Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,14 +3,6 @@ 3 3 4 4 5 5 6 - 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 14 **Table of Contents:** 15 15 16 16 {{toc/}} ... ... @@ -20,82 +20,65 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 29 30 30 31 -((( 32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 22 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 33 33 ))) 34 34 35 35 ((( 36 -It candetect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and uploaditsvalueto the serverwirelessly.26 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 37 37 ))) 38 38 39 39 ((( 40 -The wireless technology used in NSE01 allowsthedevice to send data at a low data rate and reachultra-longdistances,providingultra-long-distance spread spectrumCommunication.30 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepowered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%)batteries,whichcanbe usedforup to5years.34 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 45 45 ))) 46 46 47 - 37 +((( 38 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 48 48 ))) 49 49 41 + 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]45 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 49 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 51 +* LoRaWAN 1.0.3 Class A 52 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 56 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 61 +* 4000mAh or 8500mAh Battery for long term use 71 71 72 72 73 -== 1.3 Specification == 74 74 65 +== 1.3 Specification == 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 - 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 - 81 -(% style="color:#037691" %)**NB-IoT Spec:** 82 - 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 89 - 90 -Probe(% style="color:#037691" %)** Specification:** 91 - 92 92 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 93 93 94 -[[image:image-20220 708101224-1.png]]69 +[[image:image-20220606162220-5.png]] 95 95 96 96 97 97 98 -== 1.4 73 +== 1.4 Applications == 99 99 100 100 * Smart Agriculture 101 101 ... ... @@ -102,716 +102,1013 @@ 102 102 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 103 104 104 105 -== 1.5 Pin Definitions==80 +== 1.5 Firmware Change log == 106 106 107 107 108 - [[image:1657246476176-652.png]]83 +**LSE01 v1.0 :** Release 109 109 110 110 111 111 112 -= 2. UseNSE01 to communicatewithIoTServer=87 += 2. Configure LSE01 to connect to LoRaWAN network = 113 113 114 -== 2.1 89 +== 2.1 How it works == 115 115 91 +((( 92 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 93 +))) 116 116 117 117 ((( 118 - TheNSE01 isquippedwitha NB-IoT module,thepre-loadedfirmware inNSE01 will getnvironmentdatafromsensorsandsendthe value tolocal NB-IoT networkviatheNB-IoT module.The NB-IoT network willforwardthis valueto IoTserverviatheprotocol definedby NSE01.96 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 119 119 ))) 120 120 121 121 100 + 101 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 + 103 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 + 105 + 106 +[[image:1654503992078-669.png]] 107 + 108 + 109 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 110 + 111 + 112 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 113 + 114 +Each LSE01 is shipped with a sticker with the default device EUI as below: 115 + 116 +[[image:image-20220606163732-6.jpeg]] 117 + 118 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 119 + 120 +**Add APP EUI in the application** 121 + 122 + 123 +[[image:1654504596150-405.png]] 124 + 125 + 126 + 127 +**Add APP KEY and DEV EUI** 128 + 129 +[[image:1654504683289-357.png]] 130 + 131 + 132 + 133 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 134 + 135 + 136 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 137 + 138 +[[image:image-20220606163915-7.png]] 139 + 140 + 141 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 142 + 143 +[[image:1654504778294-788.png]] 144 + 145 + 146 + 147 +== 2.3 Uplink Payload == 148 + 149 + 150 +=== 2.3.1 MOD~=0(Default Mode) === 151 + 152 +LSE01 will uplink payload via LoRaWAN with below payload format: 153 + 122 122 ((( 123 - The diagram below shows the workingflowinfaultfirmwareofNSE01:155 +Uplink payload includes in total 11 bytes. 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 158 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 159 +|((( 160 +**Size** 127 127 128 -((( 129 - 162 +**(bytes)** 163 +)))|**2**|**2**|**2**|**2**|**2**|**1** 164 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 165 +Temperature 166 + 167 +(Reserve, Ignore now) 168 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 169 +MOD & Digital Interrupt 170 + 171 +(Optional) 130 130 ))) 131 131 132 132 133 133 134 -== 2.2 Configure the NSE01 == 135 135 136 136 137 -=== 2. 