Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 67.2
edited by Xiaoling
on 2022/07/08 18:09
Change comment: There is no comment for this version
To version 35.14
edited by Xiaoling
on 2022/06/14 14:12
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NDDS75 NB-IoT Distance Detect Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -1,17 +1,11 @@
1 1  (% style="text-align:center" %)
2 -[[image:1657271519014-786.png]]
2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]]
3 3  
4 4  
5 5  
6 -
7 -
8 -
9 -
10 -
11 -
12 -
13 13  **Table of Contents:**
14 14  
8 +{{toc/}}
15 15  
16 16  
17 17  
... ... @@ -18,80 +18,64 @@
18 18  
19 19  
20 20  
21 -= 1.  Introduction =
15 += 1. Introduction =
22 22  
23 -== 1.1 ​ What is NDDS75 Distance Detection Sensor ==
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
24 24  
25 25  (((
26 26  
27 27  
28 -The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensing technology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.
22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
23 +)))
29 29  
30 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server.
25 +(((
26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
27 +)))
31 31  
32 -**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage.
29 +(((
30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
31 +)))
33 33  
34 -NDDS75 is powered by 8**500mA Li-SOCI2 battery**; It is designed for long term use up to 5 years*.
35 -
36 -~* Actually lifetime depends on network coverage and uplink interval and other factors
37 -
38 38  (((
39 -
34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
40 40  )))
41 41  
42 -
37 +(((
38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
43 43  )))
44 44  
41 +
45 45  [[image:1654503236291-817.png]]
46 46  
47 47  
48 -[[image:1657245163077-232.png]]
45 +[[image:1654503265560-120.png]]
49 49  
50 50  
51 51  
52 -== 1.2 ​ Features ==
49 +== 1.2 ​Features ==
53 53  
54 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
51 +* LoRaWAN 1.0.3 Class A
52 +* Ultra low power consumption
55 55  * Monitor Soil Moisture
56 56  * Monitor Soil Temperature
57 57  * Monitor Soil Conductivity
56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
58 58  * AT Commands to change parameters
59 59  * Uplink on periodically
60 60  * Downlink to change configure
61 61  * IP66 Waterproof Enclosure
62 -* Ultra-Low Power consumption
63 -* AT Commands to change parameters
64 -* Micro SIM card slot for NB-IoT SIM
65 -* 8500mAh Battery for long term use
61 +* 4000mAh or 8500mAh Battery for long term use
66 66  
67 67  
64 +== 1.3 Specification ==
68 68  
69 -== 1.3  Specification ==
70 -
71 -
72 -(% style="color:#037691" %)**Common DC Characteristics:**
73 -
74 -* Supply Voltage: 2.1v ~~ 3.6v
75 -* Operating Temperature: -40 ~~ 85°C
76 -
77 -(% style="color:#037691" %)**NB-IoT Spec:**
78 -
79 -* - B1 @H-FDD: 2100MHz
80 -* - B3 @H-FDD: 1800MHz
81 -* - B8 @H-FDD: 900MHz
82 -* - B5 @H-FDD: 850MHz
83 -* - B20 @H-FDD: 800MHz
84 -* - B28 @H-FDD: 700MHz
85 -
86 -Probe(% style="color:#037691" %)** Specification:**
87 -
88 88  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
89 89  
90 -[[image:image-20220708101224-1.png]]
68 +[[image:image-20220606162220-5.png]]
91 91  
92 92  
93 93  
94 -== ​1.4  Applications ==
72 +== ​1.4 Applications ==
95 95  
96 96  * Smart Agriculture
97 97  
... ... @@ -98,625 +98,707 @@
98 98  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
99 99  ​
100 100  
101 -== 1.5  Pin Definitions ==
79 +== 1.5 Firmware Change log ==
102 102  
103 103  
104 -[[image:1657246476176-652.png]]
82 +**LSE01 v1.0 :**  Release
105 105  
106 106  
107 107  
108 -= 2.  Use NSE01 to communicate with IoT Server =
86 += 2. Configure LSE01 to connect to LoRaWAN network =
109 109  
110 -== 2.1  How it works ==
88 +== 2.1 How it works ==
111 111  
112 -
113 113  (((
114 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
91 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
115 115  )))
116 116  
117 -
118 118  (((
119 -The diagram below shows the working flow in default firmware of NSE01:
95 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
120 120  )))
121 121  
122 -[[image:image-20220708101605-2.png]]
123 123  
124 -(((
125 -
126 -)))
127 127  
100 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
128 128  
102 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
129 129  
130 -== 2.2 ​ Configure the NSE01 ==
131 131  
105 +[[image:1654503992078-669.png]]
132 132  
133 -=== 2.2.1 Test Requirement ===
134 134  
108 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
135 135  
136 -(((
137 -To use NSE01 in your city, make sure meet below requirements:
138 -)))
139 139  
140 -* Your local operator has already distributed a NB-IoT Network there.
