Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 68.2
edited by Xiaoling
on 2022/07/09 08:41
Change comment: There is no comment for this version
To version 44.2
edited by Xiaoling
on 2022/07/08 10:15
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 3  
4 4  
... ... @@ -8,30 +8,30 @@
8 8  
9 9  
10 10  
11 -**Table of Contents:**
12 12  
13 13  
14 +**Table of Contents:**
14 14  
15 15  
16 16  
17 17  
18 18  
20 +
19 19  = 1.  Introduction =
20 20  
21 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
23 +== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
22 22  
23 23  (((
24 24  
25 25  
26 -(((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
33 -)))
28 +Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
34 34  
30 +It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
31 +
32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
33 +
34 +NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
35 +
35 35  
36 36  )))
37 37  
... ... @@ -42,8 +42,9 @@
42 42  
43 43  
44 44  
45 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
46 46  
48 +
47 47  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
48 48  * Monitor Soil Moisture
49 49  * Monitor Soil Temperature
... ... @@ -57,6 +57,8 @@
57 57  * Micro SIM card slot for NB-IoT SIM
58 58  * 8500mAh Battery for long term use
59 59  
62 +
63 +
60 60  == 1.3  Specification ==
61 61  
62 62  
... ... @@ -65,6 +65,7 @@
65 65  * Supply Voltage: 2.1v ~~ 3.6v
66 66  * Operating Temperature: -40 ~~ 85°C
67 67  
72 +
68 68  (% style="color:#037691" %)**NB-IoT Spec:**
69 69  
70 70  * - B1 @H-FDD: 2100MHz
... ... @@ -74,8 +74,9 @@
74 74  * - B20 @H-FDD: 800MHz
75 75  * - B28 @H-FDD: 700MHz
76 76  
77 -Probe(% style="color:#037691" %)** Specification:**
78 78  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
79 79  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
80 80  
81 81  [[image:image-20220708101224-1.png]]
... ... @@ -96,616 +96,696 @@
96 96  
97 97  
98 98  
99 -= 2.  Use NSE01 to communicate with IoT Server =
105 += 2. Configure LSE01 to connect to LoRaWAN network =
100 100  
101 -== 2.1  How it works ==
107 +== 2.1 How it works ==
102 102  
103 -
104 104  (((
105 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
110 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
106 106  )))
107 107  
108 -
109 109  (((
110 -The diagram below shows the working flow in default firmware of NSE01:
114 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
111 111  )))
112 112  
113 -[[image:image-20220708101605-2.png]]
114 114  
115 -(((
116 -
117 -)))
118 118  
119 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
119 119  
121 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 120  
121 -== 2.2 ​ Configure the NSE01 ==
122 122  
124 +[[image:1654503992078-669.png]]
123 123  
124 -=== 2.2.1 Test Requirement ===
125 125  
127 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 126  
127 -(((
128 -To use NSE01 in your city, make sure meet below requirements:
129 -)))
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
130 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
132 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
134 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
136 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
138 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
141 +[[image:1654504596150-405.png]]
145 145  
146 -(((
147 -Insert the NB-IoT Card get from your provider.
148 -)))
149 149  
150 -(((
151 -User need to take out the NB-IoT module and insert the SIM card like below:
152 -)))
153 153  
145 +**Add APP KEY and DEV EUI**
154 154  
155 -[[image:1657249468462-536.png]]
147 +[[image:1654504683289-357.png]]
156 156  
157 157  
158 158  
159 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
151 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 160  
161 -(((
162 -(((
163 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 -)))
165 -)))
166 166  
154 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
167 167  
168 -**Connection:**
156 +[[image:image-20220606163915-7.png]]
169 169  
170 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
171 171  
172 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
159 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
173 173  
174 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
161 +[[image:1654504778294-788.png]]
175 175  
176 176  
177 -In the PC, use below serial tool settings:
178 178  
179 -* Baud:  (% style="color:green" %)**9600**
180 -* Data bits:** (% style="color:green" %)8(%%)**
181 -* Stop bits: (% style="color:green" %)**1**
182 -* Parity:  (% style="color:green" %)**None**
183 -* Flow Control: (% style="color:green" %)**None**
165 +== 2.3 Uplink Payload ==
184 184  
185 -(((
186 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 -)))
188 188  
189 -[[image:image-20220708110657-3.png]]
168 +=== 2.3.1 MOD~=0(Default Mode) ===
190 190  
170 +LSE01 will uplink payload via LoRaWAN with below payload format: 
171 +
191 191  (((
192 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
173 +Uplink payload includes in total 11 bytes.