2.1Test Requirement===178 +=== 2.3.2 MOD~=1(Original value) === 138 138 180 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 139 139 140 -To use NSE01 in your city, make sure meet below requirements: 182 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 183 +|((( 184 +**Size** 141 141 142 -* Your local operator has already distributed a NB-IoT Network there. 143 -* The local NB-IoT network used the band that NSE01 supports. 144 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 186 +**(bytes)** 187 +)))|**2**|**2**|**2**|**2**|**2**|**1** 188 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 189 +Temperature 145 145 146 -((( 147 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 191 +(Reserve, Ignore now) 192 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 193 +MOD & Digital Interrupt 194 + 195 +(Optional) 148 148 ))) 149 149 150 150 151 -[[image:1657249419225-449.png]] 152 152 153 153 154 154 155 -=== 2. 2.2InsertSIMcard===202 +=== 2.3.3 Battery Info === 156 156 157 -Insert the NB-IoT Card get from your provider. 204 +((( 205 +Check the battery voltage for LSE01. 206 +))) 158 158 159 -User need to take out the NB-IoT module and insert the SIM card like below: 208 +((( 209 +Ex1: 0x0B45 = 2885mV 210 +))) 160 160 212 +((( 213 +Ex2: 0x0B49 = 2889mV 214 +))) 161 161 162 -[[image:1657249468462-536.png]] 163 163 164 164 218 +=== 2.3.4 Soil Moisture === 165 165 166 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 220 +((( 221 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 222 +))) 167 167 168 168 ((( 225 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 226 +))) 227 + 169 169 ((( 170 - Userneed to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.229 + 171 171 ))) 231 + 232 +((( 233 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 172 172 ))) 173 173 174 174 175 -**Connection:** 176 176 177 - (%style="background-color:yellow"%)USB TTL GND <~-~-~-~-> GND238 +=== 2.3.5 Soil Temperature === 178 178 179 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 240 +((( 241 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 242 +))) 180 180 181 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD 244 +((( 245 +**Example**: 246 +))) 182 182 248 +((( 249 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 250 +))) 183 183 184 -In the PC, use below serial tool settings: 252 +((( 253 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 254 +))) 185 185 186 -* Baud: (% style="color:green" %)**9600** 187 -* Data bits:** (% style="color:green" %)8(%%)** 188 -* Stop bits: (% style="color:green" %)**1** 189 -* Parity: (% style="color:green" %)**None** 190 -* Flow Control: (% style="color:green" %)**None** 191 191 257 + 258 +=== 2.3.6 Soil Conductivity (EC) === 259 + 192 192 ((( 193 - Make surethe switch is inFLASHposition, then power on devicebyconnectingthe jumperNSE01.NSE01 willoutputsysteminfo oncepowerasbelow,wecan enterthe(% style="color:green" %)**password:12345678**(%%)toaccessATCommandinput.261 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 194 194 ))) 195 195 196 -[[image:image-20220708110657-3.png]] 264 +((( 265 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 266 +))) 197 197 198 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 268 +((( 269 +Generally, the EC value of irrigation water is less than 800uS / cm. 270 +))) 199 199 272 +((( 273 + 274 +))) 200 200 276 +((( 277 + 278 +))) 201 201 202 -=== 2. 2.4Use CoAP protocol to uplink data===280 +=== 2.3.7 MOD === 203 203 204 - (% style="color:red"%)Note:if you don'thaveCoAP server, you can refer thislinktosetupne:(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]282 +Firmware version at least v2.1 supports changing mode. 205 205 284 +For example, bytes[10]=90 206 206 207 - **Use below commands:**286 +mod=(bytes[10]>>7)&0x01=1. 208 208 209 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 210 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 211 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 212 212 213 - For parameter description,please refer toAT commandset289 +**Downlink Command:** 214 214 215 - [[image:1657249793983-486.png]]291 +If payload = 0x0A00, workmode=0 216 216 293 +If** **payload =** **0x0A01, workmode=1 217 217 218 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 219 219 220 -[[image:1657249831934-534.png]] 221 221 297 +=== 2.3.8 Decode payload in The Things Network === 222 222 299 +While using TTN network, you can add the payload format to decode the payload. 