141 -* The local NB-IoT network used the band that NSE01 supports.
142 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
111 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
143 143  
144 -(((
145 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
146 -)))
113 +Each LSE01 is shipped with a sticker with the default device EUI as below:
147 147  
115 +[[image:image-20220606163732-6.jpeg]]
148 148  
149 -[[image:1657249419225-449.png]]
117 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
150 150  
119 +**Add APP EUI in the application**
151 151  
152 152  
153 -=== 2.2.2 Insert SIM card ===
122 +[[image:1654504596150-405.png]]
154 154  
155 -(((
156 -Insert the NB-IoT Card get from your provider.
157 -)))
158 158  
159 -(((
160 -User need to take out the NB-IoT module and insert the SIM card like below:
161 -)))
162 162  
126 +**Add APP KEY and DEV EUI**
163 163  
164 -[[image:1657249468462-536.png]]
128 +[[image:1654504683289-357.png]]
165 165  
166 166  
167 167  
168 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
132 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
169 169  
170 -(((
171 -(((
172 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
173 -)))
174 -)))
175 175  
135 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
176 176  
177 -**Connection:**
137 +[[image:image-20220606163915-7.png]]
178 178  
179 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
180 180  
181 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
140 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
182 182  
183 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
142 +[[image:1654504778294-788.png]]
184 184  
185 185  
186 -In the PC, use below serial tool settings:
187 187  
188 -* Baud:  (% style="color:green" %)**9600**
189 -* Data bits:** (% style="color:green" %)8(%%)**
190 -* Stop bits: (% style="color:green" %)**1**
191 -* Parity:  (% style="color:green" %)**None**
192 -* Flow Control: (% style="color:green" %)**None**
146 +== 2.3 Uplink Payload ==
193 193  
194 -(((
195 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
196 -)))
197 197  
198 -[[image:image-20220708110657-3.png]]
149 +=== 2.3.1 MOD~=0(Default Mode) ===
199 199  
151 +LSE01 will uplink payload via LoRaWAN with below payload format: 
152 +
200 200  (((
201 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
154 +Uplink payload includes in total 11 bytes.
202 202  )))
203 203  
157 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
158 +|(((
159 +**Size**
204 204  
161 +**(bytes)**
162 +)))|**2**|**2**|**2**|**2**|**2**|**1**
163 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
164 +Temperature
205 205  
206 -=== 2.2.4 Use CoAP protocol to uplink data ===
166 +(Reserve, Ignore now)
167 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
168 +MOD & Digital Interrupt
207 207  
208 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
170 +(Optional)
171 +)))
209 209  
210 210  
211 -**Use below commands:**
212 212  
213 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
214 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
215 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
216 216  
217 -For parameter description, please refer to AT command set
176 +=== 2.3.2 MOD~=1(Original value) ===
218 218  
219 -[[image:1657249793983-486.png]]
178 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
220 220  
180 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
181 +|(((
182 +**Size**
221 221  
222 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
184 +**(bytes)**
185 +)))|**2**|**2**|**2**|**2**|**2**|**1**
186 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
187 +Temperature
223 223  
224 -[[image:1657249831934-534.png]]
189 +(Reserve, Ignore now)
190 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
191 +MOD & Digital Interrupt
225 225  
193 +(Optional)
194 +)))
226 226  
227 227  
228 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
229 229  
230 -This feature is supported since firmware version v1.0.1
231 231  
199 +=== 2.3.3 Battery Info ===
232 232  
233 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
234 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
235 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
201 +(((
202 +Check the battery voltage for LSE01.
203 +)))
236 236  
237 -[[image:1657249864775-321.png]]
205 +(((
206 +Ex1: 0x0B45 = 2885mV
207 +)))
238 238  
209 +(((
210 +Ex2: 0x0B49 = 2889mV
211 +)))
239 239  
240 -[[image:1657249930215-289.png]]
241 241  
242 242  
215 +=== 2.3.4 Soil Moisture ===
243 243  
244 -=== 2.2.6 Use MQTT protocol to uplink data ===
217 +(((
218 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
219 +)))
245 245  
246 -This feature is supported since firmware version v110
221 +(((
222 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
223 +)))
247 247  
225 +(((
226 +
227 +)))
248 248  
249 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
252 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
253 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
254 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
255 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
229 +(((
230 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
231 +)))
256 256  
257 -[[image:1657249978444-674.png]]
258 258  
259 259  
260 -[[image:1657249990869-686.png]]
235 +=== 2.3.5 Soil Temperature ===
261 261  
237 +(((
238 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
239 +)))
262 262  
263 263  (((
264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
242 +**Example**:
265 265  )))
266 266  
245 +(((
246 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
247 +)))
267 267  
249 +(((
250 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
251 +)))
268 268  
269 -=== 2.2.7 Use TCP protocol to uplink data ===
270 270  
271 -This feature is supported since firmware version v110
272 272  
255 +=== 2.3.6 Soil Conductivity (EC) ===
273 273  
274 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
257 +(((
258 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
259 +)))
276 276  
277 -[[image:1657250217799-140.png]]
261 +(((
262 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
263 +)))
278 278  
279 -
280 -[[image:1657250255956-604.png]]
281 -
282 -
283 -
284 -=== 2.2.8 Change Update Interval ===
285 -
286 -User can use below command to change the (% style="color:green" %)**uplink interval**.