193 193  )))
194 194  
176 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
177 +|(((
178 +**Size**
195 195  
180 +**(bytes)**
181 +)))|**2**|**2**|**2**|**2**|**2**|**1**
182 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
183 +Temperature
196 196  
197 -=== 2.2.4 Use CoAP protocol to uplink data ===
185 +(Reserve, Ignore now)
186 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
187 +MOD & Digital Interrupt
198 198  
199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
189 +(Optional)
190 +)))
200 200  
192 +=== 2.3.2 MOD~=1(Original value) ===
201 201  
202 -**Use below commands:**
194 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
203 203  
204 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
196 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
197 +|(((
198 +**Size**
207 207  
208 -For parameter description, please refer to AT command set
200 +**(bytes)**
201 +)))|**2**|**2**|**2**|**2**|**2**|**1**
202 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
203 +Temperature
209 209  
210 -[[image:1657249793983-486.png]]
205 +(Reserve, Ignore now)
206 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
207 +MOD & Digital Interrupt
211 211  
209 +(Optional)
210 +)))
212 212  
213 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
212 +=== 2.3.3 Battery Info ===
214 214  
215 -[[image:1657249831934-534.png]]
214 +(((
215 +Check the battery voltage for LSE01.
216 +)))
216 216  
218 +(((
219 +Ex1: 0x0B45 = 2885mV
220 +)))
217 217  
222 +(((
223 +Ex2: 0x0B49 = 2889mV
224 +)))
218 218  
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
220 220  
221 -This feature is supported since firmware version v1.0.1
222 222  
228 +=== 2.3.4 Soil Moisture ===
223 223  
224 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
230 +(((
231 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
232 +)))
227 227  
228 -[[image:1657249864775-321.png]]
234 +(((
235 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
236 +)))
229 229  
238 +(((
239 +
240 +)))
230 230  
231 -[[image:1657249930215-289.png]]
242 +(((
243 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
244 +)))
232 232  
233 233  
234 234  
235 -=== 2.2.6 Use MQTT protocol to uplink data ===
248 +=== 2.3.5 Soil Temperature ===
236 236  
237 -This feature is supported since firmware version v110
250 +(((
251 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
252 +)))
238 238  
254 +(((
255 +**Example**:
256 +)))
239 239  
240 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
258 +(((
259 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
260 +)))
247 247  
248 -[[image:1657249978444-674.png]]
262 +(((
263 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
264 +)))
249 249  
250 250  
251 -[[image:1657249990869-686.png]]
252 252  
268 +=== 2.3.6 Soil Conductivity (EC) ===
253 253  
254 254  (((
255 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
271 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
256 256  )))
257 257  
274 +(((
275 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
276 +)))
258 258  
278 +(((
279 +Generally, the EC value of irrigation water is less than 800uS / cm.
280 +)))
259 259  
260 -=== 2.2.7 Use TCP protocol to uplink data ===
282 +(((
283 +
284 +)))
261 261  
262 -This feature is supported since firmware version v110
286 +(((
287 +
288 +)))
263 263  
290 +=== 2.3.7 MOD ===
264 264  
265 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
292 +Firmware version at least v2.1 supports changing mode.
267 267  
268 -[[image:1657250217799-140.png]]
294 +For example, bytes[10]=90
269 269  
296 +mod=(bytes[10]>>7)&0x01=1.
270 270  
271 -[[image:1657250255956-604.png]]
272 272  
299 +**Downlink Command:**
273 273  
301 +If payload = 0x0A00, workmode=0
274 274  
275 -=== 2.2.8 Change Update Interval ===
303 +If** **payload =** **0x0A01, workmode=1
276 276  
277 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 278  
279 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
280 280  
281 -(((
282 -(% style="color:red" %)**NOTE:**
283 -)))
307 +=== 2.3.8 ​Decode payload in The Things Network ===
284 284  
285 -(((
286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 -)))
309 +While using TTN network, you can add the payload format to decode the payload.