223 223 224 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 225 225 226 - This feature is supported since firmwareversion v1.0.1302 +[[image:1654505570700-128.png]] 227 227 304 +((( 305 +The payload decoder function for TTN is here: 306 +))) 228 228 229 - *(% style="color:blue" %)**AT+PRO=2 **(%%) ~/~/ Set to use UDP protocol to uplink230 - *(%style="color:blue"%)**AT+SERVADDR=120.24.4.116,5601 ** (%%)~/~/tot UDPserverress andt231 - * (% style="color:blue" %)**AT+CFM=1 ** (%%)~/~/If the server does not respond, this command is unnecessary308 +((( 309 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 310 +))) 232 232 233 -[[image:1657249864775-321.png]] 234 234 235 235 236 - [[image:1657249930215-289.png]]314 +== 2.4 Uplink Interval == 237 237 316 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 238 238 239 239 240 -=== 2.2.6 Use MQTT protocol to uplink data === 241 241 242 - Thisfeatureis supported sincefirmware versionv110320 +== 2.5 Downlink Payload == 243 243 322 +By default, LSE50 prints the downlink payload to console port. 244 244 245 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 247 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 248 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 249 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 250 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 251 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 324 +[[image:image-20220606165544-8.png]] 252 252 253 -[[image:1657249978444-674.png]] 254 254 327 +((( 328 +**Examples:** 329 +))) 255 255 256 -[[image:1657249990869-686.png]] 331 +((( 332 + 333 +))) 257 257 335 +* ((( 336 +**Set TDC** 337 +))) 258 258 259 259 ((( 260 - MQTTprotocolhas a much higherpower consumption compare vs UDP /CoAPprotocol.Pleasecheckthepoweranalyze documentandadjusttheuplink periodtoa suitable interval.340 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 261 261 ))) 262 262 343 +((( 344 +Payload: 01 00 00 1E TDC=30S 345 +))) 263 263 347 +((( 348 +Payload: 01 00 00 3C TDC=60S 349 +))) 264 264 265 -=== 2.2.7 Use TCP protocol to uplink data === 351 +((( 352 + 353 +))) 266 266 267 -This feature is supported since firmware version v110 355 +* ((( 356 +**Reset** 357 +))) 268 268 359 +((( 360 +If payload = 0x04FF, it will reset the LSE01 361 +))) 269 269 270 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 271 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 272 272 273 - [[image:1657250217799-140.png]]364 +* **CFM** 274 274 366 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 275 275 276 -[[image:1657250255956-604.png]] 277 277 278 278 370 +== 2.6 Show Data in DataCake IoT Server == 279 279 280 -=== 2.2.8 Change Update Interval === 372 +((( 373 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 374 +))) 281 281 282 -User can use below command to change the (% style="color:green" %)**uplink interval**. 376 +((( 377 + 378 +))) 283 283 284 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 285 - 286 286 ((( 287 - (%style="color:red"%)**NOTE:**381 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 288 288 ))) 289 289 290 290 ((( 291 - (% style="color:red"%)1. Bydefault,thedevicewillsend anuplink message every1hour.385 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 292 292 ))) 293 293 294 294 389 +[[image:1654505857935-743.png]] 295 295 296 -== 2.3 Uplink Payload == 297 297 298 - In thismode, uplink payload includes in total18bytes392 +[[image:1654505874829-548.png]] 299 299 300 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 301 -|=(% style="width: 50px;" %)((( 302 -**Size(bytes)** 303 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 304 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 394 +Step 3: Create an account or log in Datacake. 305 305 306 - If we usetheMQTTclient to subscribe to this MQTT topic, we can see thefollowing information whenthe NSE01uplinkdata.396 +Step 4: Search the LSE01 and add DevEUI. 307 307 308 308 309 -[[image: image-20220708111918-4.png]]399 +[[image:1654505905236-553.png]] 310 310 311 311 312 - Thepayloadis ASCII string,representative sameHEX:402 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 313 313 314 - 0x72403155615900640c7817075e0a8c02f900 where:404 +[[image:1654505925508-181.png]] 315 315 316 -* Device ID: 0x 724031556159 = 724031556159 317 -* Version: 0x0064=100=1.0.0 318 318 319 -* BAT: 0x0c78 = 3192 mV = 3.192V 320 -* Singal: 0x17 = 23 321 -* Soil Moisture: 0x075e= 1886 = 18.86 % 322 -* Soil Temperature:0x0a8c =2700=27 °C 323 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 324 -* Interrupt: 0x00 = 0 325 325 408 +== 2.7 Frequency Plans == 326 326 327 - ==2.4PayloadExplanationandSensorInterface==410 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 328 328 329 329 330 -=== 2. 