Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 17 added, 0 removed)
- 1657271519014-786.png
- 1657327959271-447.png
- 1657328609906-564.png
- 1657328659945-416.png
- 1657328756309-230.png
- 1657328884227-504.png
- 1657329814315-101.png
- 1657330452568-615.png
- 1657330472797-498.png
- 1657330501006-241.png
- 1657330533775-472.png
- image-20220709084038-1.jpeg
- image-20220709084137-2.jpeg
- image-20220709084207-3.jpeg
- image-20220709084458-4.png
- image-20220709085040-1.png
- image-20220709092052-2.png
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -NS E01-NB-IoTSoil Moisture&ECSensor User Manual1 +NDDS75 NB-IoT Distance Detect Sensor User Manual - Content
-
... ... @@ -1,19 +1,12 @@ 1 1 (% style="text-align:center" %) 2 -[[image:image-20220 606151504-2.jpeg||height="554" width="554"]]2 +[[image:image-20220709085040-1.png||height="542" width="524"]] 3 3 4 4 5 5 6 6 7 7 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 -{{toc/}} 17 17 18 18 19 19 ... ... @@ -20,30 +20,22 @@ 20 20 21 21 22 22 23 - 24 24 = 1. Introduction = 25 25 26 -== 1.1 What is LoRaWANoilMoisture&ECSensor ==18 +== 1.1 What is NDDS75 Distance Detection Sensor == 27 27 28 28 ((( 29 29 30 30 31 31 ((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 24 +The Dragino NDDS75 is a (% style="color:blue" %)**NB-IoT Distance Detection Sensor**(%%) for Internet of Things solution. It is designed to measure the distance between the sensor and a flat object. The distance detection sensor is a module that uses ultrasonic sensing technology for distance measurement, and temperature compensation is performed internally to improve the reliability of data. 25 +\\The NDDS75 can be applied to scenarios such as horizontal distance measurement, liquid level measurement, parking management system, object proximity and presence detection, intelligent trash can management system, robot obstacle avoidance, automatic control, sewer, bottom water level monitoring, etc. It detects the distance between the measured object and the sensor, and uploads the value via wireless to IoT Server via NB-IoT Network. 26 +\\NarrowBand-Internet of Things (NB-IoT) is a standards-based low power wide area (LPWA) technology developed to enable a wide range of new IoT devices and services. NB-IoT significantly improves the power consumption of user devices, system capacity and spectrum efficiency, especially in deep coverage. 27 +\\NDDS75 supports different uplink methods include (% style="color:blue" %)**TCP, MQTT, UDP and CoAP** (%%)for different application requirement. 28 +\\NDDS75 is powered by (% style="color:blue" %)**8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 5 years. (Actually Battery life depends on the use environment, update period & uplink method) 29 +\\To use NDDS75, user needs to check if there is NB-IoT coverage in local area and with the bands NDDS75 supports. If the local operate support it, user needs to get a NB-IoT SIM card from local operator and install NDDS75 to get NB-IoT network connection. 33 33 ))) 34 34 35 -((( 36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 37 -))) 38 - 39 -((( 40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 41 -))) 42 - 43 -((( 44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 45 -))) 46 - 47 47 48 48 ))) 49 49 ... ... @@ -50,22 +50,23 @@ 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:16572 45163077-232.png]]38 +[[image:1657327959271-447.png]] 54 54 55 55 56 56 57 57 == 1.2 Features == 58 58 44 + 59 59 * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 60 -* Monitor Soil Moisture 61 -* Monitor Soil Temperature 62 -* Monitor Soil Conductivity 46 +* Ultra low power consumption 47 +* Distance Detection by Ultrasonic technology 48 +* Flat object range 280mm - 7500mm 49 +* Accuracy: ±(1cm+S*0.3%) (S: Distance) 50 +* Cable Length: 25cm 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 69 * Micro SIM card slot for NB-IoT SIM 70 70 * 8500mAh Battery for long term use 71 71 ... ... @@ -87,90 +87,112 @@ 87 87 * - B20 @H-FDD: 800MHz 88 88 * - B28 @H-FDD: 700MHz 89 89 90 - Probe(% style="color:#037691" %)**Specification:**76 +(% style="color:#037691" %)**Battery:** 91 91 92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 78 +* Li/SOCI2 un-chargeable battery 79 +* Capacity: 8500mAh 80 +* Self Discharge: <1% / Year @ 25°C 81 +* Max continuously current: 130mA 82 +* Max boost current: 2A, 1 second 93 93 94 - [[image:image-20220708101224-1.png]]84 +(% style="color:#037691" %)**Power Consumption** 95 95 86 +* STOP Mode: 10uA @ 3.3v 87 +* Max transmit power: 350mA@3.3v 96 96 97 97 90 + 98 98 == 1.4 Applications == 99 99 93 +* Smart Buildings & Home Automation 94 +* Logistics and Supply Chain Management 95 +* Smart Metering 100 100 * Smart Agriculture 97 +* Smart Cities 98 +* Smart Factory 101 101 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 103 + 104 + 105 105 == 1.5 Pin Definitions == 106 106 107 107 108 -[[image:16572 46476176-652.png]]108 +[[image:1657328609906-564.png]] 109 109 110 110 111 111 112 -= 2. Use NS E01to communicate with IoT Server =112 += 2. Use NDDS75 to communicate with IoT Server = 113 113 114 114 == 2.1 How it works == 115 115 116 - 117 117 ((( 118 -The NS E01is equipped with a NB-IoT module, the pre-loaded firmware in NSE01will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.117 +The NDDS75 is equipped with a NB-IoT module, the pre-loaded firmware in NDDS75 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module. The NB-IoT network will forward this value to IoT server via the protocol defined by NDDS75. 119 119 ))) 120 120 121 121 122 122 ((( 123 -The diagram below shows the working flow in default firmware of NS E01:122 +The diagram below shows the working flow in default firmware of NDDS75: 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 127 - 128 128 ((( 129 129 130 130 ))) 131 131 129 +[[image:1657328659945-416.png]] 132 132 131 +((( 132 + 133 +))) 133 133 134 -== 2.2 Configure the NSE01 == 135 135 136 +== 2.2 Configure the NDDS75 == 136 136 138 + 137 137 === 2.2.1 Test Requirement === 138 138 141 +((( 142 +To use NDDS75 in your city, make sure meet below requirements: 143 +))) 139 139 140 -To use NSE01 in your city, make sure meet below requirements: 141 - 142 142 * Your local operator has already distributed a NB-IoT Network there. 143 143 * The local NB-IoT network used the band that NSE01 supports. 144 144 * Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 145 145 146 146 ((( 147 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The E01will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server150 +Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NDDS75 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 148 148 ))) 149 149 150 150 151 -[[image:16572 49419225-449.png]]154 +[[image:1657328756309-230.png]] 152 152 153 153 154 154 155 155 === 2.2.2 Insert SIM card === 156 156 160 +((( 157 157 Insert the NB-IoT Card get from your provider. 162 +))) 158 158 164 +((( 159 159 User need to take out the NB-IoT module and insert the SIM card like below: 166 +))) 160 160 161 161 162 -[[image:16572 49468462-536.png]]169 +[[image:1657328884227-504.png]] 163 163 164 164 165 165 166 -=== 2.2.3 Connect USB – TTL to NS E01to configure it ===173 +=== 2.2.3 Connect USB – TTL to NDDS75 to configure it === 167 167 168 168 ((( 169 169 ((( 170 -User need to configure NS E01via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01support AT Commands, user can use a USB to TTL adapter to connect to NSE01and use AT Commands to configure it, as below.177 +User need to configure NDDS75 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NDDS75 support AT Commands, user can use a USB to TTL adapter to connect to NDDS75 and use AT Commands to configure it, as below. 171 171 ))) 172 172 ))) 173 173 181 +[[image:image-20220709092052-2.png]] 174 174 175 175 **Connection:** 176 176 ... ... @@ -190,12 +190,14 @@ 190 190 * Flow Control: (% style="color:green" %)**None** 191 191 192 192 ((( 193 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NS E01. NSE01will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.201 +Make sure the switch is in FLASH position, then power on device by connecting the jumper on NDDS75. NDDS75 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 194 194 ))) 195 195 196 -[[image: image-20220708110657-3.png]]204 +[[image:1657329814315-101.png]] 197 197 198 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 206 +((( 207 +(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[https:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/>>url:https://www.dragino.com/downloads/index.php?dir=NB-IoT/NDDS75/]] 208 +))) 199 199 200 200 201 201 ... ... @@ -212,31 +212,30 @@ 212 212 213 213 For parameter description, please refer to AT command set 214 214 215 -[[image:1657 249793983-486.png]]225 +[[image:1657330452568-615.png]] 216 216 217 217 218 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NS E01will start to uplink sensor values to CoAP server.228 +After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NDDS75 will start to uplink sensor values to CoAP server. 