Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.9
edited by Xiaoling
on 2022/07/08 15:38
Change comment: There is no comment for this version
To version 45.2
edited by Xiaoling
on 2022/07/08 10:16
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -13,14 +13,11 @@
13 13  
14 14  **Table of Contents:**
15 15  
16 -{{toc/}}
17 17  
18 18  
19 19  
20 20  
21 21  
22 -
23 -
24 24  = 1.  Introduction =
25 25  
26 26  == 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
... ... @@ -28,21 +28,13 @@
28 28  (((
29 29  
30 30  
31 -(((
32 32  Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
33 -)))
34 34  
35 -(((
36 36  It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
37 -)))
38 38  
39 -(((
40 40  The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
41 -)))
42 42  
43 -(((
44 44  NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
45 -)))
46 46  
47 47  
48 48  )))
... ... @@ -54,8 +54,9 @@
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
46 +== 1.2 ​Features ==
58 58  
48 +
59 59  * NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
... ... @@ -70,6 +70,7 @@
70 70  * 8500mAh Battery for long term use
71 71  
72 72  
63 +
73 73  == 1.3  Specification ==
74 74  
75 75  
... ... @@ -78,6 +78,7 @@
78 78  * Supply Voltage: 2.1v ~~ 3.6v
79 79  * Operating Temperature: -40 ~~ 85°C
80 80  
72 +
81 81  (% style="color:#037691" %)**NB-IoT Spec:**
82 82  
83 83  * - B1 @H-FDD: 2100MHz
... ... @@ -87,8 +87,9 @@
87 87  * - B20 @H-FDD: 800MHz
88 88  * - B28 @H-FDD: 700MHz
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
91 91  
83 +(% style="color:#037691" %)**Probe Specification:**
84 +
92 92  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
93 93  
94 94  [[image:image-20220708101224-1.png]]
... ... @@ -131,687 +131,984 @@
131 131  
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
127 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
135 135  
129 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
136 136  
137 -=== 2.2.1 Test Requirement ===
138 138  
132 +[[image:1654503992078-669.png]]
139 139  
140 -To use NSE01 in your city, make sure meet below requirements:
141 141  
142 -* Your local operator has already distributed a NB-IoT Network there.
143 -* The local NB-IoT network used the band that NSE01 supports.
144 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
135 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
145 145  
137 +
138 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
139 +
140 +Each LSE01 is shipped with a sticker with the default device EUI as below:
141 +
142 +[[image:image-20220606163732-6.jpeg]]
143 +
144 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
145 +
146 +**Add APP EUI in the application**
147 +
148 +
149 +[[image:1654504596150-405.png]]
150 +
151 +
152 +
153 +**Add APP KEY and DEV EUI**
154 +
155 +[[image:1654504683289-357.png]]
156 +
157 +
158 +
159 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
160 +
161 +
162 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
163 +
164 +[[image:image-20220606163915-7.png]]
165 +
166 +
167 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
168 +
169 +[[image:1654504778294-788.png]]
170 +
171 +
172 +
173 +== 2.3 Uplink Payload ==
174 +
175 +
176 +=== 2.3.1 MOD~=0(Default Mode) ===
177 +
178 +LSE01 will uplink payload via LoRaWAN with below payload format: 
179 +
146 146  (((
147 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
181 +Uplink payload includes in total 11 bytes.
148 148  )))
149 149  
184 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
185 +|(((
186 +**Size**
150 150  
151 -[[image:1657249419225-449.png]]
188 +**(bytes)**
189 +)))|**2**|**2**|**2**|**2**|**2**|**1**
190 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
191 +Temperature
152 152  
193 +(Reserve, Ignore now)
194 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
195 +MOD & Digital Interrupt
153 153  
197 +(Optional)
198 +)))
154 154  
155 -=== 2.2.2 Insert SIM card ===
200 +=== 2.3.2 MOD~=1(Original value) ===
156 156  
157 -Insert the NB-IoT Card get from your provider.
202 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
158 158  
159 -User need to take out the NB-IoT module and insert the SIM card like below:
204 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
205 +|(((
206 +**Size**
160 160  
208 +**(bytes)**
209 +)))|**2**|**2**|**2**|**2**|**2**|**1**
210 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
211 +Temperature
161 161  
162 -[[image:1657249468462-536.png]]
213 +(Reserve, Ignore now)
214 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
215 +MOD & Digital Interrupt
163 163  
217 +(Optional)
218 +)))
164 164  
220 +=== 2.3.3 Battery Info ===
165 165  
166 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
222 +(((
223 +Check the battery voltage for LSE01.