4.1DeviceID===413 +=== 2.7.1 EU863-870 (EU868) === 331 331 332 - Bydefault, theDevice ID equal tothelast6bytesof IMEI.415 +(% style="color:#037691" %)** Uplink:** 333 333 334 - Usercanuse(% style="color:blue"%)**AT+DEUI**(%%) to set Device ID417 +868.1 - SF7BW125 to SF12BW125 335 335 336 - **Example:**419 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 337 337 338 - AT+DEUI=A84041F15612421 +868.5 - SF7BW125 to SF12BW125 339 339 340 - TheDevice ID is stored in a none-erasearea,Upgradethe firmwareorrun AT+FDR won't erase Device ID.423 +867.1 - SF7BW125 to SF12BW125 341 341 425 +867.3 - SF7BW125 to SF12BW125 342 342 427 +867.5 - SF7BW125 to SF12BW125 343 343 344 - ===2.4.2VersionInfo ===429 +867.7 - SF7BW125 to SF12BW125 345 345 346 - Specifythesoftware version: 0x64=100,means firmware version1.00.431 +867.9 - SF7BW125 to SF12BW125 347 347 348 - For example: 0x0064: this device is NSE01 with firmware version 1.0.0.433 +868.8 - FSK 349 349 350 350 436 +(% style="color:#037691" %)** Downlink:** 351 351 352 - ===2.4.3 BatteryInfo===438 +Uplink channels 1-9 (RX1) 353 353 354 -((( 355 -Check the battery voltage for LSE01. 356 -))) 440 +869.525 - SF9BW125 (RX2 downlink only) 357 357 358 -((( 359 -Ex1: 0x0B45 = 2885mV 360 -))) 361 361 362 -((( 363 -Ex2: 0x0B49 = 2889mV 364 -))) 365 365 444 +=== 2.7.2 US902-928(US915) === 366 366 446 +Used in USA, Canada and South America. Default use CHE=2 367 367 368 - ===2.4.4 Signal Strength===448 +(% style="color:#037691" %)**Uplink:** 369 369 370 - NB-IoTNetworksignalStrength.450 +903.9 - SF7BW125 to SF10BW125 371 371 372 - **Ex1:0x1d=29**452 +904.1 - SF7BW125 to SF10BW125 373 373 374 - (% style="color:blue" %)**0**(%%)113dBmorless454 +904.3 - SF7BW125 to SF10BW125 375 375 376 - (%style="color:blue"%)**1**(%%)-111dBm456 +904.5 - SF7BW125 to SF10BW125 377 377 378 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm458 +904.7 - SF7BW125 to SF10BW125 379 379 380 - (%style="color:blue"%)**31** (%%) -51dBmorgreater460 +904.9 - SF7BW125 to SF10BW125 381 381 382 - (% style="color:blue" %)**99**(%%)Notknownor not detectable462 +905.1 - SF7BW125 to SF10BW125 383 383 464 +905.3 - SF7BW125 to SF10BW125 384 384 385 385 386 - ===2.4.5 SoilMoisture===467 +(% style="color:#037691" %)**Downlink:** 387 387 388 -((( 389 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 390 -))) 469 +923.3 - SF7BW500 to SF12BW500 391 391 392 -((( 393 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 394 -))) 471 +923.9 - SF7BW500 to SF12BW500 395 395 396 -((( 397 - 398 -))) 473 +924.5 - SF7BW500 to SF12BW500 399 399 400 -((( 401 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 402 -))) 475 +925.1 - SF7BW500 to SF12BW500 403 403 477 +925.7 - SF7BW500 to SF12BW500 404 404 479 +926.3 - SF7BW500 to SF12BW500 405 405 406 - ===2.4.6oilTemperature===481 +926.9 - SF7BW500 to SF12BW500 407 407 408 -((( 409 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 410 -))) 483 +927.5 - SF7BW500 to SF12BW500 411 411 412 -((( 413 -**Example**: 414 -))) 485 +923.3 - SF12BW500(RX2 downlink only) 415 415 416 -((( 417 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 418 -))) 419 419 420 -((( 421 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 422 -))) 423 423 489 +=== 2.7.3 CN470-510 (CN470) === 424 424 491 +Used in China, Default use CHE=1 425 425 426 - ===2.4.7 SoilConductivity(EC)===493 +(% style="color:#037691" %)**Uplink:** 427 427 428 -((( 429 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 430 -))) 495 +486.3 - SF7BW125 to SF12BW125 431 431 432 -((( 433 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 434 -))) 497 +486.5 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -Generally, the EC value of irrigation water is less than 800uS / cm. 438 -))) 499 +486.7 - SF7BW125 to SF12BW125 439 439 440 -((( 441 - 442 -))) 501 +486.9 - SF7BW125 to SF12BW125 443 443 444 -((( 445 - 446 -))) 503 +487.1 - SF7BW125 to SF12BW125 447 447 448 - === 2.4.8DigitalInterrupt===505 +487.3 - SF7BW125 to SF12BW125 449 449 450 - Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods.Whenthere is a trigger, the NSE01will send a packettothe server.507 +487.5 - SF7BW125 to SF12BW125 451 451 452 - Thecommandis:509 +487.7 - SF7BW125 to SF12BW125 453 453 454 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 455 455 512 +(% style="color:#037691" %)**Downlink:** 456 456 457 - The lower four bits of this data field shows if this packet is generated by interrupt or not.Clickhereforthe hardware and softwareset up.514 +506.7 - SF7BW125 to SF12BW125 458 458 516 +506.9 - SF7BW125 to SF12BW125 459 459 460 - Example:518 +507.1 - SF7BW125 to SF12BW125 461 461 462 -0 x(00):Normaluplinkpacket.520 +507.3 - SF7BW125 to SF12BW125 463 463 464 -0 x(01):InterruptUplinkPacket.522 +507.5 - SF7BW125 to SF12BW125 465 465 524 +507.7 - SF7BW125 to SF12BW125 466 466 526 +507.9 - SF7BW125 to SF12BW125 467 467 468 - === 2.4.9+5VOutput===528 +508.1 - SF7BW125 to SF12BW125 469 469 470 - NSE01willenable +5Voutputbefore all samplingand disable the +5v after all sampling.530 +505.3 - SF12BW125 (RX2 downlink only) 471 471 472 472 473 -The 5V output time can be controlled by AT Command. 