Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 68.2
edited by Xiaoling
on 2022/07/09 08:41
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,4 +1,5 @@
1 -[[image:image-20220709084038-1.jpeg||height="575" width="575"]]
1 +(% style="text-align:center" %)
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
2 2  
3 3  
4 4  
... ... @@ -8,8 +8,11 @@
8 8  
9 9  
10 10  
12 +
13 +
11 11  **Table of Contents:**
12 12  
16 +{{toc/}}
13 13  
14 14  
15 15  
... ... @@ -16,73 +16,67 @@
16 16  
17 17  
18 18  
19 -= 1.  Introduction =
23 += 1. Introduction =
20 20  
21 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
22 22  
23 23  (((
24 24  
25 25  
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
32 +
26 26  (((
27 -The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data.
28 -\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network.
29 -\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
30 -\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement.
31 -\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method)
32 -\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection.
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 33  )))
34 34  
35 -
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
36 36  )))
37 37  
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
44 +
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
47 +)))
48 +
49 +
38 38  [[image:1654503236291-817.png]]
39 39  
40 40  
41 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
42 42  
43 43  
44 44  
45 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
46 46  
47 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
48 48  * Monitor Soil Moisture
49 49  * Monitor Soil Temperature
50 50  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
51 51  * AT Commands to change parameters
52 52  * Uplink on periodically
53 53  * Downlink to change configure
54 54  * IP66 Waterproof Enclosure
55 -* Ultra-Low Power consumption
56 -* AT Commands to change parameters
57 -* Micro SIM card slot for NB-IoT SIM
58 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
59 59  
60 -== 1.3  Specification ==
61 61  
62 62  
63 -(% style="color:#037691" %)**Common DC Characteristics:**
64 64  
65 -* Supply Voltage: 2.1v ~~ 3.6v
66 -* Operating Temperature: -40 ~~ 85°C
67 67  
68 -(% style="color:#037691" %)**NB-IoT Spec:**
75 +== 1.3 Specification ==
69 69  
70 -* - B1 @H-FDD: 2100MHz
71 -* - B3 @H-FDD: 1800MHz
72 -* - B8 @H-FDD: 900MHz
73 -* - B5 @H-FDD: 850MHz
74 -* - B20 @H-FDD: 800MHz
75 -* - B28 @H-FDD: 700MHz
76 -
77 -Probe(% style="color:#037691" %)** Specification:**
78 -
79 79  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
80 80  
81 -[[image:image-20220708101224-1.png]]
79 +[[image:image-20220606162220-5.png]]
82 82  
83 83  
84 84  
85 -== ​1.4  Applications ==
83 +== ​1.4 Applications ==
86 86  
87 87  * Smart Agriculture
88 88  
... ... @@ -89,623 +89,715 @@
89 89  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
90 90  ​
91 91  
92 -== 1.5  Pin Definitions ==
90 +== 1.5 Firmware Change log ==
93 93  
94 94  
95 -[[image:1657246476176-652.png]]
93 +**LSE01 v1.0 :**  Release
96 96  
97 97  
98 98  
99 -= 2.  Use NSE01 to communicate with IoT Server =
97 += 2. Configure LSE01 to connect to LoRaWAN network =
100 100  
101 -== 2.1  How it works ==
99 +== 2.1 How it works ==
102 102  
103 -
104 104  (((
105 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
106 106  )))
107 107  
108 -
109 109  (((
110 -The diagram below shows the working flow in default firmware of NSE01:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
111 111  )))
112 112  
113 -[[image:image-20220708101605-2.png]]
114 114  
115 -(((
116 -
117 -)))
118 118  
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
119 119  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
120 120  
121 -== 2.2 ​ Configure the NSE01 ==
122 122  
116 +[[image:1654503992078-669.png]]
123 123  
124 -=== 2.2.1 Test Requirement ===
125 125  
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
126 126  
127 -(((
128 -To use NSE01 in your city, make sure meet below requirements:
129 -)))
130 130  
131 -* Your local operator has already distributed a NB-IoT Network there.
