Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 25 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- 1657271519014-786.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NDDS75 NB-IoTDistanceDetectSensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -1,9 +1,11 @@ 1 1 (% style="text-align:center" %) 2 -[[image: 1657271519014-786.png]]2 +[[image:image-20220606151504-2.jpeg||height="554" width="554"]] 3 3 4 4 5 5 6 +**Contents:** 6 6 8 +{{toc/}} 7 7 8 8 9 9 ... ... @@ -10,713 +10,730 @@ 10 10 11 11 12 12 13 - **TableofContents:**15 += 1. Introduction = 14 14 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 15 15 19 +((( 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 16 16 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 17 17 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 18 18 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 19 19 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 37 +))) 20 20 21 -= 1. Introduction = 22 22 23 - ==1.1 What is NDDS75 Distance Detection Sensor ==40 +[[image:1654503236291-817.png]] 24 24 25 -((( 26 - 27 27 28 - The Dragino NDDS75 is a **NB-IOT Distance Detection Sensor** for Internet of Things solution. It is used tomeasure the distance between the sensor and a flat object. The distance detection sensor is a module that uses **ultrasonic sensingtechnology** for **distance measurement**, and temperature compensation is performed internally to improve the reliability of data. The NDDS75can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parkingmanagement system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc.43 +[[image:1654503265560-120.png]] 29 29 30 -It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server. 31 31 32 -**NarrowBand-Internet of Things (NB-IoT)** is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 33 33 34 - NDDS75is powered by 8**500mA Li-SOCI2battery**; It is designedfor long term use up to 5 years*.47 +== 1.2 Features == 35 35 36 -~* Actually lifetime depends on network coverage and uplink interval and other factors 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 +* Monitor Soil Moisture 52 +* Monitor Soil Temperature 53 +* Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 55 +* AT Commands to change parameters 56 +* Uplink on periodically 57 +* Downlink to change configure 58 +* IP66 Waterproof Enclosure 59 +* 4000mAh or 8500mAh Battery for long term use 37 37 61 +== 1.3 Specification == 62 + 63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 64 + 65 +[[image:image-20220606162220-5.png]] 66 + 67 + 68 + 69 +== 1.4 Applications == 70 + 71 +* Smart Agriculture 72 + 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 75 + 76 +== 1.5 Firmware Change log == 77 + 78 + 79 +**LSE01 v1.0 :** Release 80 + 81 + 82 + 83 += 2. Configure LSE01 to connect to LoRaWAN network = 84 + 85 +== 2.1 How it works == 86 + 38 38 ((( 39 - 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 40 40 ))) 41 41 42 - 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 43 43 ))) 44 44 45 -[[image:1654503236291-817.png]] 46 46 47 47 48 - [[image:1657245163077-232.png]]97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 49 49 99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 50 50 51 51 52 - == 1.2 Features ==102 +[[image:1654503992078-669.png]] 53 53 54 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 55 -* Monitor Soil Moisture 56 -* Monitor Soil Temperature 57 -* Monitor Soil Conductivity 58 -* AT Commands to change parameters 59 -* Uplink on periodically 60 -* Downlink to change configure 61 -* IP66 Waterproof Enclosure 62 -* Ultra-Low Power consumption 63 -* AT Commands to change parameters 64 -* Micro SIM card slot for NB-IoT SIM 65 -* 8500mAh Battery for long term use 66 66 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 67 67 68 68 69 - ==1.3Specification==108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 70 70 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 71 71 72 - (% style="color:#037691" %)**Common DC Characteristics:**112 +[[image:image-20220606163732-6.jpeg]] 73 73 74 -* Supply Voltage: 2.1v ~~ 3.6v 75 -* Operating Temperature: -40 ~~ 85°C 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 76 76 77 - (% style="color:#037691" %)**NB-IoTSpec:**116 +**Add APP EUI in the application** 78 78 79 -* - B1 @H-FDD: 2100MHz 80 -* - B3 @H-FDD: 1800MHz 81 -* - B8 @H-FDD: 900MHz 82 -* - B5 @H-FDD: 850MHz 83 -* - B20 @H-FDD: 800MHz 84 -* - B28 @H-FDD: 700MHz 85 85 86 - Probe(% style="color:#037691" %)** Specification:**119 +[[image:1654504596150-405.png]] 87 87 88 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 89 89 90 -[[image:image-20220708101224-1.png]] 91 91 123 +**Add APP KEY and DEV EUI** 92 92 125 +[[image:1654504683289-357.png]] 93 93 94 -== 1.4 Applications == 95 95 96 -* Smart Agriculture 97 97 98 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 99 - 129 +**Step 2**: Power on LSE01 100 100 101 -== 1.5 Pin Definitions == 102 102 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 103 103 104 -[[image: 1657246476176-652.png]]134 +[[image:image-20220606163915-7.png]] 105 105 106 106 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 107 107 108 - = 2. Use NSE01 to communicatewith IoT Server =139 +[[image:1654504778294-788.png]] 109 109 110 -== 2.1 How it works == 111 111 112 112 113 -((( 114 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01. 