 - SF7BW125 to SF10BW125 613 + 614 +922.0 - SF7BW125 to SF10BW125 615 + 616 + 617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 618 + 619 +923.6 - SF7BW125 to SF10BW125 620 + 621 +923.8 - SF7BW125 to SF10BW125 622 + 623 +924.0 - SF7BW125 to SF10BW125 624 + 625 +924.2 - SF7BW125 to SF10BW125 626 + 627 +924.4 - SF7BW125 to SF10BW125 628 + 629 +924.6 - SF7BW125 to SF10BW125 630 + 631 + 632 +(% style="color:#037691" %)** Downlink:** 633 + 634 +Uplink channels 1-8 (RX1) 635 + 636 +923.2 - SF10BW125 (RX2) 637 + 638 + 639 + 640 +=== 2.7.6 KR920-923 (KR920) === 641 + 642 +Default channel: 643 + 644 +922.1 - SF7BW125 to SF12BW125 645 + 646 +922.3 - SF7BW125 to SF12BW125 647 + 648 +922.5 - SF7BW125 to SF12BW125 649 + 650 + 651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 652 + 653 +922.1 - SF7BW125 to SF12BW125 654 + 655 +922.3 - SF7BW125 to SF12BW125 656 + 657 +922.5 - SF7BW125 to SF12BW125 658 + 659 +922.7 - SF7BW125 to SF12BW125 660 + 661 +922.9 - SF7BW125 to SF12BW125 662 + 663 +923.1 - SF7BW125 to SF12BW125 664 + 665 +923.3 - SF7BW125 to SF12BW125 666 + 667 + 668 +(% style="color:#037691" %)**Downlink:** 669 + 670 +Uplink channels 1-7(RX1) 671 + 672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 673 + 674 + 675 + 676 +=== 2.7.7 IN865-867 (IN865) === 677 + 678 +(% style="color:#037691" %)** Uplink:** 679 + 680 +865.0625 - SF7BW125 to SF12BW125 681 + 682 +865.4025 - SF7BW125 to SF12BW125 683 + 684 +865.9850 - SF7BW125 to SF12BW125 685 + 686 + 687 +(% style="color:#037691" %) **Downlink:** 688 + 689 +Uplink channels 1-3 (RX1) 690 + 691 +866.550 - SF10BW125 (RX2) 692 + 693 + 694 + 695 + 696 +== 2.8 LED Indicator == 697 + 698 +The LSE01 has an internal LED which is to show the status of different state. 699 + 700 +* Blink once when device power on. 701 +* Solid ON for 5 seconds once device successful Join the network. 702 +* Blink once when device transmit a packet. 703 + 704 +== 2.9 Installation in Soil == 705 + 706 +**Measurement the soil surface** 707 + 708 + 709 +[[image:1654506634463-199.png]] 710 + 645 645 ((( 646 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 712 +((( 713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 647 647 ))) 715 +))) 648 648 649 649 718 + 719 +[[image:1654506665940-119.png]] 720 + 650 650 ((( 651 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.722 +Dig a hole with diameter > 20CM. 652 652 ))) 653 653 725 +((( 726 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 727 +))) 654 654 729 + 730 +== 2.10 Firmware Change Log == 731 + 655 655 ((( 656 - The battery relateddocumentsasbelow:733 +**Firmware download link:** 657 657 ))) 658 658 659 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]660 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]661 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]736 +((( 737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 738 +))) 662 662 663 663 ((( 664 - [[image:image-20220708140453-6.png]]741 + 665 665 ))) 666 666 744 +((( 745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 746 +))) 667 667 748 +((( 749 + 750 +))) 668 668 669 -=== 2.9.2 Power consumption Analyze === 752 +((( 753 +**V1.0.** 754 +))) 670 670 671 671 ((( 672 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.757 +Release 673 673 ))) 674 674 675 675 761 +== 2.11 Battery Analysis == 762 + 763 +=== 2.11.1 Battery Type === 764 + 676 676 ((( 677 - Instruction touse as below:766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 678 678 ))) 679 679 680 680 ((( 681 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]770 +The battery is designed to last for more than 5 years for the LSN50. 682 682 ))) 683 683 684 - 685 685 ((( 686 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 774 +((( 775 +The battery-related documents are as below: 687 687 ))) 777 +))) 688 688 689 689 * ((( 690 - Product Model780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 691 691 ))) 692 692 * ((( 693 - UplinkInterval783 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 694 694 ))) 695 695 * ((( 696 - WorkingMode786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 697 697 ))) 698 698 699 -((( 700 -And the Life expectation in difference case will be shown on the right. 701 -))) 789 + [[image:image-20220610172436-1.png]] 702 702 703 -[[image:image-20220708141352-7.jpeg]] 704 704 705 705 793 +=== 2.11.2 Battery Note === 706 706 707 -=== 2.9.3 Battery Note === 708 - 709 709 ((( 710 710 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 711 711 ))) ... ... @@ -712,176 +712,302 @@ 712 712 713 713 714 714 715 -=== 2. 