132 -* The local NB-IoT network used the band that NSE01 supports.
133 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
134 134  
135 -(((
136 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
137 -)))
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
138 138  
126 +[[image:image-20220606163732-6.jpeg]]
139 139  
140 -[[image:1657249419225-449.png]]
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
141 141  
130 +**Add APP EUI in the application**
142 142  
143 143  
144 -=== 2.2.2 Insert SIM card ===
133 +[[image:1654504596150-405.png]]
145 145  
146 -(((
147 -Insert the NB-IoT Card get from your provider.
148 -)))
149 149  
150 -(((
151 -User need to take out the NB-IoT module and insert the SIM card like below:
152 -)))
153 153  
137 +**Add APP KEY and DEV EUI**
154 154  
155 -[[image:1657249468462-536.png]]
139 +[[image:1654504683289-357.png]]
156 156  
157 157  
158 158  
159 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 160  
161 -(((
162 -(((
163 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
164 -)))
165 -)))
166 166  
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
167 167  
168 -**Connection:**
148 +[[image:image-20220606163915-7.png]]
169 169  
170 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
171 171  
172 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
173 173  
174 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
153 +[[image:1654504778294-788.png]]
175 175  
176 176  
177 -In the PC, use below serial tool settings:
178 178  
179 -* Baud:  (% style="color:green" %)**9600**
180 -* Data bits:** (% style="color:green" %)8(%%)**
181 -* Stop bits: (% style="color:green" %)**1**
182 -* Parity:  (% style="color:green" %)**None**
183 -* Flow Control: (% style="color:green" %)**None**
157 +== 2.3 Uplink Payload ==
184 184  
185 -(((
186 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
187 -)))
188 188  
189 -[[image:image-20220708110657-3.png]]
160 +=== 2.3.1 MOD~=0(Default Mode) ===
190 190  
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
163 +
191 191  (((
192 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
165 +Uplink payload includes in total 11 bytes.
193 193  )))
194 194  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
195 195  
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
196 196  
197 -=== 2.2.4 Use CoAP protocol to uplink data ===
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
198 198  
199 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
181 +(Optional)
182 +)))
200 200  
201 201  
202 -**Use below commands:**
203 203  
204 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
205 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
206 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
207 207  
208 -For parameter description, please refer to AT command set
209 209  
210 -[[image:1657249793983-486.png]]
211 211  
212 212  
213 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
190 +=== 2.3.2 MOD~=1(Original value) ===
214 214  
215 -[[image:1657249831934-534.png]]
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
216 216  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
217 217  
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
218 218  
219 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
220 220  
221 -This feature is supported since firmware version v1.0.1
207 +(Optional)
208 +)))
222 222  
223 223  
224 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
225 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
226 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
227 227  
228 -[[image:1657249864775-321.png]]
229 229  
230 230  
231 -[[image:1657249930215-289.png]]
232 232  
233 233  
216 +=== 2.3.3 Battery Info ===
234 234  
235 -=== 2.2.6 Use MQTT protocol to uplink data ===
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
236 236  
237 -This feature is supported since firmware version v110
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
238 238  
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
239 239  
240 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
241 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
242 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
243 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
244 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
245 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
246 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
247 247  
248 -[[image:1657249978444-674.png]]
249 249  
232 +=== 2.3.4 Soil Moisture ===
250 250  
251 -[[image:1657249990869-686.png]]
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
252 252  
238 +(((
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
240 +)))
253 253  
254 254  (((
255 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
243 +
256 256  )))
257 257  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
258 258  
259 259  
260 -=== 2.2.7 Use TCP protocol to uplink data ===
261 261  
262 -This feature is supported since firmware version v110
252 +=== 2.3.5 Soil Temperature ===
263 263  
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
264 264  
265 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
266 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
258 +(((
259 +**Example**:
260 +)))
267 267  
268 -[[image:1657250217799-140.png]]
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
269 269  
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
270 270  
271 -[[image:1657250255956-604.png]]
272 272  
273 273  
272 +=== 2.3.6 Soil Conductivity (EC) ===
274 274  
275 -=== 2.2.8 Change Update Interval ===
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
276 276  
277 -User can use below command to change the (% style="color:green" %)**uplink interval**.