115 -))) 143 +== 2.3 Uplink Payload == 116 116 145 +(% class="wikigeneratedid" %) 146 +=== === 117 117 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 118 118 ((( 119 - The diagram below shows the workingflowinfaultfirmwareofNSE01:153 +Uplink payload includes in total 11 bytes. 120 120 ))) 121 121 122 -[[image:image-20220708101605-2.png]] 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 123 123 124 -((( 125 - 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 126 126 ))) 127 127 128 128 129 129 130 -== 2.2 Configurethe NSE01==174 +=== 2.3.2 MOD~=1(Original value) === 131 131 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 132 132 133 -=== 2.2.1 Test Requirement === 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 134 134 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 135 135 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 192 +))) 193 + 194 + 195 + 196 +=== 2.3.3 Battery Info === 197 + 136 136 ((( 137 - To useNSE01 in yourcity,makesuremeetbelowrequirements:199 +Check the battery voltage for LSE01. 138 138 ))) 139 139 140 - * Your local operator has already distributed a NB-IoT Network there.141 - *The local NB-IoTnetworkused the band that NSE01 supports.142 - * Your operator is able to distribute the data received in their NB-IoT network to your IoT server.202 +((( 203 +Ex1: 0x0B45 = 2885mV 204 +))) 143 143 144 144 ((( 145 - Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%)or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%)or MQTT((% style="color:red"%)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server207 +Ex2: 0x0B49 = 2889mV 146 146 ))) 147 147 148 148 149 -[[image:1657249419225-449.png]] 150 150 212 +=== 2.3.4 Soil Moisture === 151 151 214 +((( 215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 216 +))) 152 152 153 -=== 2.2.2 Insert SIM card === 218 +((( 219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 220 +))) 154 154 155 155 ((( 156 - Insertthe NB-IoT Card get from your provider.223 + 157 157 ))) 158 158 159 159 ((( 160 - Userneedto takeut the NB-IoT moduleandinserttheSIMcardlike below:227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 161 161 ))) 162 162 163 163 164 -[[image:1657249468462-536.png]] 165 165 232 +=== 2.3.5 Soil Temperature === 166 166 234 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 167 167 168 - === 2.2.3 Connect USB – TTL to NSE01 to configureit ===236 +**Example**: 169 169 238 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 239 + 240 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 241 + 242 + 243 + 244 +=== 2.3.6 Soil Conductivity (EC) === 245 + 170 170 ((( 247 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 248 +))) 249 + 171 171 ((( 172 - User need toconfigureNSE01 via serialportto set the(% style="color:blue"%)**ServerAddress** / **Uplink Topic**(%%)todefinewhereand how-to uplink packets.NSE01support ATCommands,usercan use a USB toTTL adapter toconnectoNSE01 and useATCommandstoconfigureit,asbelow.251 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 173 173 ))) 253 + 254 +((( 255 +Generally, the EC value of irrigation water is less than 800uS / cm. 174 174 ))) 175 175 258 +((( 259 + 260 +))) 176 176 177 -**Connection:** 262 +((( 263 + 264 +))) 178 178 179 - (% style="background-color:yellow"%)USBTTL GND<~-~-~-~-> GND266 +=== 2.3.7 MOD === 180 180 181 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD268 +Firmware version at least v2.1 supports changing mode. 182 182 183 - (% style="background-color:yellow"%)USB TTL RXD <~-~-~-~-> UART_TXD270 +For example, bytes[10]=90 184 184 272 +mod=(bytes[10]>>7)&0x01=1. 185 185 186 -In the PC, use below serial tool settings: 187 187 188 -* Baud: (% style="color:green" %)**9600** 189 -* Data bits:** (% style="color:green" %)8(%%)** 190 -* Stop bits: (% style="color:green" %)**1** 191 -* Parity: (% style="color:green" %)**None** 192 -* Flow Control: (% style="color:green" %)**None** 275 +**Downlink Command:** 193 193 194 -((( 195 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 196 -))) 277 +If payload = 0x0A00, workmode=0 197 197 198 - [[image:image-20220708110657-3.png]]279 +If** **payload =** **0x0A01, workmode=1 199 199 200 -((( 201 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 202 -))) 203 203 204 204 283 +=== 2.3.8 Decode payload in The Things Network === 205 205 206 - ===2.2.4UseCoAPprotocoltouplink data ===285 +While using TTN network, you can add the payload format to decode the payload. 