224 +)))
167 167  
168 168  (((
227 +Ex1: 0x0B45 = 2885mV
228 +)))
229 +
169 169  (((
170 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
231 +Ex2: 0x0B49 = 2889mV
171 171  )))
233 +
234 +
235 +
236 +=== 2.3.4 Soil Moisture ===
237 +
238 +(((
239 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
172 172  )))
173 173  
242 +(((
243 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
244 +)))
174 174  
175 -**Connection:**
246 +(((
247 +
248 +)))
176 176  
177 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
250 +(((
251 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
252 +)))
178 178  
179 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
180 180  
181 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
182 182  
256 +=== 2.3.5 Soil Temperature ===
183 183  
184 -In the PC, use below serial tool settings:
258 +(((
259 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
260 +)))
185 185  
186 -* Baud:  (% style="color:green" %)**9600**
187 -* Data bits:** (% style="color:green" %)8(%%)**
188 -* Stop bits: (% style="color:green" %)**1**
189 -* Parity:  (% style="color:green" %)**None**
190 -* Flow Control: (% style="color:green" %)**None**
262 +(((
263 +**Example**:
264 +)))
191 191  
192 192  (((
193 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
267 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
194 194  )))
195 195  
196 -[[image:image-20220708110657-3.png]]
270 +(((
271 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
272 +)))
197 197  
198 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
199 199  
200 200  
276 +=== 2.3.6 Soil Conductivity (EC) ===
201 201  
202 -=== 2.2.4 Use CoAP protocol to uplink data ===
278 +(((
279 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
280 +)))
203 203  
204 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
282 +(((
283 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
284 +)))
205 205  
286 +(((
287 +Generally, the EC value of irrigation water is less than 800uS / cm.
288 +)))
206 206  
207 -**Use below commands:**
290 +(((
291 +
292 +)))
208 208  
209 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
210 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
211 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
294 +(((
295 +
296 +)))
212 212  
213 -For parameter description, please refer to AT command set
298 +=== 2.3.7 MOD ===
214 214  
215 -[[image:1657249793983-486.png]]
300 +Firmware version at least v2.1 supports changing mode.
216 216  
302 +For example, bytes[10]=90
217 217  
218 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
304 +mod=(bytes[10]>>7)&0x01=1.
219 219  
220 -[[image:1657249831934-534.png]]
221 221  
307 +**Downlink Command:**
222 222  
309 +If payload = 0x0A00, workmode=0
223 223  
224 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
311 +If** **payload =** **0x0A01, workmode=1
225 225  
226 -This feature is supported since firmware version v1.0.1
227 227  
228 228  
229 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
230 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
231 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
315 +=== 2.3.8 ​Decode payload in The Things Network ===
232 232  
233 -[[image:1657249864775-321.png]]
317 +While using TTN network, you can add the payload format to decode the payload.
234 234  
235 235  
236 -[[image:1657249930215-289.png]]
320 +[[image:1654505570700-128.png]]
237 237  
322 +(((
323 +The payload decoder function for TTN is here:
324 +)))
238 238  
326 +(((
327 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
328 +)))
239 239  
240 -=== 2.2.6 Use MQTT protocol to uplink data ===
241 241  
242 -This feature is supported since firmware version v110
331 +== 2.4 Uplink Interval ==
243 243  
333 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
244 244  
245 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
247 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
248 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
249 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
250 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
251 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
252 252  
253 -[[image:1657249978444-674.png]]
254 254  
337 +== 2.5 Downlink Payload ==
255 255  
256 -[[image:1657249990869-686.png]]
339 +By default, LSE50 prints the downlink payload to console port.
257 257  
341 +[[image:image-20220606165544-8.png]]
258 258  
343 +
259 259  (((
260 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
345 +(% style="color:blue" %)**Examples:**
261 261  )))
262 262  
348 +(((
349 +
350 +)))
263 263  
352 +* (((
353 +(% style="color:blue" %)**Set TDC**
354 +)))
264 264  
265 -=== 2.2.7 Use TCP protocol to uplink data ===
356 +(((
357 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
358 +)))
266 266  
267 -This feature is supported since firmware version v110
360 +(((
361 +Payload:    01 00 00 1E    TDC=30S
362 +)))
268 268  
364 +(((
365 +Payload:    01 00 00 3C    TDC=60S
366 +)))
269 269  
270 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
271 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
368 +(((
369 +
370 +)))
272 272  
273 -[[image:1657250217799-140.png]]
372 +* (((
373 +(% style="color:blue" %)**Reset**
374 +)))
274 274  
376 +(((
377 +If payload = 0x04FF, it will reset the LSE01
378 +)))
275 275  
276 -[[image:1657250255956-604.png]]
277 277  
381 +* (% style="color:blue" %)**CFM**
278 278  
383 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
279 279  
280 -=== 2.2.8 Change Update Interval ===
281 281  
282 -User can use below command to change the (% style="color:green" %)**uplink interval**.
