Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -N DDS75NB-IoTDistanceDetectSensor User Manual1 +NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% style="text-align:center" %) 2 -[[image: 1657271519014-786.png]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 ... ... @@ -10,6 +10,7 @@ 10 10 11 11 12 12 13 + 13 13 **Table of Contents:** 14 14 15 15 ... ... @@ -17,28 +17,21 @@ 17 17 18 18 19 19 21 += 1. Introduction = 20 20 21 -= 1. Introduction =23 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 22 22 23 -== 1.1 What is NDDS75 Distance Detection Sensor == 24 - 25 25 ((( 26 26 27 27 28 - TheDragino NDDS75is a **NB-IOTDistanceDetectionSensor** forInternet of Things solution.It isused to measure thedistancebetweenthe sensoranda flatobject. Thedistance detectionsensoris a module that uses**ultrasonicsensingtechnology**for**distance measurement**,andtemperaturecompensation isperformedinternallytoimprovethereliability of data. The NDDS75 can be applied toscenarios such as horizontaldistancesurement,liquidlevelmeasurement, parking managementsystem, object proximity andpresence detection,intelligenttrashcan managementsystem, robotobstacle avoidance,automatic control,sewer, bottomwaterlevelmonitoring, etc.28 +Dragino NSE01 is an **NB-IOT soil moisture & EC sensor** for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 29 29 30 -It detect sthedistancebetweenthesuredobjectandthesensor, and uploadsthevalue viawirelessto IoT Server.30 +It can detect **Soil Moisture, Soil Temperature and Soil Conductivity**, and upload its value to the server wirelessly. 31 31 32 - **NarrowBand-Internet ofThings(NB-IoT)**is a standards-basedlow powerwide area (LPWA)technologydeveloped to enableawide rangeof newIoTdevicesandservices.NB-IoTsignificantly improvesthepowerconsumptionofuserevices,system capacity and spectrumefficiency, especiallyin deep coverage.32 +The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 33 33 34 -N DDS75ispowered by8**500mA Li-SOCI2 battery**; Itis designedfor longtermuse up to 5 years*.34 +NSE01 are powered by **8500mAh Li-SOCI2** batteries, which can be used for up to 5 years. 35 35 36 -~* Actually lifetime depends on network coverage and uplink interval and other factors 37 - 38 -((( 39 - 40 -))) 41 - 42 42 43 43 ))) 44 44 ... ... @@ -49,674 +49,732 @@ 49 49 50 50 51 51 52 -== 1.2 46 +== 1.2 Features == 53 53 54 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 48 +* LoRaWAN 1.0.3 Class A 49 +* Ultra low power consumption 55 55 * Monitor Soil Moisture 56 56 * Monitor Soil Temperature 57 57 * Monitor Soil Conductivity 53 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 58 58 * AT Commands to change parameters 59 59 * Uplink on periodically 60 60 * Downlink to change configure 61 61 * IP66 Waterproof Enclosure 62 -* Ultra-Low Power consumption 63 -* AT Commands to change parameters 64 -* Micro SIM card slot for NB-IoT SIM 65 -* 8500mAh Battery for long term use 58 +* 4000mAh or 8500mAh Battery for long term use 66 66 60 +== 1.3 Specification == 67 67 62 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 68 68 69 - == 1.3 Specification==64 +[[image:image-20220606162220-5.png]] 70 70 71 71 72 -(% style="color:#037691" %)**Common DC Characteristics:** 73 73 74 -* Supply Voltage: 2.1v ~~ 3.6v 75 -* Operating Temperature: -40 ~~ 85°C 68 +== 1.4 Applications == 76 76 77 - (%style="color:#037691" %)**NB-IoT Spec:**70 +* Smart Agriculture 78 78 79 -* - B1 @H-FDD: 2100MHz 80 -* - B3 @H-FDD: 1800MHz 81 -* - B8 @H-FDD: 900MHz 82 -* - B5 @H-FDD: 850MHz 83 -* - B20 @H-FDD: 800MHz 84 -* - B28 @H-FDD: 700MHz 72 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 73 + 85 85 86 - Probe(%style="color:#037691"%)** Specification:**75 +== 1.5 Firmware Change log == 87 87 88 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 89 89 90 - [[image:image-20220708101224-1.png]]78 +**LSE01 v1.0 :** Release 91 91 92 92 93 93 94 -= =1.4Applications==82 += 2. Configure LSE01 to connect to LoRaWAN network = 95 95 96 - *SmartAgriculture84 +== 2.1 How it works == 97 97 98 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 - 86 +((( 87 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 88 +))) 100 100 101 -== 1.5 Pin Definitions == 90 +((( 91 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 92 +))) 102 102 103 103 104 -[[image:1657246476176-652.png]] 105 105 96 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 106 106 98 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 107 107 108 -= 2. Use NSE01 to communicate with IoT Server = 109 109 110 - ==2.1 How it works ==101 +[[image:1654503992078-669.png]] 111 111 112 112 104 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 105 + 106 + 107 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 108 + 109 +Each LSE01 is shipped with a sticker with the