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
278 278  
279 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
280 -
281 281  (((
282 -(% style="color:red" %)**NOTE:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
283 283  )))
284 284  
285 285  (((
286 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
287 287  )))
288 288  
289 -
290 -
291 -== 2.3  Uplink Payload ==
292 -
293 -In this mode, uplink payload includes in total 18 bytes
294 -
295 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
296 -|=(% style="width: 60px;" %)(((
297 -**Size(bytes)**
298 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
299 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
300 -
301 301  (((
302 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
291 +
303 303  )))
304 304  
294 +=== 2.3.7 MOD ===
305 305  
306 -[[image:image-20220708111918-4.png]]
296 +Firmware version at least v2.1 supports changing mode.
307 307  
298 +For example, bytes[10]=90
308 308  
309 -The payload is ASCII string, representative same HEX:
300 +mod=(bytes[10]>>7)&0x01=1.
310 310  
311 -0x72403155615900640c7817075e0a8c02f900 where:
312 312  
313 -* Device ID: 0x 724031556159 = 724031556159
314 -* Version: 0x0064=100=1.0.0
303 +**Downlink Command:**
315 315  
316 -* BAT: 0x0c78 = 3192 mV = 3.192V
317 -* Singal: 0x17 = 23
318 -* Soil Moisture: 0x075e= 1886 = 18.86  %
319 -* Soil Temperature:0x0a8c =2700=27 °C
320 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
321 -* Interrupt: 0x00 = 0
305 +If payload = 0x0A00, workmode=0
322 322  
323 -== 2.4  Payload Explanation and Sensor Interface ==
307 +If** **payload =** **0x0A01, workmode=1
324 324  
325 325  
326 -=== 2.4.1  Device ID ===
327 327  
328 -(((
329 -By default, the Device ID equal to the last 6 bytes of IMEI.
330 -)))
311 +=== 2.3.8 ​Decode payload in The Things Network ===
331 331  
332 -(((
333 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
334 -)))
313 +While using TTN network, you can add the payload format to decode the payload.
335 335  
336 -(((
337 -**Example:**
338 -)))
339 339  
316 +[[image:1654505570700-128.png]]
317 +
340 340  (((
341 -AT+DEUI=A84041F15612
319 +The payload decoder function for TTN is here:
342 342  )))
343 343  
344 344  (((
345 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
346 346  )))
347 347  
348 348  
327 +== 2.4 Uplink Interval ==
349 349  
350 -=== 2.4.2  Version Info ===
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
351 351  
352 -(((
353 -Specify the software version: 0x64=100, means firmware version 1.00.
354 -)))
355 355  
356 -(((
357 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
358 -)))
359 359  
333 +== 2.5 Downlink Payload ==
360 360  
335 +By default, LSE50 prints the downlink payload to console port.
361 361  
362 -=== 2.4.3  Battery Info ===
337 +[[image:image-20220606165544-8.png]]
363 363  
364 -(((
365 -Check the battery voltage for LSE01.
366 -)))
367 367  
368 368  (((
369 -Ex1: 0x0B45 = 2885mV
341 +**Examples:**
370 370  )))
371 371  
372 372  (((
373 -Ex2: 0x0B49 = 2889mV
345 +
374 374  )))
375 375  
376 -
377 -
378 -=== 2.4.4  Signal Strength ===
379 -
380 -(((
381 -NB-IoT Network signal Strength.