207 207 208 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 209 209 288 +[[image:1654505570700-128.png]] 210 210 211 - **Usebelowcommands:**290 +The payload decoder function for TTN is here: 212 212 213 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 214 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 215 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 292 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 216 216 217 -For parameter description, please refer to AT command set 218 218 219 -[[image:1657249793983-486.png]] 220 220 296 +== 2.4 Uplink Interval == 221 221 222 - Afterconfigurethe serveraddress and(% style="color:green"%)**resetthedevice**(%%) (via AT+ATZ),NSE01willstarttouplinksensorvaluesto CoAP server.298 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 223 223 224 -[[image:1657249831934-534.png]] 225 225 226 226 302 +== 2.5 Downlink Payload == 227 227 228 - ===2.2.5 UseUDPprotocoltouplinkdata(Default protocol)===304 +By default, LSE50 prints the downlink payload to console port. 229 229 230 - This features supported since firmwareversion v1.0.1306 +[[image:image-20220606165544-8.png]] 231 231 232 232 233 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 234 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 235 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 309 +**Examples:** 236 236 237 -[[image:1657249864775-321.png]] 238 238 312 +* **Set TDC** 239 239 240 - [[image:1657249930215-289.png]]314 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 241 241 316 +Payload: 01 00 00 1E TDC=30S 242 242 318 +Payload: 01 00 00 3C TDC=60S 243 243 244 -=== 2.2.6 Use MQTT protocol to uplink data === 245 245 246 - Thisfeature issupported since firmware version v110321 +* **Reset** 247 247 323 +If payload = 0x04FF, it will reset the LSE01 248 248 249 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 250 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 251 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 252 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 253 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 254 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 255 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 256 256 257 - [[image:1657249978444-674.png]]326 +* **CFM** 258 258 328 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 259 259 260 -[[image:1657249990869-686.png]] 261 261 262 262 263 -((( 264 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 265 -))) 332 +== 2.6 Show Data in DataCake IoT Server == 266 266 334 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 267 267 268 268 269 - ===2.2.7UseTCPprotocoltouplinkdata===337 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 270 270 271 -T hisfeatureissupportedsincefirmwareversionv110339 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 272 272 273 273 274 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 275 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 342 +[[image:1654505857935-743.png]] 276 276 277 -[[image:1657250217799-140.png]] 278 278 345 +[[image:1654505874829-548.png]] 279 279 280 - [[image:1657250255956-604.png]]347 +Step 3: Create an account or log in Datacake. 281 281 349 +Step 4: Search the LSE01 and add DevEUI. 282 282 283 283 284 - === 2.2.8 ChangeUpdate Interval ===352 +[[image:1654505905236-553.png]] 285 285 286 -User can use below command to change the (% style="color:green" %)**uplink interval**. 287 287 288 - *(%style="color:blue"%)**AT+TDC=600** (%%)~/~/ SetUpdateIntervalto600s355 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 289 289 290 -((( 291 -(% style="color:red" %)**NOTE:** 292 -))) 357 +[[image:1654505925508-181.png]] 293 293 294 -((( 295 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 296 -))) 297 297 298 298 361 +== 2.7 Frequency Plans == 299 299 300 - ==2.3UplinkPayload==363 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 301 301 302 -In this mode, uplink payload includes in total 18 bytes 303 303 304 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 305 -|=(% style="width: 60px;" %)((( 306 -**Size(bytes)** 307 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 308 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 366 +=== 2.7.1 EU863-870 (EU868) === 309 309 310 -((( 311 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 312 -))) 368 +(% style="color:#037691" %)** Uplink:** 313 313 370 +868.1 - SF7BW125 to SF12BW125 314 314 315 - [[image:image-20220708111918-4.png]]372 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 316 316 374 +868.5 - SF7BW125 to SF12BW125 317 317 318 - Thepayloadis ASCIIstring,representative same HEX:376 +867.1 - SF7BW125 to SF12BW125 319 319 320 - 0x72403155615900640c7817075e0a8c02f900 where:378 +867.3 - SF7BW125 to SF12BW125 321 321 322 -* Device ID: 0x 724031556159 = 724031556159 323 -* Version: 0x0064=100=1.0.0 380 +867.5 - SF7BW125 to SF12BW125 324 324 325 -* BAT: 0x0c78 = 3192 mV = 3.192V 326 -* Singal: 0x17 = 23 327 -* Soil Moisture: 0x075e= 1886 = 18.86 % 328 -* Soil