9.4Replace the battery ===801 +=== 2.11.3 Replace the battery === 716 716 717 717 ((( 718 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).804 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 719 719 ))) 720 720 721 - 722 - 723 -= 3. Access NB-IoT Module = 724 - 725 725 ((( 726 - Userscan directly accesstheATcommand set of theNB-IoTmodule.808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 727 727 ))) 728 728 729 729 ((( 730 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 731 731 ))) 732 732 733 -[[image:1657261278785-153.png]] 734 734 735 735 817 += 3. Using the AT Commands = 736 736 737 -= 4.UsingtheAT Commands =819 +== 3.1 Access AT Commands == 738 738 739 -== 4.1 Access AT Commands == 740 740 741 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 742 742 824 +[[image:1654501986557-872.png||height="391" width="800"]] 743 743 744 -AT+<CMD>? : Help on <CMD> 745 745 746 - AT+<CMD>: Run<CMD>827 +Or if you have below board, use below connection: 747 747 748 -AT+<CMD>=<value> : Set the value 749 749 750 - AT+<CMD>=?:Get the value830 +[[image:1654502005655-729.png||height="503" width="801"]] 751 751 752 752 833 + 834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 835 + 836 + 837 + [[image:1654502050864-459.png||height="564" width="806"]] 838 + 839 + 840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 841 + 842 + 843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 844 + 845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 846 + 847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 848 + 849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 850 + 851 + 753 753 (% style="color:#037691" %)**General Commands**(%%) 754 754 755 -AT 854 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 756 756 757 -AT? 856 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 758 758 759 -ATZ 858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 760 760 761 -AT+TDC 860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 762 762 763 -AT+CFG : Print all configurations 764 764 765 - AT+CFGMOD: Workingmode selection863 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 766 766 767 -AT+I NTMOD:Setthe trigger interruptmode865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 768 768 769 -AT+ 5VTSetextend the timeof5V power867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 770 770 771 -AT+P ROChooseagreement869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 772 772 773 -AT+ WEIGREGet weightorsetweight to 0871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 774 774 775 -AT+ WEIGAPGet or SettheGapValue of weight873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 776 776 777 -AT+ RXDL: Extendthe sendingandreceivingtime875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 778 778 779 -AT+ CNTFACGettcountingparameters877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 780 780 781 -AT+ SERVADDR:ServerAddress879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 782 782 881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 783 783 784 -(% style="color:# 037691" %)**COAPManagement**883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 785 785 786 -AT+ URIsourceparameters885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 787 787 887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 788 788 789 -(% style="color:# 037691" %)**UDPManagement**889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 790 790 791 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 792 792 893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 793 793 794 -(% style="color:# 037691" %)**MQTTManagement**895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 795 795 796 -AT+CLIENT : Get or Set MQTT client 797 797 798 - AT+UNAMEGetSetMQTT Username898 +(% style="color:#037691" %)**LoRa Network Management** 799 799 800 -AT+ PWDGetor SetMQTT password900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 801 801 802 -AT+ PUBTOPICGetorSetMQTTpublishtopic902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 803 803 804 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 805 805 906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 806 806 807 -(% style="color:# 037691" %)**Information**908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 808 808 809 -AT+F DRctoryDataReset910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 810 810 811 -AT+ PWORDSerialAccessPassword912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 812 812 914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 813 813 916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 814 814 815 -= 5.FAQ=918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 816 816 817 -= =5.1HowtoUpgradeFirmware==920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 818 818 922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 819 819 924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 929 + 930 + 931 +(% style="color:#037691" %)**Information** 932 + 933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 934 + 935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 944 + 945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 946 + 947 + 948 += 4. FAQ = 949 + 950 +== 4.1 How to change the LoRa Frequency Bands/Region? == 951 + 820 820 ((( 821 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 954 +When downloading the images, choose the required image file for download. 