348 +* (((
349 +**Set TDC**
382 382  )))
383 383  
384 384  (((
385 -**Ex1: 0x1d = 29**
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
386 386  )))
387 387  
388 388  (((
389 -(% style="color:blue" %)**0**(%%)  -113dBm or less
357 +Payload:    01 00 00 1E    TDC=30S
390 390  )))
391 391  
392 392  (((
393 -(% style="color:blue" %)**1**(%%)  -111dBm
361 +Payload:    01 00 00 3C    TDC=60S
394 394  )))
395 395  
396 396  (((
397 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
365 +
398 398  )))
399 399  
400 -(((
401 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
368 +* (((
369 +**Reset**
402 402  )))
403 403  
404 404  (((
405 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
373 +If payload = 0x04FF, it will reset the LSE01
406 406  )))
407 407  
408 408  
377 +* **CFM**
409 409  
410 -=== 2.4.5  Soil Moisture ===
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
411 411  
381 +
382 +
383 +== 2.6 ​Show Data in DataCake IoT Server ==
384 +
412 412  (((
413 -(((
414 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
415 415  )))
416 -)))
417 417  
418 418  (((
419 -(((
420 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
390 +
421 421  )))
422 -)))
423 423  
424 424  (((
425 -
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
426 426  )))
427 427  
428 428  (((
429 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
398 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
430 430  )))
431 431  
432 432  
402 +[[image:1654505857935-743.png]]
433 433  
434 -=== 2.4.6  Soil Temperature ===
435 435  
436 -(((
437 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
438 -)))
405 +[[image:1654505874829-548.png]]
439 439  
440 -(((
441 -**Example**:
442 -)))
443 443  
444 -(((
445 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
446 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
447 447  
448 -(((
449 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
450 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
451 451  
452 452  
413 +[[image:1654505905236-553.png]]
453 453  
454 -=== 2.4.7  Soil Conductivity (EC) ===
455 455  
456 -(((
457 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
458 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
459 459  
460 -(((
461 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
462 -)))
418 +[[image:1654505925508-181.png]]
463 463  
464 -(((
465 -Generally, the EC value of irrigation water is less than 800uS / cm.
466 -)))
467 467  
468 -(((
469 -
470 -)))
471 471  
472 -(((
473 -
474 -)))
422 +== 2.7 Frequency Plans ==
475 475  
476 -=== 2.4.8  Digital Interrupt ===
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
477 477  
478 -(((
479 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
480 -)))
481 481  
482 -(((
483 -The command is:
484 -)))
427 +=== 2.7.1 EU863-870 (EU868) ===
485 485  
486 -(((
487 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
488 -)))
429 +(% style="color:#037691" %)** Uplink:**
489 489  
431 +868.1 - SF7BW125 to SF12BW125
490 490  
491 -(((
492 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
493 -)))
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
494 494  
435 +868.5 - SF7BW125 to SF12BW125
495 495  
496 -(((
497 -Example:
498 -)))
437 +867.1 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -0x(00): Normal uplink packet.
502 -)))
439 +867.3 - SF7BW125 to SF12BW125
503 503  
504 -(((
505 -0x(01): Interrupt Uplink Packet.
506 -)))
441 +867.5 - SF7BW125 to SF12BW125
507 507  
443 +867.7 - SF7BW125 to SF12BW125
508 508  
445 +867.9 - SF7BW125 to SF12BW125
509 509  
510 -=== 2.4.9  ​+5V Output ===
447 +868.8 - FSK
511 511  
512 -(((
513 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
514 -)))
515 515  
450 +(% style="color:#037691" %)** Downlink:**
516 516  
517 -(((
518 -The 5V output time can be controlled by AT Command.
519 -)))
452 +Uplink channels 1-9 (RX1)
520 520  
521 -(((
522 -(% style="color:blue" %)**AT+5VT=1000**
523 -)))
454 +869.525 - SF9BW125 (RX2 downlink only)
524 524  
525 -(((
526 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
527 -)))
528 528  
529 529  
458 +=== 2.7.2 US902-928(US915) ===
530 530  
531 -== 2.5  Downlink Payload ==
460 +Used in USA, Canada and South America. Default use CHE=2
532 532  
533 -By default, NSE01 prints the downlink payload to console port.