219 219 220 -[[image:1657 249831934-534.png]]230 +[[image:1657330472797-498.png]] 221 221 222 222 223 223 224 224 === 2.2.5 Use UDP protocol to uplink data(Default protocol) === 225 225 226 -This feature is supported since firmware version v1.0.1 227 227 228 - 229 229 * (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 230 230 * (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 231 231 * (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 232 232 233 -[[image:1657249864775-321.png]] 234 234 242 +[[image:1657330501006-241.png]] 235 235 236 -[[image:1657249930215-289.png]] 237 237 245 +[[image:1657330533775-472.png]] 238 238 239 239 248 + 240 240 === 2.2.6 Use MQTT protocol to uplink data === 241 241 242 242 This feature is supported since firmware version v110 ... ... @@ -298,12 +298,14 @@ 298 298 In this mode, uplink payload includes in total 18 bytes 299 299 300 300 (% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 301 -|=(% style="width: 50px;" %)(((310 +|=(% style="width: 60px;" %)((( 302 302 **Size(bytes)** 303 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width:80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width:80px;" %)**2**|=(% style="width:40px;" %)**1**312 +)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 70px;" %)**1**|=(% style="width: 60px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 90px;" %)**2**|=(% style="width: 50px;" %)**1** 304 304 |(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 305 305 315 +((( 306 306 If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 317 +))) 307 307 308 308 309 309 [[image:image-20220708111918-4.png]] ... ... @@ -323,29 +323,42 @@ 323 323 * Soil Conductivity(EC) = 0x02f9 =761 uS /cm 324 324 * Interrupt: 0x00 = 0 325 325 326 - 327 327 == 2.4 Payload Explanation and Sensor Interface == 328 328 329 329 330 330 === 2.4.1 Device ID === 331 331 342 +((( 332 332 By default, the Device ID equal to the last 6 bytes of IMEI. 344 +))) 333 333 346 +((( 334 334 User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID 348 +))) 335 335 350 +((( 336 336 **Example:** 352 +))) 337 337 354 +((( 338 338 AT+DEUI=A84041F15612 356 +))) 339 339 358 +((( 340 340 The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 360 +))) 341 341 342 342 343 343 344 344 === 2.4.2 Version Info === 345 345 366 +((( 346 346 Specify the software version: 0x64=100, means firmware version 1.00. 368 +))) 347 347 370 +((( 348 348 For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 372 +))) 349 349 350 350 351 351 ... ... @@ -367,19 +367,33 @@ 367 367 368 368 === 2.4.4 Signal Strength === 369 369 394 +((( 370 370 NB-IoT Network signal Strength. 396 +))) 371 371 398 +((( 372 372 **Ex1: 0x1d = 29** 400 +))) 373 373 402 +((( 374 374 (% style="color:blue" %)**0**(%%) -113dBm or less 404 +))) 375 375 406 +((( 376 376 (% style="color:blue" %)**1**(%%) -111dBm 408 +))) 377 377 410 +((( 378 378 (% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm 412 +))) 379 379 414 +((( 380 380 (% style="color:blue" %)**31** (%%) -51dBm or greater 416 +))) 381 381 418 +((( 382 382 (% style="color:blue" %)**99** (%%) Not known or not detectable 420 +))) 383 383 384 384 385 385 ... ... @@ -386,12 +386,16 @@ 386 386 === 2.4.5 Soil Moisture === 387 387 388 388 ((( 427 +((( 389 389 Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 390 390 ))) 430 +))) 391 391 392 392 ((( 433 +((( 393 393 For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 394 394 ))) 436 +))) 395 395 396 396 ((( 397 397 ... ... @@ -406,7 +406,7 @@ 406 406 === 2.4.6 Soil Temperature === 407 407 408 408 ((( 409 - 451 +Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 410 410 ))) 411 411 412 412 ((( ... ... @@ -447,34 +447,56 @@ 447 447 448 448 === 2.4.8 Digital Interrupt === 449 449 492 +((( 450 450 Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 494 +))) 451 451 496 +((( 452 452 The command is: 498 +))) 453 453 500 +((( 454 454 (% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 502 +))) 455 455 456 456 505 +((( 457 457 The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up. 507 +))) 458 458 459 459 510 +((( 460 460 Example: 512 +))) 461 461 514 +((( 462 462 0x(00): Normal uplink packet. 