822 822 ))) 823 823 824 824 ((( 825 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]958 + 826 826 ))) 827 827 828 828 ((( 829 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 830 830 ))) 831 831 965 +((( 966 + 967 +))) 832 832 969 +((( 970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 971 +))) 833 833 834 -== 5.2 Can I calibrate NSE01 to different soil types? == 973 +((( 974 + 975 +))) 835 835 836 836 ((( 837 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 838 838 ))) 839 839 981 +[[image:image-20220606154726-3.png]] 840 840 841 -= 6. Trouble Shooting = 842 842 843 - ==6.1 Connection problemwhenuploadingfirmware==984 +When you use the TTN network, the US915 frequency bands use are: 844 844 986 +* 903.9 - SF7BW125 to SF10BW125 987 +* 904.1 - SF7BW125 to SF10BW125 988 +* 904.3 - SF7BW125 to SF10BW125 989 +* 904.5 - SF7BW125 to SF10BW125 990 +* 904.7 - SF7BW125 to SF10BW125 991 +* 904.9 - SF7BW125 to SF10BW125 992 +* 905.1 - SF7BW125 to SF10BW125 993 +* 905.3 - SF7BW125 to SF10BW125 994 +* 904.6 - SF8BW500 845 845 846 846 ((( 847 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 998 + 999 +* (% style="color:#037691" %)**AT+CHE=2** 1000 +* (% style="color:#037691" %)**ATZ** 848 848 ))) 849 849 850 -(% class="wikigeneratedid" %) 851 851 ((( 852 852 1005 + 1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 853 853 ))) 854 854 1009 +((( 1010 + 1011 +))) 855 855 856 -== 6.2 AT Command input doesn't work == 1013 +((( 1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1015 +))) 857 857 1017 +[[image:image-20220606154825-4.png]] 1018 + 1019 + 1020 +== 4.2 Can I calibrate LSE01 to different soil types? == 1021 + 1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1023 + 1024 + 1025 += 5. Trouble Shooting = 1026 + 1027 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1028 + 1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1030 + 1031 + 1032 +== 5.2 AT Command input doesn't work == 1033 + 858 858 ((( 859 859 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1036 +))) 860 860 861 - 1038 + 1039 +== 5.3 Device rejoin in at the second uplink packet == 1040 + 1041 +(% style="color:#4f81bd" %)**Issue describe as below:** 1042 + 1043 +[[image:1654500909990-784.png]] 1044 + 1045 + 1046 +(% style="color:#4f81bd" %)**Cause for this issue:** 1047 + 1048 +((( 1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 862 862 ))) 863 863 864 864 865 - =7. OrderInfo=1053 +(% style="color:#4f81bd" %)**Solution: ** 866 866 1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 867 867 868 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1057 +[[image:1654500929571-736.png||height="458" width="832"]] 869 869 870 870 1060 += 6. Order Info = 1061 + 1062 + 1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1064 + 1065 + 1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1067 + 1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1074 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1076 + 1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1078 + 1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1081 + 871 871 (% class="wikigeneratedid" %) 872 872 ((( 873 873 874 874 ))) 875 875 876 -= 8.1087 += 7. Packing Info = 877 877 878 878 ((( 879 879 880 880 881 881 (% style="color:#037691" %)**Package Includes**: 1093 +))) 882 882 883 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1884 - *Externalantennax 11095 +* ((( 1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 885 885 ))) 886 886 887 887 ((( ... ... @@ -888,19 +888,24 @@ 888 888 889 889 890 890 (% style="color:#037691" %)**Dimension and weight**: 1103 +))) 891 891 892 -* Size: 195 x 125 x 55 mm893 - * Weight:420g1105 +* ((( 1106 +Device Size: cm 894 894 ))) 1108 +* ((( 1109 +Device Weight: g 1110 +))) 1111 +* ((( 1112 +Package Size / pcs : cm 1113 +))) 1114 +* ((( 1115 +Weight / pcs : g 895 895 896 -((( 897 897 898 - 899 - 900 - 901 901 ))) 902 902 903 -= 9.1120 += 8. Support = 904 904 905 905 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 906 906 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.0 KB - Content