474 474 475 - (% style="color:blue"%)**AT+5VT=1000**534 +=== 2.7.4 AU915-928(AU915) === 476 476 477 - Means set 5V valid time to have 1000ms. So the real 5V output will actuallyhave 1000ms+ sampling timefor other sensors.536 +Default use CHE=2 478 478 538 +(% style="color:#037691" %)**Uplink:** 479 479 540 +916.8 - SF7BW125 to SF12BW125 480 480 481 - ==2.5DownlinkPayload ==542 +917.0 - SF7BW125 to SF12BW125 482 482 483 - Bydefault,NSE01prints the downlinkpayload to console port.544 +917.2 - SF7BW125 to SF12BW125 484 484 485 - [[image:image-20220708133731-5.png]]546 +917.4 - SF7BW125 to SF12BW125 486 486 548 +917.6 - SF7BW125 to SF12BW125 487 487 488 -((( 489 -(% style="color:blue" %)**Examples:** 490 -))) 550 +917.8 - SF7BW125 to SF12BW125 491 491 492 -((( 493 - 494 -))) 552 +918.0 - SF7BW125 to SF12BW125 495 495 496 -* ((( 497 -(% style="color:blue" %)**Set TDC** 498 -))) 554 +918.2 - SF7BW125 to SF12BW125 499 499 500 -((( 501 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 502 -))) 503 503 504 -((( 505 -Payload: 01 00 00 1E TDC=30S 506 -))) 557 +(% style="color:#037691" %)**Downlink:** 507 507 508 -((( 509 -Payload: 01 00 00 3C TDC=60S 510 -))) 559 +923.3 - SF7BW500 to SF12BW500 511 511 512 -((( 513 - 514 -))) 561 +923.9 - SF7BW500 to SF12BW500 515 515 516 -* ((( 517 -(% style="color:blue" %)**Reset** 518 -))) 563 +924.5 - SF7BW500 to SF12BW500 519 519 520 -((( 521 -If payload = 0x04FF, it will reset the NSE01 522 -))) 565 +925.1 - SF7BW500 to SF12BW500 523 523 567 +925.7 - SF7BW500 to SF12BW500 524 524 525 - *(%style="color:blue"%)**INTMOD**569 +926.3 - SF7BW500 to SF12BW500 526 526 527 - DownlinkPayload:06000003,SetAT+INTMOD=3571 +926.9 - SF7BW500 to SF12BW500 528 528 573 +927.5 - SF7BW500 to SF12BW500 529 529 575 +923.3 - SF12BW500(RX2 downlink only) 530 530 531 -== 2.6 LED Indicator == 532 532 533 -((( 534 -The NSE01 has an internal LED which is to show the status of different state. 535 535 579 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 536 536 537 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 538 -* Then the LED will be on for 1 second means device is boot normally. 539 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 540 -* For each uplink probe, LED will be on for 500ms. 541 -))) 581 +(% style="color:#037691" %)**Default Uplink channel:** 542 542 583 +923.2 - SF7BW125 to SF10BW125 543 543 585 +923.4 - SF7BW125 to SF10BW125 544 544 545 545 546 - ==2.7 Installation inSoil==588 +(% style="color:#037691" %)**Additional Uplink Channel**: 547 547 548 - __**Measurementthesoilsurface**__590 +(OTAA mode, channel added by JoinAccept message) 549 549 550 - Choosethe proper measuring position. Avoid theprobe to touch rocksorhard things.Splitthe surface soil accordingto the measured deep. Keep the measured as originaldensity. Verticalinsert the probeinto the soil to be measured.Make sure not shake wheninserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]592 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 551 551 552 - [[image:1657259653666-883.png]]594 +922.2 - SF7BW125 to SF10BW125 553 553 596 +922.4 - SF7BW125 to SF10BW125 554 554 555 -((( 556 - 598 +922.6 - SF7BW125 to SF10BW125 557 557 558 -((( 559 -Dig a hole with diameter > 20CM. 560 -))) 600 +922.8 - SF7BW125 to SF10BW125 561 561 562 -((( 563 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 564 -))) 565 -))) 602 +923.0 - SF7BW125 to SF10BW125 566 566 567 - [[image:1654506665940-119.png]]604 +922.0 - SF7BW125 to SF10BW125 568 568 569 -((( 570 - 571 -))) 572 572 607 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 573 573 574 - ==2.8FirmwareChange Log==609 +923.6 - SF7BW125 to SF10BW125 575 575 611 +923.8 - SF7BW125 to SF10BW125 576 576 577 - DownloadURL&FirmwareChange log613 +924.0 - SF7BW125 to SF10BW125 578 578 579 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]615 +924.2 - SF7BW125 to SF10BW125 580 580 617 +924.4 - SF7BW125 to SF10BW125 581 581 582 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]619 +924.6 - SF7BW125 to SF10BW125 583 583 584 584 622 +(% style="color:#037691" %)** Downlink:** 585 585 586 - ==2.9 Battery Analysis==624 +Uplink channels 1-8 (RX1) 587 587 588 - ===2.9.1BatteryType ===626 +923.2 - SF10BW125 (RX2) 589 589 590 590 591 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 592 592 630 +=== 2.7.6 KR920-923 (KR920) === 593 593 594 - Thebattery is designed to lastfor severalyears depends ontheactually use environment and update interval.632 +Default channel: 595 595 634 +922.1 - SF7BW125 to SF12BW125 