default device EUI as below: 110 + 111 +[[image:image-20220606163732-6.jpeg]] 112 + 113 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 114 + 115 +**Add APP EUI in the application** 116 + 117 + 118 +[[image:1654504596150-405.png]] 119 + 120 + 121 + 122 +**Add APP KEY and DEV EUI** 123 + 124 +[[image:1654504683289-357.png]] 125 + 126 + 127 + 128 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 129 + 130 + 131 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 132 + 133 +[[image:image-20220606163915-7.png]] 134 + 135 + 136 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 137 + 138 +[[image:1654504778294-788.png]] 139 + 140 + 141 + 142 +== 2.3 Uplink Payload == 143 + 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 113 113 ((( 114 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.150 +Uplink payload includes in total 11 bytes. 115 115 ))) 116 116 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 117 117 118 -((( 119 -The diagram below shows the working flow in default firmware of NSE01: 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 120 120 ))) 121 121 122 - [[image:image-20220708101605-2.png]]169 +=== 2.3.2 MOD~=1(Original value) === 123 123 171 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 172 + 173 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 174 +|((( 175 +**Size** 176 + 177 +**(bytes)** 178 +)))|**2**|**2**|**2**|**2**|**2**|**1** 179 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 180 +Temperature 181 + 182 +(Reserve, Ignore now) 183 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 184 +MOD & Digital Interrupt 185 + 186 +(Optional) 187 +))) 188 + 189 +=== 2.3.3 Battery Info === 190 + 124 124 ((( 125 - 192 +Check the battery voltage for LSE01. 126 126 ))) 127 127 195 +((( 196 +Ex1: 0x0B45 = 2885mV 197 +))) 128 128 199 +((( 200 +Ex2: 0x0B49 = 2889mV 201 +))) 129 129 130 -== 2.2 Configure the NSE01 == 131 131 132 132 133 -=== 2. 2.1TestRequirement===205 +=== 2.3.4 Soil Moisture === 134 134 207 +((( 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 209 +))) 135 135 136 136 ((( 137 - TouseNSE01inyourcity,make suremeetbelowrequirements:212 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 138 138 ))) 139 139 140 - * Your local operator has already distributed a NB-IoT Network there.141 - *The local NB-IoT network used the band that NSE01 supports.142 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.215 +((( 216 + 217 +))) 143 143 144 144 ((( 145 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red"%)120.24.4.116:5601)(%%)or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)orTCP((% style="color:red"%)120.24.4.116:5600)(%%)protocol to send data to the test server220 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 146 146 ))) 147 147 148 148 149 -[[image:1657249419225-449.png]] 150 150 225 +=== 2.3.5 Soil Temperature === 151 151 227 +((( 228 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 229 +))) 152 152 153 -=== 2.2.2 Insert SIM card === 231 +((( 232 +**Example**: 233 +))) 154 154 155 155 ((( 156 -I nsertthe NB-IoT Cardgetfromyourprovider.236 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 157 157 ))) 158 158 159 159 ((( 160 - Userneed totakeouttheNB-IoTmoduleandinserttheSIMcardlikebelow:240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 161 161 ))) 162 162 163 163 164 -[[image:1657249468462-536.png]] 165 165 245 +=== 2.3.6 Soil Conductivity (EC) === 166 166 247 +((( 248 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 249 +))) 167 167 168 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 251 +((( 252 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 253 +))) 169 169 170 170 ((( 256 +Generally, the EC value of irrigation water is less than 800uS / cm. 257 +))) 258 + 171 171 ((( 172 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.260 + 173 173 ))) 262 + 263 +((( 264 + 174 174 ))) 175 175 267 +=== 2.3.7 MOD === 176 176 177 - **Connection:**269 +Firmware version at least v2.1 supports changing mode. 178 178 179 - (% style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND271 +For example, bytes[10]=90 180 180 181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~->UART_RXD273 +mod=(bytes[10]>>7)&0x01=1. 182 182 183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 184 184 276 +**Downlink Command:** 185 185 186 -I nthePC,usebelowserial tool settings:278 +If payload = 0x0A00, workmode=0 187 187 188 -* Baud: (% style="color:green" %)**9600** 189 -* Data bits:** (% style="color:green" %)8(%%)** 190 -* Stop bits: (% style="color:green" %)**1** 191 -* Parity: (% style="color:green" %)**None** 192 -* Flow Control: (% style="color:green" %)**None** 280 +If** **payload =** **0x0A01, workmode=1 193 193 282 + 283 + 284 +=== 2.3.8 Decode payload in The Things Network === 285 + 286 +While using TTN network, you can add the payload format to decode the payload. 