Temperature:0x0a8c =2700=27 °C 329 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 330 -* Interrupt: 0x00 = 0 382 +867.7 - SF7BW125 to SF12BW125 331 331 384 +867.9 - SF7BW125 to SF12BW125 332 332 386 +868.8 - FSK 333 333 334 -== 2.4 Payload Explanation and Sensor Interface == 335 335 389 +(% style="color:#037691" %)** Downlink:** 336 336 337 - === 2.4.1 DeviceID===391 +Uplink channels 1-9 (RX1) 338 338 339 -((( 340 -By default, the Device ID equal to the last 6 bytes of IMEI. 341 -))) 393 +869.525 - SF9BW125 (RX2 downlink only) 342 342 343 -((( 344 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 345 -))) 346 346 347 -((( 348 -**Example:** 349 -))) 350 350 351 -((( 352 -AT+DEUI=A84041F15612 353 -))) 397 +=== 2.7.2 US902-928(US915) === 354 354 355 -((( 356 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 357 -))) 399 +Used in USA, Canada and South America. Default use CHE=2 358 358 401 +(% style="color:#037691" %)**Uplink:** 359 359 403 +903.9 - SF7BW125 to SF10BW125 360 360 361 - === 2.4.2VersionInfo ===405 +904.1 - SF7BW125 to SF10BW125 362 362 363 -((( 364 -Specify the software version: 0x64=100, means firmware version 1.00. 365 -))) 407 +904.3 - SF7BW125 to SF10BW125 366 366 367 -((( 368 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 369 -))) 409 +904.5 - SF7BW125 to SF10BW125 370 370 411 +904.7 - SF7BW125 to SF10BW125 371 371 413 +904.9 - SF7BW125 to SF10BW125 372 372 373 - === 2.4.3BatteryInfo===415 +905.1 - SF7BW125 to SF10BW125 374 374 375 -((( 376 -Check the battery voltage for LSE01. 377 -))) 417 +905.3 - SF7BW125 to SF10BW125 378 378 379 -((( 380 -Ex1: 0x0B45 = 2885mV 381 -))) 382 382 383 -((( 384 -Ex2: 0x0B49 = 2889mV 385 -))) 420 +(% style="color:#037691" %)**Downlink:** 386 386 422 +923.3 - SF7BW500 to SF12BW500 387 387 424 +923.9 - SF7BW500 to SF12BW500 388 388 389 - ===2.4.4SignalStrength===426 +924.5 - SF7BW500 to SF12BW500 390 390 391 -((( 392 -NB-IoT Network signal Strength. 393 -))) 428 +925.1 - SF7BW500 to SF12BW500 394 394 395 -((( 396 -**Ex1: 0x1d = 29** 397 -))) 430 +925.7 - SF7BW500 to SF12BW500 398 398 399 -((( 400 -(% style="color:blue" %)**0**(%%) -113dBm or less 401 -))) 432 +926.3 - SF7BW500 to SF12BW500 402 402 403 -((( 404 -(% style="color:blue" %)**1**(%%) -111dBm 405 -))) 434 +926.9 - SF7BW500 to SF12BW500 406 406 407 -((( 408 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 409 -))) 436 +927.5 - SF7BW500 to SF12BW500 410 410 411 -((( 412 -(% style="color:blue" %)**31** (%%) -51dBm or greater 413 -))) 438 +923.3 - SF12BW500(RX2 downlink only) 414 414 415 -((( 416 -(% style="color:blue" %)**99** (%%) Not known or not detectable 417 -))) 418 418 419 419 442 +=== 2.7.3 CN470-510 (CN470) === 420 420 421 - ===2.4.5 SoilMoisture ===444 +Used in China, Default use CHE=1 422 422 423 -((( 424 -((( 425 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 426 -))) 427 -))) 446 +(% style="color:#037691" %)**Uplink:** 428 428 429 -((( 430 -((( 431 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 432 -))) 433 -))) 448 +486.3 - SF7BW125 to SF12BW125 434 434 435 -((( 436 - 437 -))) 450 +486.5 - SF7BW125 to SF12BW125 438 438 439 -((( 440 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 441 -))) 452 +486.7 - SF7BW125 to SF12BW125 442 442 454 +486.9 - SF7BW125 to SF12BW125 443 443 456 +487.1 - SF7BW125 to SF12BW125 444 444 445 - === 2.4.6SoilTemperature===458 +487.3 - SF7BW125 to SF12BW125 446 446 447 -((( 448 -Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 449 -))) 460 +487.5 - SF7BW125 to SF12BW125 450 450 451 -((( 452 -**Example**: 453 -))) 462 +487.7 - SF7BW125 to SF12BW125 454 454 455 -((( 456 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 457 -))) 458 458 459 -((( 460 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 461 -))) 465 +(% style="color:#037691" %)**Downlink:** 462 462 467 +506.7 - SF7BW125 to SF12BW125 463 463 469 +506.9 - SF7BW125 to SF12BW125 464 464 465 - === 2.4.7oilConductivity(EC) ===471 +507.1 - SF7BW125 to SF12BW125 466 466 467 -((( 468 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 469 -))) 473 +507.3 - SF7BW125 to SF12BW125 470 470 471 -((( 472 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 473 -))) 475 +507.5 - SF7BW125 to SF12BW125 474 474 475 -((( 476 -Generally, the EC value of irrigation water is less than 800uS / cm. 477 -))) 477 +507.7 - SF7BW125 to SF12BW125 478 478 479 -((( 480 - 481 -))) 479 +507.9 - SF7BW125 to SF12BW125 482 482 483 -((( 484 - 485 -))) 481 +508.1 - SF7BW125 to SF12BW125 486 486 487 - ===2.4.8DigitalInterrupt===483 +505.3 - SF12BW125 (RX2 downlink only) 488 488 489 -((( 490 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 491 -))) 492 492 493 -((( 494 -The command is: 495 -))) 496 496 497 -((( 498 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 499 -))) 487 +=== 2.7.4 AU915-928(AU915) === 500 500 489 +Default use CHE=2 501 501 502 -((( 503 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 504 -))) 491 +(% style="color:#037691" %)**Uplink:** 505 505 493 +916.8 - SF7BW125 to SF12BW125 506 506 507 -((( 508 -Example: 509 -))) 495 +917.0 - SF7BW125 to SF12BW125 510 510 511 -((( 512 -0x(00): Normal uplink packet. 