287 -
288 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
289 -
290 290  (((
291 -(% style="color:red" %)**NOTE:**
266 +Generally, the EC value of irrigation water is less than 800uS / cm.
292 292  )))
293 293  
294 294  (((
295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
270 +
296 296  )))
297 297  
298 -
299 -
300 -== 2.3  Uplink Payload ==
301 -
302 -In this mode, uplink payload includes in total 18 bytes
303 -
304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
305 -|=(% style="width: 60px;" %)(((
306 -**Size(bytes)**
307 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1**
308 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
309 -
310 310  (((
311 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
274 +
312 312  )))
313 313  
277 +=== 2.3.7 MOD ===
314 314  
315 -[[image:image-20220708111918-4.png]]
279 +Firmware version at least v2.1 supports changing mode.
316 316  
281 +For example, bytes[10]=90
317 317  
318 -The payload is ASCII string, representative same HEX:
283 +mod=(bytes[10]>>7)&0x01=1.
319 319  
320 -0x72403155615900640c7817075e0a8c02f900 where:
321 321  
322 -* Device ID: 0x 724031556159 = 724031556159
323 -* Version: 0x0064=100=1.0.0
286 +**Downlink Command:**
324 324  
325 -* BAT: 0x0c78 = 3192 mV = 3.192V
326 -* Singal: 0x17 = 23
327 -* Soil Moisture: 0x075e= 1886 = 18.86  %
328 -* Soil Temperature:0x0a8c =2700=27 °C
329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
330 -* Interrupt: 0x00 = 0
288 +If payload = 0x0A00, workmode=0
331 331  
290 +If** **payload =** **0x0A01, workmode=1
332 332  
333 333  
334 -== 2.4  Payload Explanation and Sensor Interface ==
335 335  
294 +=== 2.3.8 ​Decode payload in The Things Network ===
336 336  
337 -=== 2.4.1  Device ID ===
296 +While using TTN network, you can add the payload format to decode the payload.
338 338  
339 -(((
340 -By default, the Device ID equal to the last 6 bytes of IMEI.
341 -)))
342 342  
343 -(((
344 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
345 -)))
299 +[[image:1654505570700-128.png]]
346 346  
347 347  (((
348 -**Example:**
302 +The payload decoder function for TTN is here:
349 349  )))
350 350  
351 351  (((
352 -AT+DEUI=A84041F15612
306 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
353 353  )))
354 354  
355 -(((
356 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
357 -)))
358 358  
310 +== 2.4 Uplink Interval ==
359 359  
312 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
360 360  
361 -=== 2.4.2  Version Info ===
362 362  
363 -(((
364 -Specify the software version: 0x64=100, means firmware version 1.00.
365 -)))
366 366  
367 -(((
368 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
369 -)))
316 +== 2.5 Downlink Payload ==
370 370  
318 +By default, LSE50 prints the downlink payload to console port.
371 371  
320 +[[image:image-20220606165544-8.png]]
372 372  
373 -=== 2.4.3  Battery Info ===
374 374  
375 375  (((
376 -Check the battery voltage for LSE01.
324 +**Examples:**
377 377  )))
378 378  
379 379  (((
380 -Ex1: 0x0B45 = 2885mV
328 +
381 381  )))
382 382  
383 -(((
384 -Ex2: 0x0B49 = 2889mV
331 +* (((
332 +**Set TDC**
385 385  )))
386 386  
387 -
388 -
389 -=== 2.4.4  Signal Strength ===
390 -
391 391  (((
392 -NB-IoT Network signal Strength.