283 283  
284 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
387 +== 2.6 Show Data in DataCake IoT Server ==
285 285  
286 286  (((
287 -(% style="color:red" %)**NOTE:**
390 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
288 288  )))
289 289  
290 290  (((
291 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
394 +
292 292  )))
293 293  
397 +(((
398 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
399 +)))
294 294  
401 +(((
402 +(% style="color:blue" %)**Step 2**(%%):  To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
403 +)))
295 295  
296 -== 2.3  Uplink Payload ==
297 297  
298 -In this mode, uplink payload includes in total 18 bytes
406 +[[image:1654505857935-743.png]]
299 299  
300 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
301 -|=(% style="width: 50px;" %)(((
302 -**Size(bytes)**
303 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
304 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
305 305  
306 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
409 +[[image:1654505874829-548.png]]
307 307  
308 308  
309 -[[image:image-20220708111918-4.png]]
412 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
310 310  
414 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
311 311  
312 -The payload is ASCII string, representative same HEX:
313 313  
314 -0x72403155615900640c7817075e0a8c02f900 where:
417 +[[image:1654505905236-553.png]]
315 315  
316 -* Device ID: 0x 724031556159 = 724031556159
317 -* Version: 0x0064=100=1.0.0
318 318  
319 -* BAT: 0x0c78 = 3192 mV = 3.192V
320 -* Singal: 0x17 = 23
321 -* Soil Moisture: 0x075e= 1886 = 18.86  %
322 -* Soil Temperature:0x0a8c =2700=27 °C
323 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
324 -* Interrupt: 0x00 = 0
420 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
325 325  
422 +[[image:1654505925508-181.png]]
326 326  
327 -== 2.4  Payload Explanation and Sensor Interface ==
328 328  
329 329  
330 -=== 2.4.1  Device ID ===
426 +== 2.7 Frequency Plans ==
331 331  
332 -By default, the Device ID equal to the last 6 bytes of IMEI.
428 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
333 333  
334 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
335 335  
336 -**Example:**
431 +=== 2.7.1 EU863-870 (EU868) ===
337 337  
338 -AT+DEUI=A84041F15612
433 +(% style="color:#037691" %)** Uplink:**
339 339  
340 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
435 +868.1 - SF7BW125 to SF12BW125
341 341  
437 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
342 342  
439 +868.5 - SF7BW125 to SF12BW125
343 343  
344 -=== 2.4.2  Version Info ===
441 +867.1 - SF7BW125 to SF12BW125
345 345  
346 -Specify the software version: 0x64=100, means firmware version 1.00.
443 +867.3 - SF7BW125 to SF12BW125
347 347  
348 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
445 +867.5 - SF7BW125 to SF12BW125
349 349  
447 +867.7 - SF7BW125 to SF12BW125
350 350  
449 +867.9 - SF7BW125 to SF12BW125
351 351  
352 -=== 2.4.3  Battery Info ===
451 +868.8 - FSK
353 353  
354 -(((
355 -Check the battery voltage for LSE01.
356 -)))
357 357  
358 -(((
359 -Ex1: 0x0B45 = 2885mV
360 -)))
454 +(% style="color:#037691" %)** Downlink:**
361 361  
362 -(((
363 -Ex2: 0x0B49 = 2889mV
364 -)))
456 +Uplink channels 1-9 (RX1)
365 365  
458 +869.525 - SF9BW125 (RX2 downlink only)
366 366  
367 367  
368 -=== 2.4.4  Signal Strength ===
369 369  
370 -NB-IoT Network signal Strength.