513 -))) 497 +917.2 - SF7BW125 to SF12BW125 514 514 515 -((( 516 -0x(01): Interrupt Uplink Packet. 517 -))) 499 +917.4 - SF7BW125 to SF12BW125 518 518 501 +917.6 - SF7BW125 to SF12BW125 519 519 503 +917.8 - SF7BW125 to SF12BW125 520 520 521 - === 2.4.9+5VOutput===505 +918.0 - SF7BW125 to SF12BW125 522 522 523 -((( 524 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 525 -))) 507 +918.2 - SF7BW125 to SF12BW125 526 526 527 527 528 -((( 529 -The 5V output time can be controlled by AT Command. 530 -))) 510 +(% style="color:#037691" %)**Downlink:** 531 531 532 -((( 533 -(% style="color:blue" %)**AT+5VT=1000** 534 -))) 512 +923.3 - SF7BW500 to SF12BW500 535 535 536 -((( 537 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 538 -))) 514 +923.9 - SF7BW500 to SF12BW500 539 539 516 +924.5 - SF7BW500 to SF12BW500 540 540 518 +925.1 - SF7BW500 to SF12BW500 541 541 542 - ==2.5DownlinkPayload ==520 +925.7 - SF7BW500 to SF12BW500 543 543 544 - Bydefault,NSE01prints the downlinkpayload to console port.522 +926.3 - SF7BW500 to SF12BW500 545 545 546 - [[image:image-20220708133731-5.png]]524 +926.9 - SF7BW500 to SF12BW500 547 547 526 +927.5 - SF7BW500 to SF12BW500 548 548 549 -((( 550 -(% style="color:blue" %)**Examples:** 551 -))) 528 +923.3 - SF12BW500(RX2 downlink only) 552 552 553 -((( 554 - 555 -))) 556 556 557 -* ((( 558 -(% style="color:blue" %)**Set TDC** 559 -))) 560 560 561 -((( 562 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 563 -))) 532 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 564 564 565 -((( 566 -Payload: 01 00 00 1E TDC=30S 567 -))) 534 +(% style="color:#037691" %)**Default Uplink channel:** 568 568 569 -((( 570 -Payload: 01 00 00 3C TDC=60S 571 -))) 536 +923.2 - SF7BW125 to SF10BW125 572 572 573 -((( 574 - 575 -))) 538 +923.4 - SF7BW125 to SF10BW125 576 576 577 -* ((( 578 -(% style="color:blue" %)**Reset** 579 -))) 580 580 581 -((( 582 -If payload = 0x04FF, it will reset the NSE01 583 -))) 541 +(% style="color:#037691" %)**Additional Uplink Channel**: 584 584 543 +(OTAA mode, channel added by JoinAccept message) 585 585 586 - *(% style="color:blue" %)**INTMOD**545 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 587 587 588 -((( 589 -Downlink Payload: 06000003, Set AT+INTMOD=3 590 -))) 547 +922.2 - SF7BW125 to SF10BW125 591 591 549 +922.4 - SF7BW125 to SF10BW125 592 592 551 +922.6 - SF7BW125 to SF10BW125 593 593 594 - ==2.6LEDIndicator==553 +922.8 - SF7BW125 to SF10BW125 595 595 596 -((( 597 -The NSE01 has an internal LED which is to show the status of different state. 555 +923.0 - SF7BW125 to SF10BW125 598 598 557 +922.0 - SF7BW125 to SF10BW125 599 599 600 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 601 -* Then the LED will be on for 1 second means device is boot normally. 602 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 603 -* For each uplink probe, LED will be on for 500ms. 604 -))) 605 605 560 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 606 606 562 +923.6 - SF7BW125 to SF10BW125 607 607 564 +923.8 - SF7BW125 to SF10BW125 608 608 609 - ==2.7InstallationinSoil ==566 +924.0 - SF7BW125 to SF10BW125 610 610 611 - __**Measurementthesoilsurface**__568 +924.2 - SF7BW125 to SF10BW125 612 612 613 -((( 614 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 615 -))) 570 +924.4 - SF7BW125 to SF10BW125 616 616 617 - [[image:1657259653666-883.png]]572 +924.6 - SF7BW125 to SF10BW125 618 618 619 619 620 -((( 621 - 575 +(% style="color:#037691" %)** Downlink:** 622 622 623 -((( 624 -Dig a hole with diameter > 20CM. 625 -))) 577 +Uplink channels 1-8 (RX1) 626 626 627 -((( 628 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 629 -))) 630 -))) 579 +923.2 - SF10BW125 (RX2) 631 631 632 -[[image:1654506665940-119.png]] 633 633 634 -((( 635 - 636 -))) 637 637 583 +=== 2.7.6 KR920-923 (KR920) === 638 638 639 - == 2.8 FirmwareChangeLog ==585 +Default channel: 640 640 587 +922.1 - SF7BW125 to SF12BW125 641 641 642 - DownloadURL&FirmwareChange log589 +922.3 - SF7BW125 to SF12BW125 643 643 644 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]591 +922.5 - SF7BW125 to SF12BW125 645 645 646 646 647 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]594 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 648 648 596 +922.1 - SF7BW125 to SF12BW125 649 649 598 +922.3 - SF7BW125 to SF12BW125 650 650 651 - ==2.9BatteryAnalysis ==600 +922.5 - SF7BW125 to SF12BW125 652 652 653 - ===2.9.1BatteryType ===602 +922.7 - SF7BW125 to SF12BW125 654 654 604 +922.9 - SF7BW125 to SF12BW125 655 655 606 +923.1 - SF7BW125 to SF12BW125 607 + 608 +923.3 - SF7BW125 to SF12BW125 609 + 610 + 611 +(% style="color:#037691" %)**Downlink:** 612 + 613 +Uplink channels 1-7(RX1) 614 + 615 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 616 + 617 + 618 + 619 +=== 2.7.7 IN865-867 (IN865) === 620 + 621 +(% style="color:#037691" %)** Uplink:** 622 + 623 +865.0625 - SF7BW125 to SF12BW125 624 + 625 +865.4025 - SF7BW125 to SF12BW125 626 + 627 +865.9850 - SF7BW125 to SF12BW125 628 + 629 + 630 +(% style="color:#037691" %) **Downlink:** 631 + 632 +Uplink channels 1-3 (RX1) 633 + 634 +866.550 - SF10BW125 (RX2) 635 + 636 + 637 + 638 + 639 +== 2.8 LED Indicator == 640 + 641 +The LSE01 has an internal LED which is to show the status of different state. 