336 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
393 393  )))
394 394  
395 395  (((
396 -**Ex1: 0x1d = 29**
340 +Payload:    01 00 00 1E    TDC=30S
397 397  )))
398 398  
399 399  (((
400 -(% style="color:blue" %)**0**(%%)  -113dBm or less
344 +Payload:    01 00 00 3C    TDC=60S
401 401  )))
402 402  
403 403  (((
404 -(% style="color:blue" %)**1**(%%)  -111dBm
348 +
405 405  )))
406 406  
407 -(((
408 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
351 +* (((
352 +**Reset**
409 409  )))
410 410  
411 411  (((
412 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
356 +If payload = 0x04FF, it will reset the LSE01
413 413  )))
414 414  
415 -(((
416 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
417 -)))
418 418  
360 +* **CFM**
419 419  
362 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
420 420  
421 -=== 2.4.5  Soil Moisture ===
422 422  
365 +
366 +== 2.6 ​Show Data in DataCake IoT Server ==
367 +
423 423  (((
424 -(((
425 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
369 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
426 426  )))
427 -)))
428 428  
429 429  (((
430 -(((
431 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
373 +
432 432  )))
433 -)))
434 434  
435 435  (((
436 -
377 +**(% style="color:blue" %)Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
437 437  )))
438 438  
439 439  (((
440 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
381 +**(% style="color:blue" %)Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
441 441  )))
442 442  
443 443  
385 +[[image:1654505857935-743.png]]
444 444  
445 -=== 2.4.6  Soil Temperature ===
446 446  
447 -(((
448 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
449 -)))
388 +[[image:1654505874829-548.png]]
450 450  
451 -(((
452 -**Example**:
453 -)))
390 +**(% style="color:blue" %)Step 3(%%):**  Create an account or log in Datacake.
454 454  
455 -(((
456 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
457 -)))
392 +**(% style="color:blue" %)Step 4(%%):**  Search the LSE01 and add DevEUI.
458 458  
459 -(((
460 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
461 -)))
462 462  
395 +[[image:1654505905236-553.png]]
463 463  
464 464  
465 -=== 2.4.7  Soil Conductivity (EC) ===
398 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
466 466  
467 -(((
468 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
469 -)))
400 +[[image:1654505925508-181.png]]
470 470  
471 -(((
472 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
473 -)))
474 474  
475 -(((
476 -Generally, the EC value of irrigation water is less than 800uS / cm.
477 -)))
478 478  
479 -(((
480 -
481 -)))
404 +== 2.7 Frequency Plans ==
482 482  
483 -(((
484 -
485 -)))
406 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
486 486  
487 -=== 2.4.8  Digital Interrupt ===
488 488  
489 -(((
490 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
491 -)))
409 +=== 2.7.1 EU863-870 (EU868) ===
492 492  
493 -(((
494 -The command is:
495 -)))
411 +(% style="color:#037691" %)** Uplink:**
496 496  
497 -(((
498 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
499 -)))
413 +868.1 - SF7BW125 to SF12BW125
500 500  
415 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
501 501  
502 -(((
503 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
504 -)))
417 +868.5 - SF7BW125 to SF12BW125
505 505  
419 +867.1 - SF7BW125 to SF12BW125
506 506  
507 -(((
508 -Example:
509 -)))
421 +867.3 - SF7BW125 to SF12BW125
510 510  
511 -(((
512 -0x(00): Normal uplink packet.
513 -)))
423 +867.5 - SF7BW125 to SF12BW125
514 514  
515 -(((
516 -0x(01): Interrupt Uplink Packet.
517 -)))
425 +867.7 - SF7BW125 to SF12BW125
518 518  
427 +867.9 - SF7BW125 to SF12BW125
519 519  
429 +868.8 - FSK
520 520  
521 -=== 2.4.9  ​+5V Output ===
522 522  
523 -(((
524 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
525 -)))
432 +(% style="color:#037691" %)** Downlink:**
526 526  
434 +Uplink channels 1-9 (RX1)
527 527  
528 -(((
529 -The 5V output time can be controlled by AT Command.
530 -)))
436 +869.525 - SF9BW125 (RX2 downlink only)
531 531  
532 -(((
533 -(% style="color:blue" %)**AT+5VT=1000**
534 -)))
535 535  
536 -(((
537 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
538 -)))
539 539  
440 +=== 2.7.2 US902-928(US915) ===
540 540  
442 +Used in USA, Canada and South America. Default use CHE=2
541 541  
542 -== 2.5  Downlink Payload ==
444 +(% style="color:#037691" %)**Uplink:**
543 543  
544 -By default, NSE01 prints the downlink payload to console port.
446 +903.9 - SF7BW125 to SF10BW125
545 545  
546 -[[image:image-20220708133731-5.png]]
448 +904.1 - SF7BW125 to SF10BW125
547 547  
450 +904.3 - SF7BW125 to SF10BW125
548 548  
549 -(((
550 -(% style="color:blue" %)**Examples:**
551 -)))
452 +904.5 - SF7BW125 to SF10BW125
552 552  
553 -(((
554 -
555 -)))
454 +904.7 - SF7BW125 to SF10BW125
556 556  
557 -* (((
558 -(% style="color:blue" %)**Set TDC**
559 -)))
456 +904.9 - SF7BW125 to SF10BW125
560 560  
561 -(((
562 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
563 -)))
458 +905.1 - SF7BW125 to SF10BW125
564 564  
565 -(((
566 -Payload:    01 00 00 1E    TDC=30S
567 -)))
460 +905.3 - SF7BW125 to SF10BW125
568 568  
569 -(((
570 -Payload:    01 00 00 3C    TDC=60S
571 -)))
572 572  
573 -(((
574 -
575 -)))
463 +(% style="color:#037691" %)**Downlink:**
576 576  
577 -* (((
578 -(% style="color:blue" %)**Reset**
579 -)))
465 +923.3 - SF7BW500 to SF12BW500
580 580  
581 -(((
582 -If payload = 0x04FF, it will reset the NSE01
583 -)))
467 +923.9 - SF7BW500 to SF12BW500
584 584  
469 +924.5 - SF7BW500 to SF12BW500
585 585  
586 -* (% style="color:blue" %)**INTMOD**
471 +925.1 - SF7BW500 to SF12BW500
587 587  
588 -(((
589 -Downlink Payload: 06000003, Set AT+INTMOD=3
590 -)))
473 +925.7 - SF7BW500 to SF12BW500
591 591  
475 +926.3 - SF7BW500 to SF12BW500
592 592  
477 +926.9 - SF7BW500 to SF12BW500
593 593  
594 -== 2. ​LED Indicator ==
479 +927.5 - SF7BW500 to SF12BW500
595 595  
596 -(((
597 -The NSE01 has an internal LED which is to show the status of different state.