288 288  
289 289  
312 +[[image:1654505570700-128.png]]
290 290  
291 -== 2.3  Uplink Payload ==
314 +(((
315 +The payload decoder function for TTN is here:
316 +)))
292 292  
293 -In this mode, uplink payload includes in total 18 bytes
294 -
295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 -|=(% style="width: 60px;" %)(((
297 -**Size(bytes)**
298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
300 -
301 301  (((
302 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
319 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
303 303  )))
304 304  
305 305  
306 -[[image:image-20220708111918-4.png]]
323 +== 2.4 Uplink Interval ==
307 307  
325 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
308 308  
309 -The payload is ASCII string, representative same HEX:
310 310  
311 -0x72403155615900640c7817075e0a8c02f900 where:
312 312  
313 -* Device ID: 0x 724031556159 = 724031556159
314 -* Version: 0x0064=100=1.0.0
329 +== 2.5 Downlink Payload ==
315 315  
316 -* BAT: 0x0c78 = 3192 mV = 3.192V
317 -* Singal: 0x17 = 23
318 -* Soil Moisture: 0x075e= 1886 = 18.86  %
319 -* Soil Temperature:0x0a8c =2700=27 °C
320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 -* Interrupt: 0x00 = 0
331 +By default, LSE50 prints the downlink payload to console port.
322 322  
323 -== 2.4  Payload Explanation and Sensor Interface ==
333 +[[image:image-20220606165544-8.png]]
324 324  
325 325  
326 -=== 2.4.1  Device ID ===
327 -
328 328  (((
329 -By default, the Device ID equal to the last 6 bytes of IMEI.
337 +(% style="color:blue" %)**Examples:**
330 330  )))
331 331  
332 332  (((
333 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
341 +
334 334  )))
335 335  
336 -(((
337 -**Example:**
344 +* (((
345 +(% style="color:blue" %)**Set TDC**
338 338  )))
339 339  
340 340  (((
341 -AT+DEUI=A84041F15612
349 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
342 342  )))
343 343  
344 344  (((
345 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
353 +Payload:    01 00 00 1E    TDC=30S
346 346  )))
347 347  
348 -
349 -
350 -=== 2.4.2  Version Info ===
351 -
352 352  (((
353 -Specify the software version: 0x64=100, means firmware version 1.00.
357 +Payload:    01 00 00 3C    TDC=60S
354 354  )))
355 355  
356 356  (((
357 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
361 +
358 358  )))
359 359  
360 -
361 -
362 -=== 2.4.3  Battery Info ===
363 -
364 -(((
365 -Check the battery voltage for LSE01.
364 +* (((
365 +(% style="color:blue" %)**Reset**
366 366  )))
367 367  
368 368  (((
369 -Ex1: 0x0B45 = 2885mV
369 +If payload = 0x04FF, it will reset the LSE01
370 370  )))
371 371  
372 -(((
373 -Ex2: 0x0B49 = 2889mV
374 -)))
375 375  
373 +* (% style="color:blue" %)**CFM**
376 376  
375 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
377 377  
378 -=== 2.4.4  Signal Strength ===
379 379  
380 -(((
381 -NB-IoT Network signal Strength.
382 -)))
383 383  
384 -(((
385 -**Ex1: 0x1d = 29**
386 -)))
379 +== 2.6 ​Show Data in DataCake IoT Server ==
387 387  
388 388  (((
389 -(% style="color:blue" %)**0**(%%)  -113dBm or less
382 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
390 390  )))
391 391  
392 392  (((
393 -(% style="color:blue" %)**1**(%%)  -111dBm
386 +
394 394  )))
395 395  
396 396  (((
397 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
390 +(% style="color:blue" %)**Step 1**(%%) Be sure that your device is programmed and properly connected to the network at this time.