287 + 288 + 289 +[[image:1654505570700-128.png]] 290 + 194 194 ((( 195 - Make sure theswitch is in FLASHposition,then powerondevice by connecting the jumperonNSE01. NSE01 will output system infoonce poweronasbelow, we can enter the(% style="color:green" %)**password:12345678**(%%) to access AT Command input.292 +The payload decoder function for TTN is here: 196 196 ))) 197 197 198 -[[image:image-20220708110657-3.png]] 295 +((( 296 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 297 +))) 199 199 299 + 300 +== 2.4 Uplink Interval == 301 + 302 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 303 + 304 + 305 + 306 +== 2.5 Downlink Payload == 307 + 308 +By default, LSE50 prints the downlink payload to console port. 309 + 310 +[[image:image-20220606165544-8.png]] 311 + 312 + 200 200 ((( 201 -(% style="color: red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]314 +(% style="color:blue" %)**Examples:** 202 202 ))) 203 203 317 +((( 318 + 319 +))) 204 204 321 +* ((( 322 +(% style="color:blue" %)**Set TDC** 323 +))) 205 205 206 -=== 2.2.4 Use CoAP protocol to uplink data === 325 +((( 326 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 327 +))) 207 207 208 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 329 +((( 330 +Payload: 01 00 00 1E TDC=30S 331 +))) 209 209 333 +((( 334 +Payload: 01 00 00 3C TDC=60S 335 +))) 210 210 211 -**Use below commands:** 337 +((( 338 + 339 +))) 212 212 213 -* ( % style="color:blue" %)**AT+PRO=1**(%%) ~/~/ Set to use CoAP protocol to uplink214 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAPserver address and port215 - * (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%)~/~/Set COAP resource path341 +* ((( 342 +(% style="color:blue" %)**Reset** 343 +))) 216 216 217 -For parameter description, please refer to AT command set 345 +((( 346 +If payload = 0x04FF, it will reset the LSE01 347 +))) 218 218 219 -[[image:1657249793983-486.png]] 220 220 350 +* (% style="color:blue" %)**CFM** 221 221 222 - After configure the server address and(% style="color:green"%)**resetthe device**(%%) (viaAT+ATZ ), NSE01will starttouplinksensor valuestoCoAP server.352 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 223 223 224 -[[image:1657249831934-534.png]] 225 225 226 226 356 +== 2.6 Show Data in DataCake IoT Server == 227 227 228 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 358 +((( 359 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 360 +))) 229 229 230 -This feature is supported since firmware version v1.0.1 362 +((( 363 + 364 +))) 231 231 366 +((( 367 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 368 +))) 232 232 233 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink234 - *(% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601**~/~/tosetUDPserveraddressandport235 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary370 +((( 371 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 372 +))) 236 236 237 -[[image:1657249864775-321.png]] 238 238 375 +[[image:1654505857935-743.png]] 239 239 240 -[[image:1657249930215-289.png]] 241 241 378 +[[image:1654505874829-548.png]] 242 242 243 243 244 - ===2.2.6 UseMQTTprotocoltouplinkdata===381 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 245 245 246 - Thisfeatureis supportedsincefirmwareversion v110383 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 247 247 248 248 249 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 386 +[[image:1654505905236-553.png]] 256 256 257 -[[image:1657249978444-674.png]] 258 258 389 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 259 259 260 -[[image:165 7249990869-686.png]]391 +[[image:1654505925508-181.png]] 261 261 262 262 263 -((( 264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 -))) 266 266 395 +== 2.7 Frequency Plans == 267 267 397 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 268 268 269 -=== 2.2.7 Use TCP protocol to uplink data === 270 270 271 - Thisfeatureissupportedsince firmware version v110400 +=== 2.7.1 EU863-870 (EU868) === 272 272 402 +(% style="color:#037691" %)** Uplink:** 273 273 274 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 404 +868.1 - SF7BW125 to SF12BW125 276 276 277 - [[image:1657250217799-140.png]]406 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 278 278 408 +868.5 - SF7BW125 to SF12BW125 279 279 280 - [[image:1657250255956-604.png]]410 +867.1 - SF7BW125 to SF12BW125 281 281 412 +867.3 - SF7BW125 to SF12BW125 282 282 414 +867.5 - SF7BW125 to SF12BW125 283 283 284 - === 2.2.8ChangeUpdateInterval ===416 +867.7 - SF7BW125 to SF12BW125 285 285 286 - Usercanusebelow commandtochange the (% style="color:green" %)**uplink interval**.418 +867.9 - SF7BW125 to SF12BW125 287 287 288 - * (% style="color:blue" %)**AT+TDC=600** (%%)~/~/Set Update