481 +923.3 - SF12BW500(RX2 downlink only)
598 598  
599 599  
600 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
601 -* Then the LED will be on for 1 second means device is boot normally.
602 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
603 -* For each uplink probe, LED will be on for 500ms.
604 -)))
605 605  
485 +=== 2.7.3 CN470-510 (CN470) ===
606 606  
487 +Used in China, Default use CHE=1
607 607  
489 +(% style="color:#037691" %)**Uplink:**
608 608  
609 -== 2.7  Installation in Soil ==
491 +486.3 - SF7BW125 to SF12BW125
610 610  
611 -__**Measurement the soil surface**__
493 +486.5 - SF7BW125 to SF12BW125
612 612  
613 -(((
614 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
615 -)))
495 +486.7 - SF7BW125 to SF12BW125
616 616  
617 -[[image:1657259653666-883.png]]
497 +486.9 - SF7BW125 to SF12BW125
618 618  
499 +487.1 - SF7BW125 to SF12BW125
619 619  
620 -(((
621 -
501 +487.3 - SF7BW125 to SF12BW125
622 622  
623 -(((
624 -Dig a hole with diameter > 20CM.
625 -)))
503 +487.5 - SF7BW125 to SF12BW125
626 626  
627 -(((
628 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
629 -)))
630 -)))
505 +487.7 - SF7BW125 to SF12BW125
631 631  
632 -[[image:1654506665940-119.png]]
633 633  
634 -(((
635 -
636 -)))
508 +(% style="color:#037691" %)**Downlink:**
637 637  
510 +506.7 - SF7BW125 to SF12BW125
638 638  
639 -== 2. Firmware Change Log ==
512 +506.9 - SF7BW125 to SF12BW125
640 640  
514 +507.1 - SF7BW125 to SF12BW125
641 641  
642 -Download URL & Firmware Change log
516 +507.3 - SF7BW125 to SF12BW125
643 643  
644 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
518 +507.5 - SF7BW125 to SF12BW125
645 645  
520 +507.7 - SF7BW125 to SF12BW125
646 646  
647 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
522 +507.9 - SF7BW125 to SF12BW125
648 648  
524 +508.1 - SF7BW125 to SF12BW125
649 649  
526 +505.3 - SF12BW125 (RX2 downlink only)
650 650  
651 -== 2.9  ​Battery Analysis ==
652 652  
653 -=== 2.9.1  ​Battery Type ===
654 654  
530 +=== 2.7.4 AU915-928(AU915) ===
655 655  
532 +Default use CHE=2
533 +
534 +(% style="color:#037691" %)**Uplink:**
535 +
536 +916.8 - SF7BW125 to SF12BW125
537 +
538 +917.0 - SF7BW125 to SF12BW125
539 +
540 +917.2 - SF7BW125 to SF12BW125
541 +
542 +917.4 - SF7BW125 to SF12BW125
543 +
544 +917.6 - SF7BW125 to SF12BW125
545 +
546 +917.8 - SF7BW125 to SF12BW125
547 +
548 +918.0 - SF7BW125 to SF12BW125
549 +
550 +918.2 - SF7BW125 to SF12BW125
551 +
552 +
553 +(% style="color:#037691" %)**Downlink:**
554 +
555 +923.3 - SF7BW500 to SF12BW500
556 +
557 +923.9 - SF7BW500 to SF12BW500
558 +
559 +924.5 - SF7BW500 to SF12BW500
560 +
561 +925.1 - SF7BW500 to SF12BW500
562 +
563 +925.7 - SF7BW500 to SF12BW500
564 +
565 +926.3 - SF7BW500 to SF12BW500
566 +
567 +926.9 - SF7BW500 to SF12BW500
568 +
569 +927.5 - SF7BW500 to SF12BW500
570 +
571 +923.3 - SF12BW500(RX2 downlink only)
572 +
573 +
574 +
575 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
576 +
577 +(% style="color:#037691" %)**Default Uplink channel:**
578 +
579 +923.2 - SF7BW125 to SF10BW125
580 +
581 +923.4 - SF7BW125 to SF10BW125
582 +
583 +
584 +(% style="color:#037691" %)**Additional Uplink Channel**:
585 +
586 +(OTAA mode, channel added by JoinAccept message)
587 +
588 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
589 +
590 +922.2 - SF7BW125 to SF10BW125
591 +
592 +922.4 - SF7BW125 to SF10BW125
593 +
594 +922.6 - SF7BW125 to SF10BW125
595 +
596 +922.8 - SF7BW125 to SF10BW125
597 +
598 +923.0 - SF7BW125 to SF10BW125
599 +
600 +922.0 - SF7BW125 to SF10BW125
601 +
602 +
603 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