398 398  )))
399 399  
400 400  (((
401 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
394 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
402 402  )))
403 403  
404 -(((
405 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
406 -)))
407 407  
398 +[[image:1654505857935-743.png]]
408 408  
409 409  
410 -=== 2.4.5  Soil Moisture ===
401 +[[image:1654505874829-548.png]]
411 411  
412 -(((
413 -(((
414 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
415 -)))
416 -)))
417 417  
418 -(((
419 -(((
420 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
421 -)))
422 -)))
404 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
423 423  
424 -(((
425 -
426 -)))
406 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
427 427  
428 -(((
429 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
430 -)))
431 431  
409 +[[image:1654505905236-553.png]]
432 432  
433 433  
434 -=== 2.4.6  Soil Temperature ===
412 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
435 435  
436 -(((
437 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 -)))
414 +[[image:1654505925508-181.png]]
439 439  
440 -(((
441 -**Example**:
442 -)))
443 443  
444 -(((
445 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 -)))
447 447  
448 -(((
449 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 -)))
418 +== 2.7 Frequency Plans ==
451 451  
420 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
452 452  
453 453  
454 -=== 2.4.7  Soil Conductivity (EC) ===
423 +=== 2.7.1 EU863-870 (EU868) ===
455 455  
456 -(((
457 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 -)))
425 +(% style="color:#037691" %)** Uplink:**
459 459  
460 -(((
461 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 -)))
427 +868.1 - SF7BW125 to SF12BW125
463 463  
464 -(((
465 -Generally, the EC value of irrigation water is less than 800uS / cm.
466 -)))
429 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
467 467  
468 -(((
469 -
470 -)))
431 +868.5 - SF7BW125 to SF12BW125
471 471  
472 -(((
473 -
474 -)))
433 +867.1 - SF7BW125 to SF12BW125
475 475  
476 -=== 2.4.8  Digital Interrupt ===
435 +867.3 - SF7BW125 to SF12BW125
477 477  
478 -(((
479 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 -)))
437 +867.5 - SF7BW125 to SF12BW125
481 481  
482 -(((
483 -The command is:
484 -)))
439 +867.7 - SF7BW125 to SF12BW125
485 485  
486 -(((
487 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 -)))
441 +867.9 - SF7BW125 to SF12BW125
489 489  
443 +868.8 - FSK
490 490  
491 -(((
492 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 -)))
494 494  
446 +(% style="color:#037691" %)** Downlink:**
495 495  
496 -(((
497 -Example:
498 -)))
448 +Uplink channels 1-9 (RX1)
499 499  
500 -(((
501 -0x(00): Normal uplink packet.
502 -)))
450 +869.525 - SF9BW125 (RX2 downlink only)
503 503  
504 -(((
505 -0x(01): Interrupt Uplink Packet.
506 -)))
507 507  
508 508  
454 +=== 2.7.2 US902-928(US915) ===
509 509  
510 -=== 2.4.9  ​+5V Output ===
456 +Used in USA, Canada and South America. Default use CHE=2
511 511  
512 -(((
513 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 -)))
458 +(% style="color:#037691" %)**Uplink:**
515 515  
460 +903.9 - SF7BW125 to SF10BW125
516 516  
517 -(((
518 -The 5V output time can be controlled by AT Command.
519 -)))
462 +904.1 - SF7BW125 to SF10BW125
520 520  
521 -(((
522 -(% style="color:blue" %)**AT+5VT=1000**
523 -)))
464 +904.3 - SF7BW125 to SF10BW125
524 524  
525 -(((
526 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 -)))
466 +904.5 - SF7BW125 to SF10BW125
528 528  
468 +904.7 - SF7BW125 to SF10BW125
529 529  
470 +904.9 - SF7BW125 to SF10BW125
530 530  
531 -== 2.5  Downlink Payload ==
472 +905.1 - SF7BW125 to SF10BW125
532 532  
533 -By default, NSE01 prints the downlink payload to console port.
474 +905.3 - SF7BW125 to SF10BW125
534 534  
535 -[[image:image-20220708133731-5.png]]
536 536  
477 +(% style="color:#037691" %)**Downlink:**
537 537  
538 -(((
539 -(% style="color:blue" %)**Examples:**
540 -)))
479 +923.3 - SF7BW500 to SF12BW500
541 541  
542 -(((
543 -
544 -)))
481 +923.9 - SF7BW500 to SF12BW500
545 545  
546 -* (((
547 -(% style="color:blue" %)**Set TDC**
548 -)))
483 +924.5 - SF7BW500 to SF12BW500
549 549  
550 -(((
551 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 -)))
485 +925.1 - SF7BW500 to SF12BW500
553 553  
554 -(((
555 -Payload:    01 00 00 1E    TDC=30S
556 -)))
487 +925.7 - SF7BW500 to SF12BW500
557 557  
558 -(((
559 -Payload:    01 00 00 3C    TDC=60S
560 -)))
489 +926.3 - SF7BW500 to SF12BW500
561 561  
562 -(((
563 -
564 -)))
491 +926.9 - SF7BW500 to SF12BW500
565 565  
566 -* (((
567 -(% style="color:blue" %)**Reset**
568 -)))
493 +927.5 - SF7BW500 to SF12BW500
569 569  
570 -(((
571 -If payload = 0x04FF, it will reset the NSE01
572 -)))
495 +923.3 - SF12BW500(RX2 downlink only)
573 573  
574 574  
575 -* (% style="color:blue" %)**INTMOD**
576 576  
577 -(((
578 -Downlink Payload: 06000003, Set AT+INTMOD=3
579 -)))
499 +=== 2.7.3 CN470-510 (CN470) ===
580 580  
501 +Used in China, Default use CHE=1
581 581  
503 +(% style="color:#037691" %)**Uplink:**
582 582  
583 -== 2.6  ​LED Indicator ==
505 +486.3 - SF7BW125 to SF12BW125
584 584  
585 -(((
586 -The NSE01 has an internal LED which is to show the status of different state.