462 +=== 2.7.2 US902-928(US915) ===
371 371  
372 -**Ex1: 0x1d = 29**
464 +Used in USA, Canada and South America. Default use CHE=2
373 373  
374 -(% style="color:blue" %)**0**(%%)  -113dBm or less
466 +(% style="color:#037691" %)**Uplink:**
375 375  
376 -(% style="color:blue" %)**1**(%%)  -111dBm
468 +903.9 - SF7BW125 to SF10BW125
377 377  
378 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
470 +904.1 - SF7BW125 to SF10BW125
379 379  
380 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
472 +904.3 - SF7BW125 to SF10BW125
381 381  
382 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
474 +904.5 - SF7BW125 to SF10BW125
383 383  
476 +904.7 - SF7BW125 to SF10BW125
384 384  
478 +904.9 - SF7BW125 to SF10BW125
385 385  
386 -=== 2.4.5  Soil Moisture ===
480 +905.1 - SF7BW125 to SF10BW125
387 387  
388 -(((
389 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
390 -)))
482 +905.3 - SF7BW125 to SF10BW125
391 391  
392 -(((
393 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
394 -)))
395 395  
396 -(((
397 -
398 -)))
485 +(% style="color:#037691" %)**Downlink:**
399 399  
400 -(((
401 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
402 -)))
487 +923.3 - SF7BW500 to SF12BW500
403 403  
489 +923.9 - SF7BW500 to SF12BW500
404 404  
491 +924.5 - SF7BW500 to SF12BW500
405 405  
406 -=== 2.4.6  Soil Temperature ===
493 +925.1 - SF7BW500 to SF12BW500
407 407  
408 -(((
409 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
410 -)))
495 +925.7 - SF7BW500 to SF12BW500
411 411  
412 -(((
413 -**Example**:
414 -)))
497 +926.3 - SF7BW500 to SF12BW500
415 415  
416 -(((
417 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
418 -)))
499 +926.9 - SF7BW500 to SF12BW500
419 419  
420 -(((
421 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
422 -)))
501 +927.5 - SF7BW500 to SF12BW500
423 423  
503 +923.3 - SF12BW500(RX2 downlink only)
424 424  
425 425  
426 -=== 2.4.7  Soil Conductivity (EC) ===
427 427  
428 -(((
429 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
430 -)))
507 +=== 2.7.3 CN470-510 (CN470) ===
431 431  
432 -(((
433 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
434 -)))
509 +Used in China, Default use CHE=1
435 435  
436 -(((
437 -Generally, the EC value of irrigation water is less than 800uS / cm.
438 -)))
511 +(% style="color:#037691" %)**Uplink:**
439 439  
440 -(((
441 -
442 -)))
513 +486.3 - SF7BW125 to SF12BW125
443 443  
444 -(((
445 -
446 -)))
515 +486.5 - SF7BW125 to SF12BW125
447 447  
448 -=== 2.4.8  Digital Interrupt ===
517 +486.7 - SF7BW125 to SF12BW125
449 449  
450 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
519 +486.9 - SF7BW125 to SF12BW125
451 451  
452 -The command is:
521 +487.1 - SF7BW125 to SF12BW125
453 453  
454 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
523 +487.3 - SF7BW125 to SF12BW125
455 455  
525 +487.5 - SF7BW125 to SF12BW125
456 456  
457 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
527 +487.7 - SF7BW125 to SF12BW125
458 458  
459 459  
460 -Example:
530 +(% style="color:#037691" %)**Downlink:**
461 461  
462 -0x(00): Normal uplink packet.
532 +506.7 - SF7BW125 to SF12BW125
463 463  
464 -0x(01): Interrupt Uplink Packet.
534 +506.9 - SF7BW125 to SF12BW125
465 465  
536 +507.1 - SF7BW125 to SF12BW125
466 466  
538 +507.3 - SF7BW125 to SF12BW125
467 467  
468 -=== 2.4.9  ​+5V Output ===
540 +507.5 - SF7BW125 to SF12BW125
469 469  
470 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
542 +507.7 - SF7BW125 to SF12BW125
471 471  
544 +507.9 - SF7BW125 to SF12BW125
472 472  
473 -The 5V output time can be controlled by AT Command.
546 +508.1 - SF7BW125 to SF12BW125
474 474  
475 -(% style="color:blue" %)**AT+5VT=1000**
548 +505.3 - SF12BW125 (RX2 downlink only)
476 476  
477 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
478 478  
479 479  
552 +=== 2.7.4 AU915-928(AU915) ===
480 480  
481 -== 2.5  Downlink Payload ==
554 +Default use CHE=2
482 482  
483 -By default, NSE01 prints the downlink payload to console port.