596 596 597 - Thebatteryrelateddocuments as below:636 +922.3 - SF7BW125 to SF12BW125 598 598 599 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 638 +922.5 - SF7BW125 to SF12BW125 602 602 640 + 641 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 642 + 643 +922.1 - SF7BW125 to SF12BW125 644 + 645 +922.3 - SF7BW125 to SF12BW125 646 + 647 +922.5 - SF7BW125 to SF12BW125 648 + 649 +922.7 - SF7BW125 to SF12BW125 650 + 651 +922.9 - SF7BW125 to SF12BW125 652 + 653 +923.1 - SF7BW125 to SF12BW125 654 + 655 +923.3 - SF7BW125 to SF12BW125 656 + 657 + 658 +(% style="color:#037691" %)**Downlink:** 659 + 660 +Uplink channels 1-7(RX1) 661 + 662 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 663 + 664 + 665 + 666 +=== 2.7.7 IN865-867 (IN865) === 667 + 668 +(% style="color:#037691" %)** Uplink:** 669 + 670 +865.0625 - SF7BW125 to SF12BW125 671 + 672 +865.4025 - SF7BW125 to SF12BW125 673 + 674 +865.9850 - SF7BW125 to SF12BW125 675 + 676 + 677 +(% style="color:#037691" %) **Downlink:** 678 + 679 +Uplink channels 1-3 (RX1) 680 + 681 +866.550 - SF10BW125 (RX2) 682 + 683 + 684 + 685 + 686 +== 2.8 LED Indicator == 687 + 688 +The LSE01 has an internal LED which is to show the status of different state. 689 + 690 +* Blink once when device power on. 691 +* Solid ON for 5 seconds once device successful Join the network. 692 +* Blink once when device transmit a packet. 693 + 694 +== 2.9 Installation in Soil == 695 + 696 +**Measurement the soil surface** 697 + 698 + 699 +[[image:1654506634463-199.png]] 700 + 603 603 ((( 604 -[[image:image-20220708140453-6.png]] 702 +((( 703 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 605 605 ))) 705 +))) 606 606 607 607 708 +[[image:1654506665940-119.png]] 608 608 609 -=== 2.9.2 Power consumption Analyze === 710 +((( 711 +Dig a hole with diameter > 20CM. 712 +))) 610 610 611 611 ((( 612 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.715 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 613 613 ))) 614 614 615 615 719 +== 2.10 Firmware Change Log == 720 + 616 616 ((( 617 - Instructiontouseasbelow:722 +**Firmware download link:** 618 618 ))) 619 619 620 620 ((( 621 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]726 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 622 622 ))) 623 623 729 +((( 730 + 731 +))) 624 624 625 625 ((( 626 - (% style="color:blue" %)**Step2: **(%%)Openithoose734 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 627 627 ))) 628 628 629 - *(((630 - ProductModel737 +((( 738 + 631 631 ))) 632 -* ((( 633 -Uplink Interval 740 + 741 +((( 742 +**V1.0.** 634 634 ))) 635 -* ((( 636 -Working Mode 637 -))) 638 638 639 639 ((( 640 - And theLifeexpectation in difference casewill be shown on the right.746 +Release 641 641 ))) 642 642 643 -[[image:image-20220708141352-7.jpeg]] 644 644 750 +== 2.11 Battery Analysis == 645 645 752 +=== 2.11.1 Battery Type === 646 646 647 -=== 2.9.3 Battery Note === 754 +((( 755 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 756 +))) 648 648 649 649 ((( 650 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.759 +The battery is designed to last for more than 5 years for the LSN50. 651 651 ))) 652 652 762 +((( 763 +((( 764 +The battery-related documents are as below: 765 +))) 766 +))) 653 653 768 +* ((( 769 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 770 +))) 771 +* ((( 772 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 773 +))) 774 +* ((( 775 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 776 +))) 654 654 655 - ===2.9.4 Replacethe battery ===778 + [[image:image-20220610172436-1.png]] 656 656 780 + 781 + 782 +=== 2.11.2 Battery Note === 783 + 657 657 ((( 658 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).785 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 659 659 ))) 660 660 661 661 662 662 663 -= 3. AccessNB-IoTModule =790 +=== 2.11.3 Replace the battery === 664 664 665 665 ((( 666 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.793 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 667 667 ))) 668 668 669 669 ((( 670 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]797 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 671 671 ))) 672 672 673 -[[image:1657261278785-153.png]] 800 +((( 801 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 802 +))) 674 674 675 675 676 676 677 -= 4.806 += 3. Using the AT Commands = 678 678 679 -== 4.1808 +== 3.1 Access AT Commands == 680 680 681 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 682 682 811 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 683 683 684 - AT+<CMD>? : Helpon<CMD>813 +[[image:1654501986557-872.png||height="391" width="800"]] 685 685 686 -AT+<CMD> : Run <CMD> 687 687 688 - AT+<CMD>=<value>: Setthevalue816 +Or if you have below