Interval to 600s420 +868.8 - FSK 289 289 290 -((( 291 -(% style="color:red" %)**NOTE:** 292 -))) 293 293 294 -((( 295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 -))) 423 +(% style="color:#037691" %)** Downlink:** 297 297 425 +Uplink channels 1-9 (RX1) 298 298 427 +869.525 - SF9BW125 (RX2 downlink only) 299 299 300 -== 2.3 Uplink Payload == 301 301 302 -In this mode, uplink payload includes in total 18 bytes 303 303 304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 -|=(% style="width: 60px;" %)((( 306 -**Size(bytes)** 307 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 431 +=== 2.7.2 US902-928(US915) === 309 309 310 -((( 311 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 -))) 433 +Used in USA, Canada and South America. Default use CHE=2 313 313 435 +(% style="color:#037691" %)**Uplink:** 314 314 315 - [[image:image-20220708111918-4.png]]437 +903.9 - SF7BW125 to SF10BW125 316 316 439 +904.1 - SF7BW125 to SF10BW125 317 317 318 - Thepayloadis ASCIIstring,representative same HEX:441 +904.3 - SF7BW125 to SF10BW125 319 319 320 -0 x72403155615900640c7817075e0a8c02f900 where:443 +904.5 - SF7BW125 to SF10BW125 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 445 +904.7 - SF7BW125 to SF10BW125 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 447 +904.9 - SF7BW125 to SF10BW125 331 331 449 +905.1 - SF7BW125 to SF10BW125 332 332 451 +905.3 - SF7BW125 to SF10BW125 333 333 334 -== 2.4 Payload Explanation and Sensor Interface == 335 335 454 +(% style="color:#037691" %)**Downlink:** 336 336 337 - ===2.4.1 DeviceID===456 +923.3 - SF7BW500 to SF12BW500 338 338 339 -((( 340 -By default, the Device ID equal to the last 6 bytes of IMEI. 341 -))) 458 +923.9 - SF7BW500 to SF12BW500 342 342 343 -((( 344 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 -))) 460 +924.5 - SF7BW500 to SF12BW500 346 346 347 -((( 348 -**Example:** 349 -))) 462 +925.1 - SF7BW500 to SF12BW500 350 350 351 -((( 352 -AT+DEUI=A84041F15612 353 -))) 464 +925.7 - SF7BW500 to SF12BW500 354 354 355 -((( 356 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 -))) 466 +926.3 - SF7BW500 to SF12BW500 358 358 468 +926.9 - SF7BW500 to SF12BW500 359 359 470 +927.5 - SF7BW500 to SF12BW500 360 360 361 - ===2.4.2VersionInfo===472 +923.3 - SF12BW500(RX2 downlink only) 362 362 363 -((( 364 -Specify the software version: 0x64=100, means firmware version 1.00. 365 -))) 366 366 367 -((( 368 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 -))) 370 370 476 +=== 2.7.3 CN470-510 (CN470) === 371 371 478 +Used in China, Default use CHE=1 372 372 373 - ===2.4.3 BatteryInfo ===480 +(% style="color:#037691" %)**Uplink:** 374 374 375 -((( 376 -Check the battery voltage for LSE01. 377 -))) 482 +486.3 - SF7BW125 to SF12BW125 378 378 379 -((( 380 -Ex1: 0x0B45 = 2885mV 381 -))) 484 +486.5 - SF7BW125 to SF12BW125 382 382 383 -((( 384 -Ex2: 0x0B49 = 2889mV 385 -))) 486 +486.7 - SF7BW125 to SF12BW125 386 386 488 +486.9 - SF7BW125 to SF12BW125 387 387 490 +487.1 - SF7BW125 to SF12BW125 388 388 389 - === 2.4.4SignalStrength===492 +487.3 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -NB-IoT Network signal Strength. 393 -))) 494 +487.5 - SF7BW125 to SF12BW125 394 394 395 -((( 396 -**Ex1: 0x1d = 29** 397 -))) 496 +487.7 - SF7BW125 to SF12BW125 398 398 399 -((( 400 -(% style="color:blue" %)**0**(%%) -113dBm or less 401 -))) 402 402 403 -((( 404 -(% style="color:blue" %)**1**(%%) -111dBm 405 -))) 499 +(% style="color:#037691" %)**Downlink:** 406 406 407 -((( 408 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 -))) 501 +506.7 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -(% style="color:blue" %)**31** (%%) -51dBm or greater 413 -))) 503 +506.9 - SF7BW125 to SF12BW125 414 414 415 -((( 416 -(% style="color:blue" %)**99** (%%) Not known or not detectable 417 -))) 505 +507.1 - SF7BW125 to SF12BW125 418 418 507 +507.3 - SF7BW125 to SF12BW125 419 419 509 +507.5 - SF7BW125 to SF12BW125 420 420 421 - ===2.4.5SoilMoisture ===511 +507.7 - SF7BW125 to SF12BW125 422 422 423 -((( 424 -((( 425 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 -))) 427 -))) 513 +507.9 - SF7BW125 to SF12BW125 428 428 429 -((( 430 -((( 431 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 -))) 433 -))) 515 +508.1 - SF7BW125 to SF12BW125 434 434 435 -((( 436 - 437 -))) 517 +505.3 - SF12BW125 (RX2 downlink only) 438 438 439 -((( 440 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 -))) 442 442 443 443 521 +=== 2.7.4 AU915-928(AU915) === 444 444 445 - === 2.4.6 Soil Temperature ===523 +Default use CHE=2 446 446 447 -((( 448 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 -))) 525 +(% style="color:#037691" %)**Uplink:** 450 450 451 -((( 452 -**Example**: 453 -))) 527 +916.8 - SF7BW125 to SF12BW125 454 454 455 -((( 456 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 -))) 529 +917.0 - SF7BW125 to SF12BW125 458 458 459 -((( 460 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 -))) 531 +917.2 - SF7BW125 to SF12BW125 462 462 533 +917.4 - SF7BW125 to SF12BW125 463 463 535 +917.6 - SF7BW125 to SF12BW125 464 464 465 - === 2.4.7oilConductivity(EC) ===537 +917.8 - SF7BW125 to SF12BW125 466 466 467 -((( 468 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 -))) 539 +918.0 - SF7BW125 to SF12BW125 470 470 471 -((( 472 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 -))) 541 +918.2 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -Generally, the EC value of irrigation water is less than 800uS / cm. 477 -))) 478 478 479 -((( 480 - 481 -))) 544 +(% style="color:#037691" %)**Downlink:** 482 482 483 -((( 484 - 485 -))) 546 +923.3 - SF7BW500 to SF12BW500 486 486 487 - ===2.4.8DigitalInterrupt===548 +923.9 - SF7BW500 to SF12BW500 488 488 489 -((( 490 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 -))) 550 +924.5 - SF7BW500 to SF12BW500 492 492 493 -((( 494 -The command is: 495 -))) 552 +925.1 - SF7BW500 to SF12BW500 496 496 497 -((( 498 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 -))) 554 +925.7 - SF7BW500 to SF12BW500 500 500 556 +926.3 - SF7BW500 to SF12BW500 501 501 502 -((( 503 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 -))) 558 +926.9 - SF7BW500 to SF12BW500 505 505 560 +927.5 - SF7BW500 to SF12BW500 506 506 507 -((( 508 -Example: 509 -))) 562 +923.3 - SF12BW500(RX2 downlink only) 510 510 511 -((( 512 -0x(00): Normal uplink packet. 513 -))) 514 514 515 -((( 516 -0x(01): Interrupt Uplink Packet. 517 -))) 518 518 566 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 519 519 568 +(% style="color:#037691" %)**Default Uplink channel:** 520 520 521 - ===2.4.9+5VOutput===570 +923.2 - SF7BW125 to SF10BW125 522 522 523 -((( 524 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 -))) 572 +923.4 - SF7BW125 to SF10BW125 526 526 527 527 528 -((( 529 -The 5V output time can be controlled by AT Command. 530 -))) 575 +(% style="color:#037691" %)**Additional Uplink Channel**: 531 531 532 -((( 533 -(% style="color:blue" %)**AT+5VT=1000** 534 -))) 577 +(OTAA mode, channel added by JoinAccept message) 535 535 536 -((( 537 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 -))) 579 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 539 539 581 +922.2 - SF7BW125 to SF10BW125 540 540 583 +922.4 - SF7BW125 to SF10BW125 541 541 542 - ==2.5DownlinkPayload ==585 +922.6 - SF7BW125 to SF10BW125 543 543 544 - Bydefault,NSE01prints the downlinkpayload to console port.587 +922.8 - SF7BW125 to SF10BW125 545 545 546 - [[image:image-20220708133731-5.png]]589 +923.0 - SF7BW125 to SF10BW125 547 547 591 +922.0 - SF7BW125 to SF10BW125 548 548 549 -((( 550 -(% style="color:blue" %)**Examples:** 551 -))) 552 552 553 -((( 554 - 555 -))) 594 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 556 556 557 -* ((( 558 -(% style="color:blue" %)**Set TDC** 559 -))) 596 +923.6 - SF7BW125 to SF10BW125 560 560 561 -((( 562 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 -))) 598 +923.8 - SF7BW125 to SF10BW125 564 564 565 -((( 566 -Payload: 01 00 00 1E TDC=30S 567 -))) 600 +924.0 - SF7BW125 to SF10BW125 568 568 569 -((( 570 -Payload: 01 00 00 3C TDC=60S 571 -))) 602 +924.2 - SF7BW125 to SF10BW125 572 572 573 -((( 574 - 575 -))) 604 +924.4 - SF7BW125 to SF10BW125 576 576 577 -* ((( 578 -(% style="color:blue" %)**Reset** 579 -))) 606 +924.6 - SF7BW125 to SF10BW125 580 580 581 -((( 582 -If payload = 0x04FF, it will reset the NSE01 583 -))) 584 584 609 +(% style="color:#037691" %)** Downlink:** 585 585 586 - * (% style="color:blue"%)**INTMOD**611 +Uplink channels 1-8 (RX1) 587 587 588 -((( 589 -Downlink Payload: 06000003, Set AT+INTMOD=3 590 -))) 613 +923.2 - SF10BW125 (RX2) 591 591 592 592 593 593 594 -== 2.6 LEDIndicator==617 +=== 2.7.6 KR920-923 (KR920) === 595 595 596 -((( 597 -The NSE01 has an internal LED which is to show the status of different state. 619 +Default channel: 598 598 621 +922.1 - SF7BW125 to SF12BW125 599 599 600 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 -* Then the LED will be on for 1 second means device is boot normally. 