556 +(% style="color:#037691" %)**Uplink:**
484 484  
485 -[[image:image-20220708133731-5.png]]
558 +916.8 - SF7BW125 to SF12BW125
486 486  
560 +917.0 - SF7BW125 to SF12BW125
487 487  
488 -(((
489 -(% style="color:blue" %)**Examples:**
490 -)))
562 +917.2 - SF7BW125 to SF12BW125
491 491  
492 -(((
493 -
494 -)))
564 +917.4 - SF7BW125 to SF12BW125
495 495  
496 -* (((
497 -(% style="color:blue" %)**Set TDC**
498 -)))
566 +917.6 - SF7BW125 to SF12BW125
499 499  
500 -(((
501 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
502 -)))
568 +917.8 - SF7BW125 to SF12BW125
503 503  
504 -(((
505 -Payload:    01 00 00 1E    TDC=30S
506 -)))
570 +918.0 - SF7BW125 to SF12BW125
507 507  
508 -(((
509 -Payload:    01 00 00 3C    TDC=60S
510 -)))
572 +918.2 - SF7BW125 to SF12BW125
511 511  
512 -(((
513 -
514 -)))
515 515  
516 -* (((
517 -(% style="color:blue" %)**Reset**
518 -)))
575 +(% style="color:#037691" %)**Downlink:**
519 519  
520 -(((
521 -If payload = 0x04FF, it will reset the NSE01
522 -)))
577 +923.3 - SF7BW500 to SF12BW500
523 523  
579 +923.9 - SF7BW500 to SF12BW500
524 524  
525 -* (% style="color:blue" %)**INTMOD**
581 +924.5 - SF7BW500 to SF12BW500
526 526  
527 -Downlink Payload: 06000003, Set AT+INTMOD=3
583 +925.1 - SF7BW500 to SF12BW500
528 528  
585 +925.7 - SF7BW500 to SF12BW500
529 529  
587 +926.3 - SF7BW500 to SF12BW500
530 530  
531 -== 2.6  ​LED Indicator ==
589 +926.9 - SF7BW500 to SF12BW500
532 532  
533 -(((
534 -The NSE01 has an internal LED which is to show the status of different state.
591 +927.5 - SF7BW500 to SF12BW500
535 535  
593 +923.3 - SF12BW500(RX2 downlink only)
536 536  
537 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
538 -* Then the LED will be on for 1 second means device is boot normally.
539 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
540 -* For each uplink probe, LED will be on for 500ms.
541 -)))
542 542  
543 543  
597 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
544 544  
599 +(% style="color:#037691" %)**Default Uplink channel:**
545 545  
546 -== 2.7  Installation in Soil ==
601 +923.2 - SF7BW125 to SF10BW125
547 547  
548 -__**Measurement the soil surface**__
603 +923.4 - SF7BW125 to SF10BW125
549 549  
550 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
551 551  
552 -[[image:1657259653666-883.png]]
606 +(% style="color:#037691" %)**Additional Uplink Channel**:
553 553  
608 +(OTAA mode, channel added by JoinAccept message)
554 554  
555 -(((
556 -
610 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
557 557  
558 -(((
559 -Dig a hole with diameter > 20CM.
560 -)))
612 +922.2 - SF7BW125 to SF10BW125
561 561  
562 -(((
563 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
564 -)))
565 -)))
614 +922.4 - SF7BW125 to SF10BW125
566 566  
567 -[[image:1654506665940-119.png]]
616 +922.6 - SF7BW125 to SF10BW125
568 568  
569 -(((
570 -
571 -)))
618 +922.8 - SF7BW125 to SF10BW125
572 572  
620 +923.0 - SF7BW125 to SF10BW125
573 573  
574 -== 2. Firmware Change Log ==
622 +922.0 - SF7BW125 to SF10BW125
575 575  
576 576  
577 -Download URL & Firmware Change log
625 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
578 578  
579 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
627 +923.6 - SF7BW125 to SF10BW125
580 580  
629 +923.8 - SF7BW125 to SF10BW125
581 581  
582 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
631 +924.0 - SF7BW125 to SF10BW125
583 583  
633 +924.2 - SF7BW125 to SF10BW125
584 584  
635 +924.4 - SF7BW125 to SF10BW125
585 585  
586 -== 2. Battery Analysis ==
637 +924.6 - SF7BW125 to SF10BW125
587 587  
588 -=== 2.9.1  ​Battery Type ===
589 589  
640 +(% style="color:#037691" %)** Downlink:**
590 590  
591 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
642 +Uplink channels 1-8 (RX1)
592 592  
644 +923.2 - SF10BW125 (RX2)
593 593  
594 -The battery is designed to last for several years depends on the actually use environment and update interval. 