642 + 643 +* Blink once when device power on. 644 +* Solid ON for 5 seconds once device successful Join the network. 645 +* Blink once when device transmit a packet. 646 + 647 + 648 + 649 +== 2.9 Installation in Soil == 650 + 651 +**Measurement the soil surface** 652 + 653 + 654 +[[image:1654506634463-199.png]] 655 + 656 656 ((( 657 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 657 +((( 658 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 658 658 ))) 660 +))) 659 659 660 660 663 +[[image:1654506665940-119.png]] 664 + 661 661 ((( 662 - The batteryis designedto lastfor severalyearsdepends ontheactually use environmentand updateinterval.666 +Dig a hole with diameter > 20CM. 663 663 ))) 664 664 669 +((( 670 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 671 +))) 665 665 673 + 674 +== 2.10 Firmware Change Log == 675 + 666 666 ((( 667 - The battery relateddocumentsasbelow:677 +**Firmware download link:** 668 668 ))) 669 669 670 - * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]671 - *[[Lithium-ThionylChlorideBattery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]672 - * [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]680 +((( 681 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 682 +))) 673 673 674 674 ((( 675 - [[image:image-20220708140453-6.png]]685 + 676 676 ))) 677 677 688 +((( 689 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 690 +))) 678 678 692 +((( 693 + 694 +))) 679 679 680 -=== 2.9.2 Power consumption Analyze === 696 +((( 697 +**V1.0.** 698 +))) 681 681 682 682 ((( 683 - Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which baseon the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.701 +Release 684 684 ))) 685 685 686 686 705 +== 2.11 Battery Analysis == 706 + 707 +=== 2.11.1 Battery Type === 708 + 687 687 ((( 688 - Instruction touse as below:710 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 689 689 ))) 690 690 691 691 ((( 692 - (% style="color:blue" %)**Step 1: **(%%)Downlink theup-to-date DRAGINO_Battery_Life_Prediction_Table.xlsxfrom: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]714 +The battery is designed to last for more than 5 years for the LSN50. 693 693 ))) 694 694 695 - 696 696 ((( 697 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose 718 +((( 719 +The battery-related documents are as below: 698 698 ))) 721 +))) 699 699 700 700 * ((( 701 - ProductModel724 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 702 702 ))) 703 703 * ((( 704 - UplinkInterval727 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 705 705 ))) 706 706 * ((( 707 - WorkingMode730 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 708 708 ))) 709 709 710 -((( 711 -And the Life expectation in difference case will be shown on the right. 712 -))) 733 + [[image:image-20220606171726-9.png]] 713 713 714 -[[image:image-20220708141352-7.jpeg]] 715 715 716 716 737 +=== 2.11.2 Battery Note === 717 717 718 -=== 2.9.3 Battery Note === 719 - 720 720 ((( 721 721 The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 722 722 ))) ... ... @@ -723,176 +723,303 @@ 723 723 724 724 725 725 726 -=== 2. 9.4Replace the battery ===745 +=== 2.11.3 Replace the battery === 727 727 728 728 ((( 729 - The defaultbatterypack of NSE01includesa ER26500 plus super capacitor. If usercan'tfind this pack locally, they canfind ER26500or equivalencewithouttheSPC1520 capacitor, which willalso work in mostcase.The SPC can enlargethe batterylife for highfrequencyuse (update period below 5 minutes).748 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 730 730 ))) 731 731 732 - 733 - 734 -= 3. Access NB-IoT Module = 735 - 736 736 ((( 737 - Userscan directly accesstheATcommand set of theNB-IoTmodule.752 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 738 738 ))) 739 739 740 740 ((( 741 -The ATCommand setcanrefer theBC35-GNB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]756 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 742 ))) 743 743 744 -[[image:1657261278785-153.png]] 745 745 746 746 761 += 3. Using the AT Commands = 747 747 748 -= 4.UsingtheAT Commands =763 +== 3.1 Access AT Commands == 749 749 750 -== 4.1 Access AT Commands == 751 751 752 -S eethislinkfordetail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]766 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 753 753 768 +[[image:1654501986557-872.png||height="391" width="800"]] 754 754 755 -AT+<CMD>? : Help on <CMD> 756 756 757 - AT+<CMD>: Run<CMD>771 +Or if you have below board, use below