602 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 -* For each uplink probe, LED will be on for 500ms. 604 -))) 623 +922.3 - SF7BW125 to SF12BW125 605 605 625 +922.5 - SF7BW125 to SF12BW125 606 606 607 607 628 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 608 608 609 - ==2.7InstallationinSoil ==630 +922.1 - SF7BW125 to SF12BW125 610 610 611 - __**Measurementthesoilsurface**__632 +922.3 - SF7BW125 to SF12BW125 612 612 613 -((( 614 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 -))) 634 +922.5 - SF7BW125 to SF12BW125 616 616 617 - [[image:1657259653666-883.png]]636 +922.7 - SF7BW125 to SF12BW125 618 618 638 +922.9 - SF7BW125 to SF12BW125 619 619 620 -((( 621 - 640 +923.1 - SF7BW125 to SF12BW125 622 622 623 -((( 624 -Dig a hole with diameter > 20CM. 625 -))) 642 +923.3 - SF7BW125 to SF12BW125 626 626 627 -((( 628 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 -))) 630 -))) 631 631 632 - [[image:1654506665940-119.png]]645 +(% style="color:#037691" %)**Downlink:** 633 633 634 -((( 635 - 636 -))) 647 +Uplink channels 1-7(RX1) 637 637 649 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 638 638 639 -== 2.8 Firmware Change Log == 640 640 641 641 642 - DownloadURL&FirmwareChange log653 +=== 2.7.7 IN865-867 (IN865) === 643 643 644 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]655 +(% style="color:#037691" %)** Uplink:** 645 645 657 +865.0625 - SF7BW125 to SF12BW125 646 646 647 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]659 +865.4025 - SF7BW125 to SF12BW125 648 648 661 +865.9850 - SF7BW125 to SF12BW125 649 649 650 650 651 - ==2.9 BatteryAnalysis ==664 +(% style="color:#037691" %) **Downlink:** 652 652 653 - ===2.9.1 BatteryType===666 +Uplink channels 1-3 (RX1) 654 654 668 +866.550 - SF10BW125 (RX2) 655 655 670 + 671 + 672 + 673 +== 2.8 LED Indicator == 674 + 675 +The LSE01 has an internal LED which is to show the status of different state. 676 + 677 +* Blink once when device power on. 678 +* Solid ON for 5 seconds once device successful Join the network. 679 +* Blink once when device transmit a packet. 680 + 681 +== 2.9 Installation in Soil == 682 + 683 +**Measurement the soil surface** 684 + 685 + 686 +[[image:1654506634463-199.png]] 687 + 656 656 ((( 657 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 +((( 690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 658 658 ))) 692 +))) 659 659 660 660 695 + 696 +[[image:1654506665940-119.png]] 697 + 661 661 ((( 662 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.699 +Dig a hole with diameter > 20CM. 663 663 ))) 664 664 702 +((( 703 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 704 +))) 665 665 706 + 707 +== 2.10 Firmware Change Log == 708 + 666 666 ((( 667 - The battery relateddocumentsasbelow:710 +**Firmware download link:** 668 668 ))) 669 669 670 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]671 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]672 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]713 +((( 714 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 715 +))) 673 673 674 674 ((( 675 - [[image:image-20220708140453-6.png]]718 + 676 676 ))) 677 677 721 +((( 722 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 723 +))) 678 678 725 +((( 726 + 727 +))) 679 679 680 -=== 2.9.2 Power consumption Analyze === 729 +((( 730 +**V1.0.** 731 +))) 681 681 682 682 ((( 683 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.734 +Release 684 684 ))) 685 685 686 686 738 +== 2.11 Battery Analysis == 739 + 740 +=== 2.11.1 Battery Type === 741 + 687 687 ((( 688 - Instruction touse as below:743 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 689 ))) 690 690 691 691 ((( 692 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]747 +The battery is designed to last for more than 5 years for the LSN50. 693 693 ))) 694 694 695 - 696 696 ((( 697 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 751 +((( 752 +The battery-related documents are as below: 698 698 ))) 754 +))) 699 699 700 700 * ((( 701 - Product Model757 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 702 702 ))) 703 703 * ((( 704 - UplinkInterval760 +[[Lithium-Thionyl Chloride Battery datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], 705 705 ))) 706 706 * ((( 707 - WorkingMode763 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]] 708 708 ))) 709 709 710 -((( 711 -And the Life expectation in difference case will be shown on the right. 712 -))) 766 + [[image:image-20220610172436-1.png]] 713 713 714 -[[image:image-20220708141352-7.jpeg]] 715 715 716 716 770 +=== 2.11.2 Battery Note === 717 717 718 -=== 2.9.3 Battery Note === 719 - 720 720 ((( 721 721 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 722 ))) ... ... @@ -723,176 +723,302 @@ 723 723 724 724 725 725 726 -=== 2. 