462 +(% style="color:#037691" %)**Uplink:**
534 534  
535 -[[image:image-20220708133731-5.png]]
464 +903.9 - SF7BW125 to SF10BW125
536 536  
466 +904.1 - SF7BW125 to SF10BW125
537 537  
538 -(((
539 -(% style="color:blue" %)**Examples:**
540 -)))
468 +904.3 - SF7BW125 to SF10BW125
541 541  
542 -(((
543 -
544 -)))
470 +904.5 - SF7BW125 to SF10BW125
545 545  
546 -* (((
547 -(% style="color:blue" %)**Set TDC**
548 -)))
472 +904.7 - SF7BW125 to SF10BW125
549 549  
550 -(((
551 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
552 -)))
474 +904.9 - SF7BW125 to SF10BW125
553 553  
554 -(((
555 -Payload:    01 00 00 1E    TDC=30S
556 -)))
476 +905.1 - SF7BW125 to SF10BW125
557 557  
558 -(((
559 -Payload:    01 00 00 3C    TDC=60S
560 -)))
478 +905.3 - SF7BW125 to SF10BW125
561 561  
562 -(((
563 -
564 -)))
565 565  
566 -* (((
567 -(% style="color:blue" %)**Reset**
568 -)))
481 +(% style="color:#037691" %)**Downlink:**
569 569  
570 -(((
571 -If payload = 0x04FF, it will reset the NSE01
572 -)))
483 +923.3 - SF7BW500 to SF12BW500
573 573  
485 +923.9 - SF7BW500 to SF12BW500
574 574  
575 -* (% style="color:blue" %)**INTMOD**
487 +924.5 - SF7BW500 to SF12BW500
576 576  
577 -(((
578 -Downlink Payload: 06000003, Set AT+INTMOD=3
579 -)))
489 +925.1 - SF7BW500 to SF12BW500
580 580  
491 +925.7 - SF7BW500 to SF12BW500
581 581  
493 +926.3 - SF7BW500 to SF12BW500
582 582  
583 -== 2.6  ​LED Indicator ==
495 +926.9 - SF7BW500 to SF12BW500
584 584  
585 -(((
586 -The NSE01 has an internal LED which is to show the status of different state.
497 +927.5 - SF7BW500 to SF12BW500
587 587  
499 +923.3 - SF12BW500(RX2 downlink only)
588 588  
589 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
590 -* Then the LED will be on for 1 second means device is boot normally.
591 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
592 -* For each uplink probe, LED will be on for 500ms.
593 -)))
594 594  
595 595  
503 +=== 2.7.3 CN470-510 (CN470) ===
596 596  
505 +Used in China, Default use CHE=1
597 597  
598 -== 2.7  Installation in Soil ==
507 +(% style="color:#037691" %)**Uplink:**
599 599  
600 -__**Measurement the soil surface**__
509 +486.3 - SF7BW125 to SF12BW125
601 601  
602 -(((
603 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
604 -)))
511 +486.5 - SF7BW125 to SF12BW125
605 605  
606 -[[image:1657259653666-883.png]]
513 +486.7 - SF7BW125 to SF12BW125
607 607  
515 +486.9 - SF7BW125 to SF12BW125
608 608  
609 -(((
610 -
517 +487.1 - SF7BW125 to SF12BW125
611 611  
612 -(((
613 -Dig a hole with diameter > 20CM.