595 595  
596 596  
597 -The battery related documents as below:
648 +=== 2.7.6 KR920-923 (KR920) ===
598 598  
599 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
601 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
650 +Default channel:
602 602  
652 +922.1 - SF7BW125 to SF12BW125
653 +
654 +922.3 - SF7BW125 to SF12BW125
655 +
656 +922.5 - SF7BW125 to SF12BW125
657 +
658 +
659 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
660 +
661 +922.1 - SF7BW125 to SF12BW125
662 +
663 +922.3 - SF7BW125 to SF12BW125
664 +
665 +922.5 - SF7BW125 to SF12BW125
666 +
667 +922.7 - SF7BW125 to SF12BW125
668 +
669 +922.9 - SF7BW125 to SF12BW125
670 +
671 +923.1 - SF7BW125 to SF12BW125
672 +
673 +923.3 - SF7BW125 to SF12BW125
674 +
675 +
676 +(% style="color:#037691" %)**Downlink:**
677 +
678 +Uplink channels 1-7(RX1)
679 +
680 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
681 +
682 +
683 +
684 +=== 2.7.7 IN865-867 (IN865) ===
685 +
686 +(% style="color:#037691" %)** Uplink:**
687 +
688 +865.0625 - SF7BW125 to SF12BW125
689 +
690 +865.4025 - SF7BW125 to SF12BW125
691 +
692 +865.9850 - SF7BW125 to SF12BW125
693 +
694 +
695 +(% style="color:#037691" %) **Downlink:**
696 +
697 +Uplink channels 1-3 (RX1)
698 +
699 +866.550 - SF10BW125 (RX2)
700 +
701 +
702 +
703 +
704 +== 2.8 LED Indicator ==
705 +
706 +The LSE01 has an internal LED which is to show the status of different state.
707 +
708 +* Blink once when device power on.
709 +* Solid ON for 5 seconds once device successful Join the network.
710 +* Blink once when device transmit a packet.
711 +
712 +== 2.9 Installation in Soil ==
713 +
714 +**Measurement the soil surface**
715 +
716 +
717 +[[image:1654506634463-199.png]] ​
718 +
603 603  (((
604 -[[image:image-20220708140453-6.png]]
720 +(((
721 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
605 605  )))
723 +)))
606 606  
607 607  
608 608  
609 -=== 2.9.2  Power consumption Analyze ===
727 +[[image:1654506665940-119.png]]
610 610  
611 611  (((
612 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
730 +Dig a hole with diameter > 20CM.
613 613  )))
614 614  
733 +(((
734 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
735 +)))
615 615  
737 +
738 +== 2.10 ​Firmware Change Log ==
739 +
616 616  (((
617 -Instruction to use as below:
741 +**Firmware download link:**
618 618  )))
619 619  
620 620  (((
621 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
745 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
622 622  )))
623 623  
748 +(((
749 +
750 +)))
624 624  
625 625  (((
626 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
753 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
627 627  )))
628 628  
629 -* (((
630 -Product Model
756 +(((
757 +
631 631  )))
632 -* (((
633 -Uplink Interval
759 +
760 +(((
761 +**V1.0.**
634 634  )))
635 -* (((
636 -Working Mode
637 -)))
638 638  
639 639  (((
640 -And the Life expectation in difference case will be shown on the right.
765 +Release
641 641  )))
642 642  
643 -[[image:image-20220708141352-7.jpeg]]
644 644  
769 +== 2.11 ​Battery Analysis ==
645 645  
771 +=== 2.11.1 ​Battery Type ===
646 646  
647 -=== 2.9.3  ​Battery Note ===
773 +(((
774 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
775 +)))
648 648  
649 649  (((
650 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
778 +The battery is designed to last for more than 5 years for the LSN50.
651 651  )))
652 652  
781 +(((
782 +(((
783 +The battery-related documents are as below:
784 +)))
785 +)))
653 653  
787 +* (((
788 +[[Battery Dimension>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
789 +)))
790 +* (((
791 +[[Lithium-Thionyl Chloride Battery  datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]],
792 +)))
793 +* (((
794 +[[Lithium-ion Battery-Capacitor datasheet>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]], [[Tech Spec>>https://www.dragino.com/downloads/index.php?dir=datasheet/Battery/]]
795 +)))
654 654  
655 -=== 2.9.4  Replace the battery ===
797 + [[image:image-20220610172436-1.png]]
656 656  
799 +
800 +
801 +=== 2.11.2 ​Battery Note ===
802 +
657 657  (((
658 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
804 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
659 659  )))
660 660  
661 661  
662 662  
663 -= 3. ​ Access NB-IoT Module =
809 +=== 2.11.3 Replace the battery ===
664 664  
665 665  (((
666 -Users can directly access the AT command set of the NB-IoT module.