507 +486.5 - SF7BW125 to SF12BW125
587 587  
509 +486.7 - SF7BW125 to SF12BW125
588 588  
589 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 -* Then the LED will be on for 1 second means device is boot normally.
591 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 -* For each uplink probe, LED will be on for 500ms.
593 -)))
511 +486.9 - SF7BW125 to SF12BW125
594 594  
513 +487.1 - SF7BW125 to SF12BW125
595 595  
515 +487.3 - SF7BW125 to SF12BW125
596 596  
517 +487.5 - SF7BW125 to SF12BW125
597 597  
598 -== 2.7  Installation in Soil ==
519 +487.7 - SF7BW125 to SF12BW125
599 599  
600 -__**Measurement the soil surface**__
601 601  
602 -(((
603 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 -)))
522 +(% style="color:#037691" %)**Downlink:**
605 605  
606 -[[image:1657259653666-883.png]]
524 +506.7 - SF7BW125 to SF12BW125
607 607  
526 +506.9 - SF7BW125 to SF12BW125
608 608  
609 -(((
610 -
528 +507.1 - SF7BW125 to SF12BW125
611 611  
612 -(((
613 -Dig a hole with diameter > 20CM.
614 -)))
530 +507.3 - SF7BW125 to SF12BW125
615 615  
616 -(((
617 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 -)))
619 -)))
532 +507.5 - SF7BW125 to SF12BW125
620 620  
621 -[[image:1654506665940-119.png]]
534 +507.7 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -
625 -)))
536 +507.9 - SF7BW125 to SF12BW125
626 626  
538 +508.1 - SF7BW125 to SF12BW125
627 627  
628 -== 2. Firmware Change Log ==
540 +505.3 - SF12BW125 (RX2 downlink only)
629 629  
630 630  
631 -Download URL & Firmware Change log
632 632  
633 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
544 +=== 2.7.4 AU915-928(AU915) ===
634 634  
546 +Default use CHE=2
635 635  
636 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
548 +(% style="color:#037691" %)**Uplink:**
637 637  
550 +916.8 - SF7BW125 to SF12BW125
638 638  
552 +917.0 - SF7BW125 to SF12BW125
639 639  
640 -== 2.9  Battery Analysis ==
554 +917.2 - SF7BW125 to SF12BW125
641 641  
642 -=== 2.9.1  Battery Type ===
556 +917.4 - SF7BW125 to SF12BW125
643 643  
558 +917.6 - SF7BW125 to SF12BW125
644 644  
560 +917.8 - SF7BW125 to SF12BW125
561 +
562 +918.0 - SF7BW125 to SF12BW125
563 +
564 +918.2 - SF7BW125 to SF12BW125
565 +
566 +
567 +(% style="color:#037691" %)**Downlink:**
568 +
569 +923.3 - SF7BW500 to SF12BW500
570 +
571 +923.9 - SF7BW500 to SF12BW500
572 +
573 +924.5 - SF7BW500 to SF12BW500
574 +
575 +925.1 - SF7BW500 to SF12BW500
576 +
577 +925.7 - SF7BW500 to SF12BW500
578 +
579 +926.3 - SF7BW500 to SF12BW500
580 +
581 +926.9 - SF7BW500 to SF12BW500
582 +
583 +927.5 - SF7BW500 to SF12BW500
584 +
585 +923.3 - SF12BW500(RX2 downlink only)
586 +
587 +
588 +
589 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
590 +
591 +(% style="color:#037691" %)**Default Uplink channel:**
592 +
593 +923.2 - SF7BW125 to SF10BW125
594 +
595 +923.4 - SF7BW125 to SF10BW125