9.4Replace the battery ===778 +=== 2.11.3 Replace the battery === 727 727 728 728 ((( 729 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).781 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 730 730 ))) 731 731 732 - 733 - 734 -= 3. Access NB-IoT Module = 735 - 736 736 ((( 737 - Userscan directly accesstheATcommand set of theNB-IoTmodule.785 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 738 738 ))) 739 739 740 740 ((( 741 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]789 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 742 ))) 743 743 744 -[[image:1657261278785-153.png]] 745 745 746 746 794 += 3. Using the AT Commands = 747 747 748 -= 4.UsingtheAT Commands =796 +== 3.1 Access AT Commands == 749 749 750 -== 4.1 Access AT Commands == 751 751 752 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]799 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 801 +[[image:1654501986557-872.png||height="391" width="800"]] 754 754 755 -AT+<CMD>? : Help on <CMD> 756 756 757 - AT+<CMD>: Run<CMD>804 +Or if you have below board, use below connection: 758 758 759 -AT+<CMD>=<value> : Set the value 760 760 761 - AT+<CMD>=?:Get the value807 +[[image:1654502005655-729.png||height="503" width="801"]] 762 762 763 763 810 + 811 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 812 + 813 + 814 + [[image:1654502050864-459.png||height="564" width="806"]] 815 + 816 + 817 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 818 + 819 + 820 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 821 + 822 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 823 + 824 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 825 + 826 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 827 + 828 + 764 764 (% style="color:#037691" %)**General Commands**(%%) 765 765 766 -AT 831 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 767 767 768 -AT? 833 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 769 769 770 -ATZ 835 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 771 771 772 -AT+TDC 837 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 773 773 774 -AT+CFG : Print all configurations 775 775 776 - AT+CFGMOD: Workingmode selection840 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 777 777 778 -AT+I NTMOD:Setthe trigger interruptmode842 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 779 779 780 -AT+ 5VTSetextend the timeof5V power844 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 781 781 782 -AT+P ROChooseagreement846 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 783 783 784 -AT+ WEIGREGet weightorsetweight to 0848 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 785 785 786 -AT+ WEIGAPGet or SettheGapValue of weight850 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 787 787 788 -AT+ RXDL: Extendthe sendingandreceivingtime852 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 789 789 790 -AT+ CNTFACGettcountingparameters854 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 791 791 792 -AT+ SERVADDR:ServerAddress856 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 793 793 858 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 794 794 795 -(% style="color:# 037691" %)**COAPManagement**860 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 796 796 797 -AT+ URIsourceparameters862 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 798 798 864 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 799 799 800 -(% style="color:# 037691" %)**UDPManagement**866 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 801 801 802 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)868 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 803 803 870 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 804 804 805 -(% style="color:# 037691" %)**MQTTManagement**872 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 806 806 807 -AT+CLIENT : Get or Set MQTT client 808 808 809 - AT+UNAMEGetSetMQTT Username875 +(% style="color:#037691" %)**LoRa Network Management** 810 810 811 -AT+ PWDGetor SetMQTT password877 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 812 812 813 -AT+ PUBTOPICGetorSetMQTTpublishtopic879 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 814 814 815 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic881 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 816 816 883 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 817 817 818 -(% style="color:# 037691" %)**Information**885 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 819 819 820 -AT+F DRctoryDataReset887 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 821 821 822 -AT+ PWORDSerialAccessPassword889 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 823 823 891 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 824 824 893 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 825 825 826 -= 5.FAQ=895 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 827 827 828 -= =5.1HowtoUpgradeFirmware==897 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 829 829 899 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 830 830 901 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 902 + 903 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 904 + 905 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 906 + 907 + 908 +(% style="color:#037691" %)**Information** 909 + 910 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 911 + 912 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 913 + 914 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 915 + 916 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 917 + 918 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 919 + 920 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 921 + 922 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 923 + 924 + 925 += 4. FAQ = 926 + 927 +== 4.1 How to change the LoRa Frequency Bands/Region? == 928 + 831 831 ((( 832 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 930 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 931 +When downloading the images, choose the required image file for download. 