516 +))) 463 463 518 +((( 464 464 0x(01): Interrupt Uplink Packet. 520 +))) 465 465 466 466 467 467 468 468 === 2.4.9 +5V Output === 469 469 526 +((( 470 470 NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 528 +))) 471 471 472 472 531 +((( 473 473 The 5V output time can be controlled by AT Command. 533 +))) 474 474 535 +((( 475 475 (% style="color:blue" %)**AT+5VT=1000** 537 +))) 476 476 539 +((( 477 477 Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 541 +))) 478 478 479 479 480 480 ... ... @@ -524,7 +524,9 @@ 524 524 525 525 * (% style="color:blue" %)**INTMOD** 526 526 591 +((( 527 527 Downlink Payload: 06000003, Set AT+INTMOD=3 593 +))) 528 528 529 529 530 530 ... ... @@ -547,7 +547,9 @@ 547 547 548 548 __**Measurement the soil surface**__ 549 549 616 +((( 550 550 Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]] 618 +))) 551 551 552 552 [[image:1657259653666-883.png]] 553 553 ... ... @@ -588,13 +588,19 @@ 588 588 === 2.9.1 Battery Type === 589 589 590 590 659 +((( 591 591 The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 661 +))) 592 592 593 593 664 +((( 594 594 The battery is designed to last for several years depends on the actually use environment and update interval. 666 +))) 595 595 596 596 669 +((( 597 597 The battery related documents as below: 671 +))) 598 598 599 599 * [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 600 * [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] ... ... @@ -771,26 +771,37 @@ 771 771 772 772 773 773 848 +== 5.2 Can I calibrate NSE01 to different soil types? == 849 + 850 +((( 851 +NSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/downloads/LoRa_End_Node/LSE01/Calibrate_to_other_Soil_20220605.pdf]]. 852 +))) 853 + 854 + 774 774 = 6. Trouble Shooting = 775 775 776 776 == 6.1 Connection problem when uploading firmware == 777 777 778 778 860 +((( 861 +**Please see: **[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>url:http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting]] 862 +))) 863 + 779 779 (% class="wikigeneratedid" %) 780 780 ((( 781 - (%style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]866 + 782 782 ))) 783 783 784 784 785 - 786 786 == 6.2 AT Command input doesn't work == 787 787 788 788 ((( 789 789 In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 874 + 875 + 790 790 ))) 791 791 792 792 793 - 794 794 = 7. Order Info = 795 795 796 796 ... ... @@ -809,7 +809,6 @@ 809 809 810 810 (% style="color:#037691" %)**Package Includes**: 811 811 812 - 813 813 * NSE01 NB-IoT Soil Moisture & EC Sensor x 1 814 814 * External antenna x 1 815 815 ))) ... ... @@ -819,7 +819,6 @@ 819 819 820 820 (% style="color:#037691" %)**Dimension and weight**: 821 821 822 - 823 823 * Size: 195 x 125 x 55 mm 824 824 * Weight: 420g 825 825 )))
- 1657271519014-786.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.5 KB - Content
- 1657327959271-447.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.3 KB - Content
- 1657328609906-564.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +492.6 KB - Content
- 1657328659945-416.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.8 KB - Content
- 1657328756309-230.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +78.5 KB - Content
- 1657328884227-504.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +483.6 KB - Content
- 1657329814315-101.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +85.3 KB - Content
- 1657330452568-615.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +71.3 KB - Content
- 1657330472797-498.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +68.9 KB - Content
- 1657330501006-241.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +119.2 KB - Content
- 1657330533775-472.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +74.9 KB - Content
- image-20220709084038-1.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084137-2.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084207-3.jpeg
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +72.0 KB - Content
- image-20220709084458-4.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +199.5 KB - Content
- image-20220709085040-1.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +200.4 KB - Content
- image-20220709092052-2.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Xiaoling - Size
-
... ... @@ -1,0 +1,1 @@ 1 +247.3 KB - Content