596 +
597 +
598 +(% style="color:#037691" %)**Additional Uplink Channel**:
599 +
600 +(OTAA mode, channel added by JoinAccept message)
601 +
602 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
603 +
604 +922.2 - SF7BW125 to SF10BW125
605 +
606 +922.4 - SF7BW125 to SF10BW125
607 +
608 +922.6 - SF7BW125 to SF10BW125
609 +
610 +922.8 - SF7BW125 to SF10BW125
611 +
612 +923.0 - SF7BW125 to SF10BW125
613 +
614 +922.0 - SF7BW125 to SF10BW125
615 +
616 +
617 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
618 +
619 +923.6 - SF7BW125 to SF10BW125
620 +
621 +923.8 - SF7BW125 to SF10BW125
622 +
623 +924.0 - SF7BW125 to SF10BW125
624 +
625 +924.2 - SF7BW125 to SF10BW125
626 +
627 +924.4 - SF7BW125 to SF10BW125
628 +
629 +924.6 - SF7BW125 to SF10BW125
630 +
631 +
632 +(% style="color:#037691" %)** Downlink:**
633 +
634 +Uplink channels 1-8 (RX1)
635 +
636 +923.2 - SF10BW125 (RX2)
637 +
638 +
639 +
640 +=== 2.7.6 KR920-923 (KR920) ===
641 +
642 +Default channel:
643 +
644 +922.1 - SF7BW125 to SF12BW125
645 +
646 +922.3 - SF7BW125 to SF12BW125
647 +
648 +922.5 - SF7BW125 to SF12BW125
649 +
650 +
651 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
652 +
653 +922.1 - SF7BW125 to SF12BW125
654 +
655 +922.3 - SF7BW125 to SF12BW125
656 +
657 +922.5 - SF7BW125 to SF12BW125
658 +
659 +922.7 - SF7BW125 to SF12BW125
660 +
661 +922.9 - SF7BW125 to SF12BW125
662 +
663 +923.1 - SF7BW125 to SF12BW125
664 +
665 +923.3 - SF7BW125 to SF12BW125
666 +
667 +
668 +(% style="color:#037691" %)**Downlink:**
669 +
670 +Uplink channels 1-7(RX1)
671 +
672 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
673 +
674 +
675 +
676 +=== 2.7.7 IN865-867 (IN865) ===
677 +
678 +(% style="color:#037691" %)** Uplink:**
679 +
680 +865.0625 - SF7BW125 to SF12BW125
681 +
682 +865.4025 - SF7BW125 to SF12BW125
683 +
684 +865.9850 - SF7BW125 to SF12BW125
685 +
686 +
687 +(% style="color:#037691" %) **Downlink:**
688 +
689 +Uplink channels 1-3 (RX1)
690 +
691 +866.550 - SF10BW125 (RX2)
692 +
693 +
694 +
695 +
696 +== 2.8 LED Indicator ==
697 +
698 +The LSE01 has an internal LED which is to show the status of different state.
699 +
700 +* Blink once when device power on.
701 +* Solid ON for 5 seconds once device successful Join the network.
702 +* Blink once when device transmit a packet.
703 +
704 +== 2.9 Installation in Soil ==
705 +
706 +**Measurement the soil surface**
707 +
708 +
709 +[[image:1654506634463-199.png]] ​
710 +
645 645  (((
646 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
712 +(((
713 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 647  )))
715 +)))
648 648  
649 649  
718 +
719 +[[image:1654506665940-119.png]]
720 +
650 650  (((
651 -The battery is designed to last for several years depends on the actually use environment and update interval. 
722 +Dig a hole with diameter > 20CM.