604 +
605 +923.6 - SF7BW125 to SF10BW125
606 +
607 +923.8 - SF7BW125 to SF10BW125
608 +
609 +924.0 - SF7BW125 to SF10BW125
610 +
611 +924.2 - SF7BW125 to SF10BW125
612 +
613 +924.4 - SF7BW125 to SF10BW125
614 +
615 +924.6 - SF7BW125 to SF10BW125
616 +
617 +
618 +(% style="color:#037691" %)** Downlink:**
619 +
620 +Uplink channels 1-8 (RX1)
621 +
622 +923.2 - SF10BW125 (RX2)
623 +
624 +
625 +
626 +=== 2.7.6 KR920-923 (KR920) ===
627 +
628 +Default channel:
629 +
630 +922.1 - SF7BW125 to SF12BW125
631 +
632 +922.3 - SF7BW125 to SF12BW125
633 +
634 +922.5 - SF7BW125 to SF12BW125
635 +
636 +
637 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
638 +
639 +922.1 - SF7BW125 to SF12BW125
640 +
641 +922.3 - SF7BW125 to SF12BW125
642 +
643 +922.5 - SF7BW125 to SF12BW125
644 +
645 +922.7 - SF7BW125 to SF12BW125
646 +
647 +922.9 - SF7BW125 to SF12BW125
648 +
649 +923.1 - SF7BW125 to SF12BW125
650 +
651 +923.3 - SF7BW125 to SF12BW125
652 +
653 +
654 +(% style="color:#037691" %)**Downlink:**
655 +
656 +Uplink channels 1-7(RX1)
657 +
658 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
659 +
660 +
661 +
662 +=== 2.7.7 IN865-867 (IN865) ===
663 +
664 +(% style="color:#037691" %)** Uplink:**
665 +
666 +865.0625 - SF7BW125 to SF12BW125
667 +
668 +865.4025 - SF7BW125 to SF12BW125
669 +
670 +865.9850 - SF7BW125 to SF12BW125
671 +
672 +
673 +(% style="color:#037691" %) **Downlink:**
674 +
675 +Uplink channels 1-3 (RX1)
676 +
677 +866.550 - SF10BW125 (RX2)
678 +
679 +
680 +
681 +
682 +== 2.8 LED Indicator ==
683 +
684 +The LSE01 has an internal LED which is to show the status of different state.
685 +
686 +* Blink once when device power on.
687 +* Solid ON for 5 seconds once device successful Join the network.
688 +* Blink once when device transmit a packet.
689 +
690 +== 2.9 Installation in Soil ==
691 +
692 +**Measurement the soil surface**
693 +
694 +
695 +[[image:1654506634463-199.png]] ​
696 +
656 656  (((
657 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
698 +(((
699 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
658 658  )))
701 +)))
659 659  
660 660  
704 +[[image:1654506665940-119.png]]
705 +
661 661  (((
662 -The battery is designed to last for several years depends on the actually use environment and update interval. 
707 +Dig a hole with diameter > 20CM.
663 663  )))
664 664  
710 +(((
711 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
712 +)))
665 665  
714 +
715 +== 2.10 ​Firmware Change Log ==
716 +
666 666  (((
667 -The battery related documents as below:
718 +**Firmware download link:**
668 668  )))
669 669  
670 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
671 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
672 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
721 +(((
722 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
723 +)))
673 673  
674 674  (((
675 -[[image:image-20220708140453-6.png]]
726 +
676 676  )))
677 677  
729 +(((
730 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
731 +)))
678 678  
733 +(((
734 +
735 +)))
679 679  
680 -=== 2.9.2  Power consumption Analyze ===
737 +(((
738 +**V1.0.**
739 +)))
681 681  
682 682  (((
683 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
742 +Release
684 684  )))
685 685  
686 686  
746 +== 2.11 ​Battery Analysis ==
747 +
748 +=== 2.11.1 ​Battery Type ===
749 +
687 687  (((
688 -Instruction to use as below:
751 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
689 689  )))
690 690  
691 691  (((
692 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
755 +The battery is designed to last for more than 5 years for the LSN50.