614 -)))
519 +487.3 - SF7BW125 to SF12BW125
615 615  
616 -(((
617 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
618 -)))
619 -)))
521 +487.5 - SF7BW125 to SF12BW125
620 620  
621 -[[image:1654506665940-119.png]]
523 +487.7 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -
625 -)))
626 626  
526 +(% style="color:#037691" %)**Downlink:**
627 627  
628 -== 2. Firmware Change Log ==
528 +506.7 - SF7BW125 to SF12BW125
629 629  
530 +506.9 - SF7BW125 to SF12BW125
630 630  
631 -Download URL & Firmware Change log
532 +507.1 - SF7BW125 to SF12BW125
632 632  
633 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 +507.3 - SF7BW125 to SF12BW125
634 634  
536 +507.5 - SF7BW125 to SF12BW125
635 635  
636 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 +507.7 - SF7BW125 to SF12BW125
637 637  
540 +507.9 - SF7BW125 to SF12BW125
638 638  
542 +508.1 - SF7BW125 to SF12BW125
639 639  
640 -== 2. Battery Analysis ==
544 +505.3 - SF12BW125 (RX2 downlink only)
641 641  
642 -=== 2.9.1  ​Battery Type ===
643 643  
644 644  
548 +=== 2.7.4 AU915-928(AU915) ===
549 +
550 +Default use CHE=2
551 +
552 +(% style="color:#037691" %)**Uplink:**
553 +
554 +916.8 - SF7BW125 to SF12BW125
555 +
556 +917.0 - SF7BW125 to SF12BW125
557 +
558 +917.2 - SF7BW125 to SF12BW125
559 +
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
645 645  (((
646 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
647 647  )))
719 +)))
648 648  
649 649  
722 +
723 +[[image:1654506665940-119.png]]
724 +
650 650  (((
651 -The battery is designed to last for several years depends on the actually use environment and update interval. 
726 +Dig a hole with diameter > 20CM.
652 652  )))
653 653  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
654 654  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
655 655  (((
656 -The battery related documents as below:
737 +**Firmware download link:**
657 657  )))
658 658  
659 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
660 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
661 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
740 +(((
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
742 +)))
662 662  
663 663  (((
664 -[[image:image-20220708140453-6.png]]
745 +
665 665  )))
666 666  
748 +(((
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
750 +)))
667 667  
752 +(((
753 +
754 +)))
668 668  
669 -=== 2.9.2  Power consumption Analyze ===
756 +(((
757 +**V1.0.**
758 +)))
670 670  
671 671  (((
672 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
761 +Release
673 673  )))
674 674  
675 675  
765 +== 2.11 ​Battery Analysis ==
766 +
767 +=== 2.11.1 ​Battery Type ===
768 +
676 676  (((
677 -Instruction to use as below:
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
678 678  )))
679 679  
680 680  (((
681 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
774 +The battery is designed to last for more than 5 years for the LSN50.
682 682  )))
683 683  
684 -
685 685  (((
686 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
778 +(((
779 +The battery-related documents are as below:
687 687  )))
781 +)))
688 688  
689 689  * (((
690 -Product Model
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
691 691  )))
692 692  * (((
693 -Uplink Interval
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
694 694  )))
695 695  * (((
696 -Working Mode
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
697 697  )))
698 698  
699 -(((
700 -And the Life expectation in difference case will be shown on the right.
701 -)))
793 + [[image:image-20220610172436-1.png]]
702 702  
703 -[[image:image-20220708141352-7.jpeg]]
704 704  
705 705  
797 +=== 2.11.2 ​Battery Note ===
706 706  
707 -=== 2.9.3  ​Battery Note ===
708 -
709 709  (((
710 710  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
711 711  )))
... ... @@ -712,176 +712,298 @@
712 712  
713 713  
714 714  
715 -=== 2.9. Replace the battery ===
805 +=== 2.11.3 Replace the battery ===
716 716  
717 717  (((
718 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
719 719  )))
720 720  
721 -
722 -
723 -= 3. ​ Access NB-IoT Module =
724 -
725 725  (((
726 -Users can directly access the AT command set of the NB-IoT module.