connection: 758 758 759 -AT+<CMD>=<value> : Set the value 760 760 761 - AT+<CMD>=?:Get the value774 +[[image:1654502005655-729.png||height="503" width="801"]] 762 762 763 763 777 + 778 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 779 + 780 + 781 + [[image:1654502050864-459.png||height="564" width="806"]] 782 + 783 + 784 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 785 + 786 + 787 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 788 + 789 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 790 + 791 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 792 + 793 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 794 + 795 + 764 764 (% style="color:#037691" %)**General Commands**(%%) 765 765 766 -AT 798 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 767 767 768 -AT? 800 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 769 769 770 -ATZ 802 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 771 771 772 -AT+TDC 804 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 773 773 774 -AT+CFG : Print all configurations 775 775 776 - AT+CFGMOD: Workingmode selection807 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 777 777 778 -AT+I NTMOD:Setthe trigger interruptmode809 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 779 779 780 -AT+ 5VTSetextend the timeof5V power811 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 781 781 782 -AT+P ROChooseagreement813 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 783 783 784 -AT+ WEIGREGet weightorsetweight to 0815 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 785 785 786 -AT+ WEIGAPGet or SettheGapValue of weight817 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 787 787 788 -AT+ RXDL: Extendthe sendingandreceivingtime819 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 789 789 790 -AT+ CNTFACGettcountingparameters821 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 791 791 792 -AT+ SERVADDR:ServerAddress823 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 793 793 825 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 794 794 795 -(% style="color:# 037691" %)**COAPManagement**827 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 796 796 797 -AT+ URIsourceparameters829 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 798 798 831 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 799 799 800 -(% style="color:# 037691" %)**UDPManagement**833 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 801 801 802 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)835 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 803 803 837 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 804 804 805 -(% style="color:# 037691" %)**MQTTManagement**839 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 806 806 807 -AT+CLIENT : Get or Set MQTT client 808 808 809 - AT+UNAMEGetSetMQTT Username842 +(% style="color:#037691" %)**LoRa Network Management** 810 810 811 -AT+ PWDGetor SetMQTT password844 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 812 812 813 -AT+ PUBTOPICGetorSetMQTTpublishtopic846 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 814 814 815 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic848 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 816 816 850 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 817 817 818 -(% style="color:# 037691" %)**Information**852 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 819 819 820 -AT+F DRctoryDataReset854 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 821 821 822 -AT+ PWORDSerialAccessPassword856 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 823 823 858 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 824 824 860 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 825 825 826 -= 5.FAQ=862 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 827 827 828 -= =5.1HowtoUpgradeFirmware==864 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 829 829 866 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 830 830 868 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 873 + 874 + 875 +(% style="color:#037691" %)**Information** 876 + 877 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 878 + 879 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 880 + 881 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 882 + 883 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 884 + 885 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 886 + 887 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 888 + 889 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 890 + 891 + 892 += 4. FAQ = 893 + 894 +== 4.1 How to change the LoRa Frequency Bands/Region? == 895 + 831 831 ((( 832 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 897 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 898 +When downloading the images, choose the required image file for download. 