652 652  )))
653 653  
725 +(((
726 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
727 +)))
654 654  
729 +
730 +== 2.10 ​Firmware Change Log ==
731 +
655 655  (((
656 -The battery related documents as below:
733 +**Firmware download link:**
657 657  )))
658 658  
659 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
736 +(((
737 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
738 +)))
662 662  
663 663  (((
664 -[[image:image-20220708140453-6.png]]
741 +
665 665  )))
666 666  
744 +(((
745 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
746 +)))
667 667  
748 +(((
749 +
750 +)))
668 668  
669 -=== 2.9.2  Power consumption Analyze ===
752 +(((
753 +**V1.0.**
754 +)))
670 670  
671 671  (((
672 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
757 +Release
673 673  )))
674 674  
675 675  
761 +== 2.11 ​Battery Analysis ==
762 +
763 +=== 2.11.1 ​Battery Type ===
764 +
676 676  (((
677 -Instruction to use as below:
766 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
678 678  )))
679 679  
680 680  (((
681 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
770 +The battery is designed to last for more than 5 years for the LSN50.
682 682  )))
683 683  
684 -
685 685  (((
686 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
774 +(((
775 +The battery-related documents are as below:
687 687  )))
777 +)))
688 688  
689 689  * (((
690 -Product Model
780 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
691 691  )))
692 692  * (((
693 -Uplink Interval
783 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
694 694  )))
695 695  * (((
696 -Working Mode
786 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
697 697  )))
698 698  
699 -(((
700 -And the Life expectation in difference case will be shown on the right.
701 -)))
789 + [[image:image-20220610172436-1.png]]
702 702  
703 -[[image:image-20220708141352-7.jpeg]]
704 704  
705 705  
793 +=== 2.11.2 ​Battery Note ===
706 706  
707 -=== 2.9.3  ​Battery Note ===
708 -
709 709  (((
710 710  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
711 711  )))
... ... @@ -712,176 +712,302 @@
712 712  
713 713  
714 714  
715 -=== 2.9. Replace the battery ===
801 +=== 2.11.3 Replace the battery ===
716 716  
717 717  (((
718 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
719 719  )))
720 720  
721 -
722 -
723 -= 3. ​ Access NB-IoT Module =
724 -
725 725  (((
726 -Users can directly access the AT command set of the NB-IoT module.
808 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
727 727  )))
728 728  
729 729  (((
730 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
731 731  )))
732 732  
733 -[[image:1657261278785-153.png]]
734 734  
735 735  
817 += 3. ​Using the AT Commands =
736 736  
737 -= 4.  Using the AT Commands =
819 +== 3.1 Access AT Commands ==
738 738  
739 -== 4.1  Access AT Commands ==
740 740  
741 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
822 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
824 +[[image:1654501986557-872.png||height="391" width="800"]]
743 743  
744 -AT+<CMD>?  : Help on <CMD>
745 745  
746 -AT+<CMD>         : Run <CMD>
827 +Or if you have below board, use below connection:
747 747  
748 -AT+<CMD>=<value> : Set the value
749 749  
750 -AT+<CMD>=?  : Get the value
830 +[[image:1654502005655-729.png||height="503" width="801"]]
751 751  
752 752  
833 +
834 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
835 +
836 +
837 + [[image:1654502050864-459.png||height="564" width="806"]]
838 +
839 +
840 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
841 +
842 +
843 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
844 +
845 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
850 +
851 +
753 753  (% style="color:#037691" %)**General Commands**(%%)      
754 754  
755 -AT  : Attention       
854 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
756 756  
757 -AT?  : Short Help     
856 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
758 758  
759 -ATZ  : MCU Reset    
858 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
760 760  
761 -AT+TDC  : Application Data Transmission Interval
860 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
762 762  
763 -AT+CFG  : Print all configurations
764 764  
765 -AT+CFGMOD           : Working mode selection
863 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
766 766  
767 -AT+INTMOD            : Set the trigger interrupt mode
865 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
768 768  
769 -AT+5VT  : Set extend the time of 5V power  
867 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
770 770  
771 -AT+PRO  : Choose agreement
869 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
772 772  
773 -AT+WEIGRE  : Get weight or set weight to 0
871 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
774 774  
775 -AT+WEIGAP  : Get or Set the GapValue of weight
873 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
776 776  
777 -AT+RXDL  : Extend the sending and receiving time
875 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
778 778  
779 -AT+CNTFAC  : Get or set counting parameters
877 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
780 780  
781 -AT+SERVADDR  : Server Address
879 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
782 782  
881 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
783 783  
784 -(% style="color:#037691" %)**COAP Management**      
883 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
785 785  
786 -AT+URI            : Resource parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
787 787  
887 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