812 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
667 667  )))
668 668  
669 669  (((
670 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
816 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
671 671  )))
672 672  
673 -[[image:1657261278785-153.png]]
819 +(((
820 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
821 +)))
674 674  
675 675  
676 676  
677 -= 4.  Using the AT Commands =
825 += 3. Using the AT Commands =
678 678  
679 -== 4.1  Access AT Commands ==
827 +== 3.1 Access AT Commands ==
680 680  
681 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
682 682  
830 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
683 683  
684 -AT+<CMD>?  : Help on <CMD>
832 +[[image:1654501986557-872.png||height="391" width="800"]]
685 685  
686 -AT+<CMD>         : Run <CMD>
687 687  
688 -AT+<CMD>=<value> : Set the value
835 +Or if you have below board, use below connection:
689 689  
690 -AT+<CMD>=?  : Get the value
691 691  
838 +[[image:1654502005655-729.png||height="503" width="801"]]
692 692  
840 +
841 +
842 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
843 +
844 +
845 + [[image:1654502050864-459.png||height="564" width="806"]]
846 +
847 +
848 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
849 +
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
854 +
855 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
856 +
857 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
858 +
859 +
693 693  (% style="color:#037691" %)**General Commands**(%%)      
694 694  
695 -AT  : Attention       
862 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
696 696  
697 -AT?  : Short Help     
864 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
698 698  
699 -ATZ  : MCU Reset    
866 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
700 700  
701 -AT+TDC  : Application Data Transmission Interval
868 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
702 702  
703 -AT+CFG  : Print all configurations
704 704  
705 -AT+CFGMOD           : Working mode selection
871 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
706 706  
707 -AT+INTMOD            : Set the trigger interrupt mode
873 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
708 708  
709 -AT+5VT  : Set extend the time of 5V power  
875 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
710 710  
711 -AT+PRO  : Choose agreement
877 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
712 712  
713 -AT+WEIGRE  : Get weight or set weight to 0
879 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
714 714  
715 -AT+WEIGAP  : Get or Set the GapValue of weight
881 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
716 716  
717 -AT+RXDL  : Extend the sending and receiving time
883 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
718 718  
719 -AT+CNTFAC  : Get or set counting parameters
885 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
720 720  
721 -AT+SERVADDR  : Server Address
887 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
722 722  
889 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
723 723  
724 -(% style="color:#037691" %)**COAP Management**      
891 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
725 725  
726 -AT+URI            : Resource parameters
893 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
727 727  
895 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
728 728  
729 -(% style="color:#037691" %)**UDP Management**
897 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
730 730  
731 -AT+CFM          : Upload confirmation mode (only valid for UDP)
899 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
732 732  
901 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
733 733  
734 -(% style="color:#037691" %)**MQTT Management**
903 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
735 735  
736 -AT+CLIENT               : Get or Set MQTT client
737 737  
738 -AT+UNAME  : Get or Set MQTT Username
906 +(% style="color:#037691" %)**LoRa Network Management**
739 739  
740 -AT+PWD                  : Get or Set MQTT password
908 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
741 741  
742 -AT+PUBTOPI : Get or Set MQTT publish topic
910 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
743 743  
744 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
912 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
745 745  
914 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
746 746  
747 -(% style="color:#037691" %)**Information**          
916 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
748 748  
749 -AT+FDR  : Factory Data Reset
918 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
750 750  
751 -AT+PWOR : Serial Access Password
920 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
752 752  
922 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
753 753  
924 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
754 754  
755 -= ​5.  FAQ =
926 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
756 756  
757 -== 5.1 How to Upgrade Firmware ==
928 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
758 758  
930 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
759 759  
932 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
933 +
934 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
935 +
936 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
937 +
938 +
939 +(% style="color:#037691" %)**Information** 
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
948 +
949 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