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
727 727  )))
728 728  
729 729  (((
730 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
731 731  )))
732 732  
733 -[[image:1657261278785-153.png]]
734 734  
735 735  
821 += 3. ​Using the AT Commands =
736 736  
737 -= 4.  Using the AT Commands =
823 +== 3.1 Access AT Commands ==
738 738  
739 -== 4.1  Access AT Commands ==
740 740  
741 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
742 742  
828 +[[image:1654501986557-872.png||height="391" width="800"]]
743 743  
744 -AT+<CMD>?  : Help on <CMD>
745 745  
746 -AT+<CMD>         : Run <CMD>
831 +Or if you have below board, use below connection:
747 747  
748 -AT+<CMD>=<value> : Set the value
749 749  
750 -AT+<CMD>=?  : Get the value
834 +[[image:1654502005655-729.png||height="503" width="801"]]
751 751  
752 752  
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
753 753  (% style="color:#037691" %)**General Commands**(%%)      
754 754  
755 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
756 756  
757 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
758 758  
759 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
760 760  
761 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
762 762  
763 -AT+CFG  : Print all configurations
764 764  
765 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
766 766  
767 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
768 768  
769 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
770 770  
771 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
772 772  
773 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
774 774  
775 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
776 776  
777 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
778 778  
779 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
780 780  
781 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
782 782  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
783 783  
784 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
785 785  
786 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
787 787  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
788 788  
789 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
790 790  
791 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
792 792  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
793 793  
794 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
795 795  
796 -AT+CLIENT               : Get or Set MQTT client
797 797  
798 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
799 799  
800 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
801 801  
802 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
803 803  
804 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
805 805  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
806 806  
807 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
808 808  
809 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
810 810  
811 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
812 812  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
813 813  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
814 814  
815 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
816 816  
817 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
818 818  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
819 819  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
820 820  (((
821 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
822 822  )))
823 823  
824 824  (((
825 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
826 826  )))
827 827  
828 828  (((
829 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
830 830  )))
831 831  
969 +(((
970 +
971 +)))
832 832  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
833 833  
834 -== 5.2  Can I calibrate NSE01 to different soil types? ==
977 +(((
978 +
979 +)))
835 835  
836 836  (((
837 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
838 838  )))
839 839  
985 +[[image:image-20220606154726-3.png]]
840 840  
841 -= 6.  Trouble Shooting =
842 842  
843 -== 6.1  ​Connection problem when uploading firmware ==
988 +When you use the TTN network, the US915 frequency bands use are:
844 844  
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
845 845  
846 846  (((
847 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
848 848  )))
849 849  
850 -(% class="wikigeneratedid" %)
851 851  (((
852 852  
1009 +
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
853 853  )))
854 854  
1013 +(((
1014 +
1015 +)))
855 855  
856 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1019 +)))
857 857  
1021 +[[image:image-20220606154825-4.png]]
1022 +
1023 +
1024 +
1025 += 5. Trouble Shooting =
1026 +
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1028 +
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1030 +
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
858 858  (((
859 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
860 860  
861 -
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
862 862  )))
863 863  
864 864  
865 -= 7. ​ Order Info =
1053 +(% style="color:#4f81bd" %)**Solution: **
866 866  
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
867 867  
868 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
869 869  
870 870  
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
871 871  (% class="wikigeneratedid" %)
872 872  (((
873 873  
874 874  )))
875 875  
876 -= 8.  Packing Info =
1087 += 7. Packing Info =
877 877  
878 878  (((
879 879  
880 880  
881 881  (% style="color:#037691" %)**Package Includes**:
1093 +)))
882 882  
883 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
884 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
885 885  )))
886 886  
887 887  (((
... ... @@ -888,19 +888,24 @@
888 888  
889 889  
890 890  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
891 891  
892 -* Size: 195 x 125 x 55 mm
893 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
894 894  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
895 895  
896 -(((
897 897  
898 -
899 -
900 -
901 901  )))
902 902  
903 -= 9.  Support =
1120 += 8. Support =
904 904  
905 905  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
906 906  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content
image-20220709084038-1.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.0 KB
Content