693 693  )))
694 694  
695 -
696 696  (((
697 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
759 +(((
760 +The battery-related documents are as below:
698 698  )))
762 +)))
699 699  
700 700  * (((
701 -Product Model
765 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
702 702  )))
703 703  * (((
704 -Uplink Interval
768 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
705 705  )))
706 706  * (((
707 -Working Mode
771 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
708 708  )))
709 709  
710 -(((
711 -And the Life expectation in difference case will be shown on the right.
712 -)))
774 + [[image:image-20220610172436-1.png]]
713 713  
714 -[[image:image-20220708141352-7.jpeg]]
715 715  
716 716  
778 +=== 2.11.2 ​Battery Note ===
717 717  
718 -=== 2.9.3  ​Battery Note ===
719 -
720 720  (((
721 721  The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
722 722  )))
... ... @@ -723,176 +723,303 @@
723 723  
724 724  
725 725  
726 -=== 2.9. Replace the battery ===
786 +=== 2.11.3 Replace the battery ===
727 727  
728 728  (((
729 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
789 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
730 730  )))
731 731  
732 -
733 -
734 -= 3. ​ Access NB-IoT Module =
735 -
736 736  (((
737 -Users can directly access the AT command set of the NB-IoT module.
793 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
738 738  )))
739 739  
740 740  (((
741 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
797 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
742 742  )))
743 743  
744 -[[image:1657261278785-153.png]]
745 745  
746 746  
802 += 3. ​Using the AT Commands =
747 747  
748 -= 4.  Using the AT Commands =
804 +== 3.1 Access AT Commands ==
749 749  
750 -== 4.1  Access AT Commands ==
751 751  
752 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
807 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
753 753  
809 +[[image:1654501986557-872.png||height="391" width="800"]]
754 754  
755 -AT+<CMD>?  : Help on <CMD>
756 756  
757 -AT+<CMD>         : Run <CMD>
812 +Or if you have below board, use below connection:
758 758  
759 -AT+<CMD>=<value> : Set the value
760 760  
761 -AT+<CMD>=?  : Get the value
815 +[[image:1654502005655-729.png||height="503" width="801"]]
762 762  
763 763  
818 +
819 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
820 +
821 +
822 + [[image:1654502050864-459.png||height="564" width="806"]]
823 +
824 +
825 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
826 +
827 +
828 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
829 +
830 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
831 +
832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
833 +
834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
835 +
836 +
764 764  (% style="color:#037691" %)**General Commands**(%%)      
765 765  
766 -AT  : Attention       
839 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
767 767  
768 -AT?  : Short Help     
841 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
769 769  
770 -ATZ  : MCU Reset    
843 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
771 771  
772 -AT+TDC  : Application Data Transmission Interval
845 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
773 773  
774 -AT+CFG  : Print all configurations
775 775  
776 -AT+CFGMOD           : Working mode selection
848 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
777 777  
778 -AT+INTMOD            : Set the trigger interrupt mode
850 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
779 779  
780 -AT+5VT  : Set extend the time of 5V power  
852 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
781 781  
782 -AT+PRO  : Choose agreement
854 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
783 783  
784 -AT+WEIGRE  : Get weight or set weight to 0
856 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
785 785  
786 -AT+WEIGAP  : Get or Set the GapValue of weight
858 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
787 787  
788 -AT+RXDL  : Extend the sending and receiving time
860 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
789 789  
790 -AT+CNTFAC  : Get or set counting parameters
862 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
791 791  
792 -AT+SERVADDR  : Server Address
864 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
793 793  
866 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
794 794  
795 -(% style="color:#037691" %)**COAP Management**      
868 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
796 796  
797 -AT+URI            : Resource parameters
870 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
798 798  
872 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
799 799  
800 -(% style="color:#037691" %)**UDP Management**
874 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
801 801  
802 -AT+CFM          : Upload confirmation mode (only valid for UDP)
876 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
803 803  
878 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
804 804  
805 -(% style="color:#037691" %)**MQTT Management**
880 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
806 806  
807 -AT+CLIENT               : Get or Set MQTT client
808 808  
809 -AT+UNAME  : Get or Set MQTT Username
883 +(% style="color:#037691" %)**LoRa Network Management**
810 810  
811 -AT+PWD                  : Get or Set MQTT password
885 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
812 812  
813 -AT+PUBTOPI : Get or Set MQTT publish topic
887 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
814 814  
815 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
889 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
816 816  
891 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
817 817  
818 -(% style="color:#037691" %)**Information**          
893 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
819 819  
820 -AT+FDR  : Factory Data Reset
895 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
821 821  
822 -AT+PWOR : Serial Access Password
897 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
823 823  
899 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
824 824  
901 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
825 825  
826 -= ​5.  FAQ =
903 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
827 827  
828 -== 5.1 How to Upgrade Firmware ==
905 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
829 829  
907 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
830 830  
909 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
910 +
911 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
912 +
913 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
914 +
915 +
916 +(% style="color:#037691" %)**Information** 
917 +
918 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
919 +
920 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
921 +
922 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
923 +
924 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
925 +
926 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
927 +
928 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
929 +
930 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
931 +
932 +
933 += ​4. FAQ =
934 +
935 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
936 +
831 831  (((
832 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
938 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
939 +When downloading the images, choose the required image file for download. ​
833 833  )))
834 834  
835 835  (((
836 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
943 +
837 837  )))
838 838  
839 839  (((
840 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
947 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
841 841  )))
842 842  
950 +(((
951 +
952 +)))
843 843  
954 +(((
955 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
956 +)))
844 844  
845 -== 5.2  Can I calibrate NSE01 to different soil types? ==
958 +(((
959 +
960 +)))
846 846  
847 847  (((
848 -NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].