788 788  
789 -(% style="color:#037691" %)**UDP Management**
889 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
790 790  
791 -AT+CFM          : Upload confirmation mode (only valid for UDP)
891 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
792 792  
893 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
793 793  
794 -(% style="color:#037691" %)**MQTT Management**
895 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
795 795  
796 -AT+CLIENT               : Get or Set MQTT client
797 797  
798 -AT+UNAME  : Get or Set MQTT Username
898 +(% style="color:#037691" %)**LoRa Network Management**
799 799  
800 -AT+PWD                  : Get or Set MQTT password
900 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
801 801  
802 -AT+PUBTOPI : Get or Set MQTT publish topic
902 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
803 803  
804 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
904 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
805 805  
906 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
806 806  
807 -(% style="color:#037691" %)**Information**          
908 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
808 808  
809 -AT+FDR  : Factory Data Reset
910 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
810 810  
811 -AT+PWOR : Serial Access Password
912 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
812 812  
914 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
813 813  
916 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
814 814  
815 -= ​5.  FAQ =
918 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
816 816  
817 -== 5.1 How to Upgrade Firmware ==
920 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
818 818  
922 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
819 819  
924 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
929 +
930 +
931 +(% style="color:#037691" %)**Information** 
932 +
933 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
934 +
935 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
944 +
945 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
946 +
947 +
948 += ​4. FAQ =
949 +
950 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
951 +
820 820  (((
821 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
953 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
954 +When downloading the images, choose the required image file for download. ​
822 822  )))
823 823  
824 824  (((
825 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
958 +
826 826  )))
827 827  
828 828  (((
829 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
962 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
830 830  )))
831 831  
965 +(((
966 +
967 +)))
832 832  
969 +(((
970 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
971 +)))
833 833  
834 -== 5.2  Can I calibrate NSE01 to different soil types? ==
973 +(((
974 +
975 +)))
835 835  
836 836  (((
837 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
978 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
838 838  )))
839 839  
981 +[[image:image-20220606154726-3.png]]
840 840  
841 -= 6.  Trouble Shooting =
842 842  
843 -== 6.1  ​Connection problem when uploading firmware ==
984 +When you use the TTN network, the US915 frequency bands use are:
844 844  
986 +* 903.9 - SF7BW125 to SF10BW125
987 +* 904.1 - SF7BW125 to SF10BW125
988 +* 904.3 - SF7BW125 to SF10BW125
989 +* 904.5 - SF7BW125 to SF10BW125
990 +* 904.7 - SF7BW125 to SF10BW125
991 +* 904.9 - SF7BW125 to SF10BW125
992 +* 905.1 - SF7BW125 to SF10BW125
993 +* 905.3 - SF7BW125 to SF10BW125
994 +* 904.6 - SF8BW500
845 845  
846 846  (((
847 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
997 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
998 +
999 +* (% style="color:#037691" %)**AT+CHE=2**
1000 +* (% style="color:#037691" %)**ATZ**
848 848  )))
849 849  
850 -(% class="wikigeneratedid" %)
851 851  (((
852 852  
1005 +
1006 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
853 853  )))
854 854  
1009 +(((
1010 +
1011 +)))
855 855  
856 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1015 +)))
857 857  
1017 +[[image:image-20220606154825-4.png]]
1018 +
1019 +
1020 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1021 +
1022 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn't work ==
1033 +
858 858  (((
859 859  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
860 860  
861 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
862 862  )))
863 863  
864 864  
865 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
866 866  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
867 867  
868 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
869 869  
870 870  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
871 871  (% class="wikigeneratedid" %)
872 872  (((
873 873  
874 874  )))
875 875  
876 -= 8.  Packing Info =
1087 += 7. Packing Info =
877 877  
878 878  (((
879 879  
880 880  
881 881  (% style="color:#037691" %)**Package Includes**:
1093 +)))
882 882  
883 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
885 885  )))
886 886  
887 887  (((
... ... @@ -888,19 +888,24 @@
888 888  
889 889  
890 890  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
891 891  
892 -* Size: 195 x 125 x 55 mm
893 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
894 894  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
895 895  
896 -(((
897 897  
898 -
899 -
900 -
901 901  )))
902 902  
903 -= 9.  Support =
1120 += 8. Support =
904 904  
905 905  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
906 906  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content