950 +
951 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
952 +
953 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
954 +
955 +
956 += ​4. FAQ =
957 +
958 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
959 +
760 760  (((
761 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
961 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
962 +When downloading the images, choose the required image file for download. ​
762 762  )))
763 763  
764 764  (((
765 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
966 +
766 766  )))
767 767  
768 768  (((
769 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
970 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
770 770  )))
771 771  
973 +(((
974 +
975 +)))
772 772  
977 +(((
978 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
979 +)))
773 773  
774 -= 6.  Trouble Shooting =
981 +(((
982 +
983 +)))
775 775  
776 -== 6.1  ​Connection problem when uploading firmware ==
985 +(((
986 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
987 +)))
777 777  
989 +[[image:image-20220606154726-3.png]]
778 778  
779 -(% class="wikigeneratedid" %)
991 +
992 +When you use the TTN network, the US915 frequency bands use are:
993 +
994 +* 903.9 - SF7BW125 to SF10BW125
995 +* 904.1 - SF7BW125 to SF10BW125
996 +* 904.3 - SF7BW125 to SF10BW125
997 +* 904.5 - SF7BW125 to SF10BW125
998 +* 904.7 - SF7BW125 to SF10BW125
999 +* 904.9 - SF7BW125 to SF10BW125
1000 +* 905.1 - SF7BW125 to SF10BW125
1001 +* 905.3 - SF7BW125 to SF10BW125
1002 +* 904.6 - SF8BW500
1003 +
780 780  (((
781 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1005 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1006 +
1007 +* (% style="color:#037691" %)**AT+CHE=2**
1008 +* (% style="color:#037691" %)**ATZ**
782 782  )))
783 783  
1011 +(((
1012 +
784 784  
1014 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1015 +)))
785 785  
786 -== 6.2  AT Command input doesn't work ==
1017 +(((
1018 +
1019 +)))
787 787  
788 788  (((
1022 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
1023 +)))
1024 +
1025 +[[image:image-20220606154825-4.png]]
1026 +
1027 +
1028 +== 4.2 ​Can I calibrate LSE01 to different soil types? ==
1029 +
1030 +LSE01 is calibrated for saline-alkali soil and loamy soil. If users want to use it for other soil, they can calibrate the value in the IoT platform base on the value measured by saline-alkali soil and loamy soil. The formula can be found at [[this link>>https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/&file=Calibrate_to_other_Soil_20220605.pdf]].
1031 +
1032 +
1033 += 5. Trouble Shooting =
1034 +
1035 +== 5.1 ​Why I can't join TTN in US915 / AU915 bands? ==
1036 +
1037 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H7.19EightChannelMode"]] section above for details.
1038 +
1039 +
1040 +== 5.2 AT Command input doesn't work ==
1041 +
1042 +(((
789 789  In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
790 790  )))
791 791  
792 792  
1047 +== 5.3 Device rejoin in at the second uplink packet ==
793 793  
794 -= 7. ​ Order Info =
1049 +(% style="color:#4f81bd" %)**Issue describe as below:**
795 795  
1051 +[[image:1654500909990-784.png]]
796 796  
797 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
798 798  
1054 +(% style="color:#4f81bd" %)**Cause for this issue:**
799 799  
1056 +(((
1057 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1058 +)))
1059 +
1060 +
1061 +(% style="color:#4f81bd" %)**Solution: **
1062 +
1063 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1064 +
1065 +[[image:1654500929571-736.png||height="458" width="832"]]
1066 +
1067 +
1068 += 6. ​Order Info =
1069 +
1070 +
1071 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1072 +
1073 +
1074 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1075 +
1076 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1077 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1078 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1079 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1080 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1081 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1082 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1083 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1084 +
1085 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1086 +
1087 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1088 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1089 +
800 800  (% class="wikigeneratedid" %)
801 801  (((
802 802  
803 803  )))
804 804  
805 -= 8.  Packing Info =
1095 += 7. Packing Info =
806 806  
807 807  (((
808 808  
809 809  
810 810  (% style="color:#037691" %)**Package Includes**:
1101 +)))
811 811  
812 -
813 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
814 -* External antenna x 1
1103 +* (((
1104 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
815 815  )))
816 816  
817 817  (((
... ... @@ -818,20 +818,24 @@
818 818  
819 819  
820 820  (% style="color:#037691" %)**Dimension and weight**:
1111 +)))
821 821  
822 -
823 -* Size: 195 x 125 x 55 mm
824 -* Weight:   420g
1113 +* (((
1114 +Device Size: cm
825 825  )))
1116 +* (((
1117 +Device Weight: g
1118 +)))
1119 +* (((
1120 +Package Size / pcs : cm
1121 +)))
1122 +* (((
1123 +Weight / pcs : g
826 826  
827 -(((
828 828  
829 -
830 -
831 -
832 832  )))
833 833  
834 -= 9.  Support =
1128 += 8. Support =
835 835  
836 836  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
837 837  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content