board, use below connection: 689 689 690 -AT+<CMD>=? : Get the value 691 691 819 +[[image:1654502005655-729.png||height="503" width="801"]] 692 692 821 + 822 + 823 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 824 + 825 + 826 + [[image:1654502050864-459.png||height="564" width="806"]] 827 + 828 + 829 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 830 + 831 + 832 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 833 + 834 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 835 + 836 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 837 + 838 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 839 + 840 + 693 693 (% style="color:#037691" %)**General Commands**(%%) 694 694 695 -AT 843 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 696 696 697 -AT? 845 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 698 698 699 -ATZ 847 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 700 700 701 -AT+TDC 849 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 702 702 703 -AT+CFG : Print all configurations 704 704 705 - AT+CFGMOD: Workingmode selection852 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 706 706 707 -AT+I NTMOD:Setthe trigger interruptmode854 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 708 708 709 -AT+ 5VTSetextend the timeof5V power856 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 710 710 711 -AT+P ROChooseagreement858 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 712 712 713 -AT+ WEIGREGet weightorsetweight to 0860 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 714 714 715 -AT+ WEIGAPGet or SettheGapValue of weight862 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 716 716 717 -AT+ RXDL: Extendthe sendingandreceivingtime864 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 718 718 719 -AT+ CNTFACGettcountingparameters866 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 720 720 721 -AT+ SERVADDR:ServerAddress868 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 722 722 870 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 723 723 724 -(% style="color:# 037691" %)**COAPManagement**872 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 725 725 726 -AT+ URIsourceparameters874 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 727 727 876 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 728 728 729 -(% style="color:# 037691" %)**UDPManagement**878 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 730 730 731 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)880 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 732 732 882 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 733 733 734 -(% style="color:# 037691" %)**MQTTManagement**884 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 735 735 736 -AT+CLIENT : Get or Set MQTT client 737 737 738 - AT+UNAMEGetSetMQTT Username887 +(% style="color:#037691" %)**LoRa Network Management** 739 739 740 -AT+ PWDGetor SetMQTT password889 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 741 741 742 -AT+ PUBTOPICGetorSetMQTTpublishtopic891 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 743 743 744 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic893 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 745 745 895 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 746 746 747 -(% style="color:# 037691" %)**Information**897 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 748 748 749 -AT+F DRctoryDataReset899 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 750 750 751 -AT+ PWORDSerialAccessPassword901 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 752 752 903 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 753 753 905 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 754 754 755 -= 5.FAQ=907 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 756 756 757 -= =5.1HowtoUpgradeFirmware==909 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 758 758 911 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 759 759 913 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 914 + 915 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 916 + 917 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 918 + 919 + 920 +(% style="color:#037691" %)**Information** 921 + 922 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 923 + 924 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 925 + 926 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 927 + 928 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 929 + 930 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 933 + 934 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 935 + 936 + 937 += 4. FAQ = 938 + 939 +== 4.1 How to change the LoRa Frequency Bands/Region? == 940 + 760 760 ((( 761 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 942 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 943 +When downloading the images, choose the required image file for download. 