833 833 ))) 834 834 835 835 ((( 836 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]935 + 837 837 ))) 838 838 839 839 ((( 840 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.939 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 841 841 ))) 842 842 942 +((( 943 + 944 +))) 843 843 946 +((( 947 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 948 +))) 844 844 845 -== 5.2 Can I calibrate NSE01 to different soil types? == 950 +((( 951 + 952 +))) 846 846 847 847 ((( 848 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].955 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 849 849 ))) 850 850 958 +[[image:image-20220606154726-3.png]] 851 851 852 -= 6. Trouble Shooting = 853 853 854 - ==6.1 Connection problemwhenuploadingfirmware==961 +When you use the TTN network, the US915 frequency bands use are: 855 855 963 +* 903.9 - SF7BW125 to SF10BW125 964 +* 904.1 - SF7BW125 to SF10BW125 965 +* 904.3 - SF7BW125 to SF10BW125 966 +* 904.5 - SF7BW125 to SF10BW125 967 +* 904.7 - SF7BW125 to SF10BW125 968 +* 904.9 - SF7BW125 to SF10BW125 969 +* 905.1 - SF7BW125 to SF10BW125 970 +* 905.3 - SF7BW125 to SF10BW125 971 +* 904.6 - SF8BW500 856 856 857 857 ((( 858 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 974 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 975 + 976 +* (% style="color:#037691" %)**AT+CHE=2** 977 +* (% style="color:#037691" %)**ATZ** 859 859 ))) 860 860 861 -(% class="wikigeneratedid" %) 862 862 ((( 863 863 982 + 983 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 864 864 ))) 865 865 986 +((( 987 + 988 +))) 866 866 867 -== 6.2 AT Command input doesn't work == 990 +((( 991 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 992 +))) 868 868 994 +[[image:image-20220606154825-4.png]] 995 + 996 + 997 +== 4.2 Can I calibrate LSE01 to different soil types? == 998 + 999 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]]. 1000 + 1001 + 1002 += 5. Trouble Shooting = 1003 + 1004 +== 5.1 Why I can't join TTN in US915 / AU915 bands? == 1005 + 1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details. 1007 + 1008 + 1009 +== 5.2 AT Command input doesn't work == 1010 + 869 869 ((( 870 870 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1013 +))) 871 871 872 - 1015 + 1016 +== 5.3 Device rejoin in at the second uplink packet == 1017 + 1018 +(% style="color:#4f81bd" %)**Issue describe as below:** 1019 + 1020 +[[image:1654500909990-784.png]] 1021 + 1022 + 1023 +(% style="color:#4f81bd" %)**Cause for this issue:** 1024 + 1025 +((( 1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 873 873 ))) 874 874 875 875 876 - =7. OrderInfo=1030 +(% style="color:#4f81bd" %)**Solution: ** 877 877 1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 878 878 879 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1034 +[[image:1654500929571-736.png||height="458" width="832"]] 880 880 881 881 1037 += 6. Order Info = 1038 + 1039 + 1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1044 + 1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1051 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1053 + 1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1055 + 1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1058 + 882 882 (% class="wikigeneratedid" %) 883 883 ((( 884 884 885 885 ))) 886 886 887 -= 8.1064 += 7. Packing Info = 888 888 889 889 ((( 890 890 891 891 892 892 (% style="color:#037691" %)**Package Includes**: 1070 +))) 893 893 894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1895 - *Externalantennax 11072 +* ((( 1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 896 896 ))) 897 897 898 898 ((( ... ... @@ -899,19 +899,24 @@ 899 899 900 900 901 901 (% style="color:#037691" %)**Dimension and weight**: 1080 +))) 902 902 903 -* Size: 195 x 125 x 55 mm904 - * Weight:420g1082 +* ((( 1083 +Device Size: cm 905 905 ))) 1085 +* ((( 1086 +Device Weight: g 1087 +))) 1088 +* ((( 1089 +Package Size / pcs : cm 1090 +))) 1091 +* ((( 1092 +Weight / pcs : g 906 906 907 -((( 908 908 909 - 910 - 911 - 912 912 ))) 913 913 914 -= 9.1097 += 8. Support = 915 915 916 916 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 917 917 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content