963 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
849 849  )))
850 850  
966 +[[image:image-20220606154726-3.png]]
851 851  
852 -= 6.  Trouble Shooting =
853 853  
854 -== 6.1  ​Connection problem when uploading firmware ==
969 +When you use the TTN network, the US915 frequency bands use are:
855 855  
971 +* 903.9 - SF7BW125 to SF10BW125
972 +* 904.1 - SF7BW125 to SF10BW125
973 +* 904.3 - SF7BW125 to SF10BW125
974 +* 904.5 - SF7BW125 to SF10BW125
975 +* 904.7 - SF7BW125 to SF10BW125
976 +* 904.9 - SF7BW125 to SF10BW125
977 +* 905.1 - SF7BW125 to SF10BW125
978 +* 905.3 - SF7BW125 to SF10BW125
979 +* 904.6 - SF8BW500
856 856  
857 857  (((
858 -**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]
982 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
859 859  )))
860 860  
861 -(% class="wikigeneratedid" %)
985 +(% class="box infomessage" %)
862 862  (((
987 +**AT+CHE=2**
988 +)))
989 +
990 +(% class="box infomessage" %)
991 +(((
992 +**ATZ**
993 +)))
994 +
995 +(((
996 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
997 +)))
998 +
999 +(((
863 863  
864 864  )))
865 865  
1003 +(((
1004 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1005 +)))
866 866  
867 -== 6.2  AT Command input doesn't work ==
1007 +[[image:image-20220606154825-4.png]]
868 868  
1009 +
1010 +
1011 += 5. Trouble Shooting =
1012 +
1013 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
1014 +
1015 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1016 +
1017 +
1018 +== 5.2 AT Command input doesn’t work ==
1019 +
869 869  (((
870 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1021 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1022 +)))
871 871  
872 -
1024 +
1025 +== 5.3 Device rejoin in at the second uplink packet ==
1026 +
1027 +(% style="color:#4f81bd" %)**Issue describe as below:**
1028 +
1029 +[[image:1654500909990-784.png]]
1030 +
1031 +
1032 +(% style="color:#4f81bd" %)**Cause for this issue:**
1033 +
1034 +(((
1035 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
873 873  )))
874 874  
875 875  
876 -= 7. ​ Order Info =
1039 +(% style="color:#4f81bd" %)**Solution: **
877 877  
1041 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
878 878  
879 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1043 +[[image:1654500929571-736.png||height="458" width="832"]]
880 880  
881 881  
1046 += 6. ​Order Info =
1047 +
1048 +
1049 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1050 +
1051 +
1052 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1053 +
1054 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1055 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1056 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1057 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1058 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1059 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1060 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1061 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1062 +
1063 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1064 +
1065 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1066 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1067 +
882 882  (% class="wikigeneratedid" %)
883 883  (((
884 884  
885 885  )))
886 886  
887 -= 8.  Packing Info =
1073 += 7. Packing Info =
888 888  
889 889  (((
890 890  
891 891  
892 892  (% style="color:#037691" %)**Package Includes**:
1079 +)))
893 893  
894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
895 -* External antenna x 1
1081 +* (((
1082 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
896 896  )))
897 897  
898 898  (((
... ... @@ -899,19 +899,24 @@
899 899  
900 900  
901 901  (% style="color:#037691" %)**Dimension and weight**:
1089 +)))
902 902  
903 -* Size: 195 x 125 x 55 mm
904 -* Weight:   420g
1091 +* (((
1092 +Device Size: cm
905 905  )))
1094 +* (((
1095 +Device Weight: g
1096 +)))
1097 +* (((
1098 +Package Size / pcs : cm
1099 +)))
1100 +* (((
1101 +Weight / pcs : g
906 906  
907 -(((
908 908  
909 -
910 -
911 -
912 912  )))
913 913  
914 -= 9.  Support =
1106 += 8. Support =
915 915  
916 916  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
917 917  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657271519014-786.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -71.5 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content