762 762 ))) 763 763 764 764 ((( 765 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]947 + 766 766 ))) 767 767 768 768 ((( 769 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.951 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 770 770 ))) 771 771 954 +((( 955 + 956 +))) 772 772 958 +((( 959 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 960 +))) 773 773 774 -= 6. Trouble Shooting = 962 +((( 963 + 964 +))) 775 775 776 -== 6.1 Connection problem when uploading firmware == 966 +((( 967 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 968 +))) 777 777 970 +[[image:image-20220606154726-3.png]] 778 778 779 -(% class="wikigeneratedid" %) 972 + 973 +When you use the TTN network, the US915 frequency bands use are: 974 + 975 +* 903.9 - SF7BW125 to SF10BW125 976 +* 904.1 - SF7BW125 to SF10BW125 977 +* 904.3 - SF7BW125 to SF10BW125 978 +* 904.5 - SF7BW125 to SF10BW125 979 +* 904.7 - SF7BW125 to SF10BW125 980 +* 904.9 - SF7BW125 to SF10BW125 981 +* 905.1 - SF7BW125 to SF10BW125 982 +* 905.3 - SF7BW125 to SF10BW125 983 +* 904.6 - SF8BW500 984 + 780 780 ((( 781 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]986 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 782 782 ))) 783 783 989 +(% class="box infomessage" %) 990 +((( 991 +**AT+CHE=2** 992 +))) 784 784 994 +(% class="box infomessage" %) 995 +((( 996 +**ATZ** 997 +))) 785 785 786 -== 6.2 AT Command input doesn't work == 999 +((( 1000 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1001 +))) 787 787 788 788 ((( 789 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1004 + 790 790 ))) 791 791 1007 +((( 1008 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 1009 +))) 792 792 1011 +[[image:image-20220606154825-4.png]] 793 793 794 -= 7. Order Info = 795 795 796 796 797 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**1015 += 5. Trouble Shooting = 798 798 1017 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 799 799 1019 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 1020 + 1021 + 1022 +== 5.2 AT Command input doesn’t work == 1023 + 1024 +((( 1025 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1026 +))) 1027 + 1028 + 1029 +== 5.3 Device rejoin in at the second uplink packet == 1030 + 1031 +(% style="color:#4f81bd" %)**Issue describe as below:** 1032 + 1033 +[[image:1654500909990-784.png]] 1034 + 1035 + 1036 +(% style="color:#4f81bd" %)**Cause for this issue:** 1037 + 1038 +((( 1039 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1040 +))) 1041 + 1042 + 1043 +(% style="color:#4f81bd" %)**Solution: ** 1044 + 1045 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1046 + 1047 +[[image:1654500929571-736.png||height="458" width="832"]] 1048 + 1049 + 1050 += 6. Order Info = 1051 + 1052 + 1053 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1054 + 1055 + 1056 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1057 + 1058 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1059 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1060 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1061 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1062 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1063 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1064 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1065 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1066 + 1067 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1068 + 1069 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1070 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1071 + 800 800 (% class="wikigeneratedid" %) 801 801 ((( 802 802 803 803 ))) 804 804 805 -= 8.1077 += 7. Packing Info = 806 806 807 807 ((( 808 808 809 809 810 810 (% style="color:#037691" %)**Package Includes**: 1083 +))) 811 811 812 - 813 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 814 -* External antenna x 1 1085 +* ((( 1086 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 815 815 ))) 816 816 817 817 ((( ... ... @@ -818,20 +818,24 @@ 818 818 819 819 820 820 (% style="color:#037691" %)**Dimension and weight**: 1093 +))) 821 821 822 - 823 -* Size: 195 x 125 x 55 mm 824 -* Weight: 420g 1095 +* ((( 1096 +Device Size: cm 825 825 ))) 1098 +* ((( 1099 +Device Weight: g 1100 +))) 1101 +* ((( 1102 +Package Size / pcs : cm 1103 +))) 1104 +* ((( 1105 +Weight / pcs : g 826 826 827 -((( 828 828 829 - 830 - 831 - 832 832 ))) 833 833 834 -= 9.1110 += 8. Support = 835 835 836 836 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 837 837 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content