833 833 ))) 834 834 835 835 ((( 836 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]902 + 837 837 ))) 838 838 839 839 ((( 840 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.906 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 841 841 ))) 842 842 909 +((( 910 + 911 +))) 843 843 913 +((( 914 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 915 +))) 844 844 845 -== 5.2 Can I calibrate NSE01 to different soil types? == 917 +((( 918 + 919 +))) 846 846 847 847 ((( 848 - NSE01is calibratedforsaline-alkalisoilandloamy soil.Ifusers want touseit for othersoil,theycancalibrate thevalue intheIoTplatform base on thevaluemeasuredby saline-alkalisoilandloamysoil.Theformula canbefoundat [[thislink>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]].922 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 849 849 ))) 850 850 925 +[[image:image-20220606154726-3.png]] 851 851 852 -= 6. Trouble Shooting = 853 853 854 - ==6.1 Connection problemwhenuploadingfirmware==928 +When you use the TTN network, the US915 frequency bands use are: 855 855 930 +* 903.9 - SF7BW125 to SF10BW125 931 +* 904.1 - SF7BW125 to SF10BW125 932 +* 904.3 - SF7BW125 to SF10BW125 933 +* 904.5 - SF7BW125 to SF10BW125 934 +* 904.7 - SF7BW125 to SF10BW125 935 +* 904.9 - SF7BW125 to SF10BW125 936 +* 905.1 - SF7BW125 to SF10BW125 937 +* 905.3 - SF7BW125 to SF10BW125 938 +* 904.6 - SF8BW500 856 856 857 857 ((( 858 - **Pleasesee:**[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]]941 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 859 859 ))) 860 860 861 -(% class=" wikigeneratedid" %)944 +(% class="box infomessage" %) 862 862 ((( 946 +**AT+CHE=2** 947 +))) 948 + 949 +(% class="box infomessage" %) 950 +((( 951 +**ATZ** 952 +))) 953 + 954 +((( 955 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 956 +))) 957 + 958 +((( 863 863 864 864 ))) 865 865 962 +((( 963 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 964 +))) 866 866 867 - == 6.2 AT Commandinput doesn't work ==966 +[[image:image-20220606154825-4.png]] 868 868 968 + 969 + 970 += 5. Trouble Shooting = 971 + 972 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 973 + 974 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 975 + 976 + 977 +== 5.2 AT Command input doesn’t work == 978 + 869 869 ((( 870 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 980 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 981 +))) 871 871 872 - 983 + 984 +== 5.3 Device rejoin in at the second uplink packet == 985 + 986 +(% style="color:#4f81bd" %)**Issue describe as below:** 987 + 988 +[[image:1654500909990-784.png]] 989 + 990 + 991 +(% style="color:#4f81bd" %)**Cause for this issue:** 992 + 993 +((( 994 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 873 873 ))) 874 874 875 875 876 - =7. OrderInfo=998 +(% style="color:#4f81bd" %)**Solution: ** 877 877 1000 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 878 878 879 - Part Number**:** (% style="color:#4f81bd"%)**NSE01**1002 +[[image:1654500929571-736.png||height="458" width="832"]] 880 880 881 881 1005 += 6. Order Info = 1006 + 1007 + 1008 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1009 + 1010 + 1011 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1012 + 1013 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1014 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1015 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1016 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1017 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1018 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1019 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1020 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1021 + 1022 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1023 + 1024 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1025 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1026 + 882 882 (% class="wikigeneratedid" %) 883 883 ((( 884 884 885 885 ))) 886 886 887 -= 8.1032 += 7. Packing Info = 888 888 889 889 ((( 890 890 891 891 892 892 (% style="color:#037691" %)**Package Includes**: 1038 +))) 893 893 894 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1895 - *Externalantennax 11040 +* ((( 1041 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 896 896 ))) 897 897 898 898 ((( ... ... @@ -899,19 +899,30 @@ 899 899 900 900 901 901 (% style="color:#037691" %)**Dimension and weight**: 1048 +))) 902 902 903 -* Size: 195 x 125 x 55 mm904 - * Weight:420g1050 +* ((( 1051 +Device Size: cm 905 905 ))) 1053 +* ((( 1054 +Device Weight: g 1055 +))) 1056 +* ((( 1057 +Package Size / pcs : cm 1058 +))) 1059 +* ((( 1060 +Weight / pcs : g 906 906 907 -((( 908 - 909 909 910 - 911 911 912 912 ))) 913 913 914 -= 9.1066 += 8. Support = 915 915 916 916 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 917 917 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1070 + 1071 + 1072 +~)~)~) 1073 +~)~)~) 1074 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -71.5 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content