Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,798 +20,1018 @@ 20 20 21 21 22 22 15 += 1. Introduction = 23 23 24 -= 1. Introduction =17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 25 25 26 -== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 27 - 28 28 ((( 29 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 30 30 31 31 ((( 32 - DraginoNSE01 isan(% style="color:blue" %)**NB-IOT soilmoisture& EC sensor**(%%)foragriculturalIoT. Used tomeasure the soilmoisture ofsaline-alkali soiland loam.Thesoil sensor uses the FDRmethod to calculate soil moisture andcompensates it with soiltemperature andelectricalconductivity.It hasalsobeencalibratedfor mineralsoiltypesatthe factory.24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 33 33 ))) 34 34 35 35 ((( 36 - Itcandetect (%style="color:blue"%)**SoilMoisture,Soil Temperature andSoilConductivity**(%%),anduploaditsvalue totheserver wirelessly.28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 37 37 ))) 38 38 39 39 ((( 40 - Thewirelesstechnology usedin NSE01allowsthedeviceto senddataata lowdata rateand reachultra-longdistances, providingultra-long-distancespreadspectrum Communication.32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 41 41 ))) 42 42 43 43 ((( 44 - NSE01arepoweredby(%style="color:blue"%)**8500mAhLi-SOCI2**(%%)batteries,which canbeusedforupto5 years.36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 45 45 ))) 46 46 47 - 48 -))) 49 49 50 50 [[image:1654503236291-817.png]] 51 51 52 52 53 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 54 54 55 55 56 56 57 -== 1.2 47 +== 1.2 Features == 58 58 59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 60 60 * Monitor Soil Moisture 61 61 * Monitor Soil Temperature 62 62 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 63 63 * AT Commands to change parameters 64 64 * Uplink on periodically 65 65 * Downlink to change configure 66 66 * IP66 Waterproof Enclosure 67 -* Ultra-Low Power consumption 68 -* AT Commands to change parameters 69 -* Micro SIM card slot for NB-IoT SIM 70 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 71 71 61 +== 1.3 Specification == 72 72 73 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 74 74 65 +[[image:image-20220606162220-5.png]] 75 75 76 -(% style="color:#037691" %)**Common DC Characteristics:** 77 77 78 -* Supply Voltage: 2.1v ~~ 3.6v 79 -* Operating Temperature: -40 ~~ 85°C 80 80 81 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 82 82 83 -* - B1 @H-FDD: 2100MHz 84 -* - B3 @H-FDD: 1800MHz 85 -* - B8 @H-FDD: 900MHz 86 -* - B5 @H-FDD: 850MHz 87 -* - B20 @H-FDD: 800MHz 88 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 89 89 90 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 91 91 92 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 93 93 94 -[[image:image-20220708101224-1.png]] 95 95 79 +**LSE01 v1.0 :** Release 96 96 97 97 98 -== 1.4 Applications == 99 99 100 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 101 101 102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 103 - 85 +== 2.1 How it works == 104 104 105 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 106 106 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 107 107 108 -[[image:1657246476176-652.png]] 109 109 110 110 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 111 111 112 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 113 113 114 -== 2.1 How it works == 115 115 102 +[[image:1654503992078-669.png]] 116 116 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 117 117 ((( 118 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 119 119 ))) 120 120 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 121 121 122 -((( 123 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 124 124 ))) 125 125 126 -[[image:image-20220708101605-2.png]] 127 127 128 -((( 129 - 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 130 130 ))) 131 131 132 132 133 133 134 -== 2. 2Configurethe NSE01==196 +=== 2.3.3 Battery Info === 135 135 198 +Check the battery voltage for LSE01. 136 136 137 - === 2.2.1TestRequirement ===200 +Ex1: 0x0B45 = 2885mV 138 138 202 +Ex2: 0x0B49 = 2889mV 139 139 140 -To use NSE01 in your city, make sure meet below requirements: 141 141 142 -* Your local operator has already distributed a NB-IoT Network there. 143 -* The local NB-IoT network used the band that NSE01 supports. 144 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 145 145 146 -((( 147 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 148 -))) 206 +=== 2.3.4 Soil Moisture === 149 149 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 150 150 151 - [[image:1657249419225-449.png]]210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 152 152 153 153 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 154 154 155 -=== 2.2.2 Insert SIM card === 156 156 157 -Insert the NB-IoT Card get from your provider. 158 158 159 - Userneedtotake out the NB-IoToduleand insert the SIM card likebelow:217 +=== 2.3.5 Soil Temperature === 160 160 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 161 161 162 - [[image:1657249468462-536.png]]221 +**Example**: 163 163 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 164 164 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 165 165 166 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 167 167 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 168 168 ((( 232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 233 +))) 234 + 169 169 ((( 170 - User need toconfigureNSE01 via serialportto set the(% style="color:blue"%)**ServerAddress** / **Uplink Topic**(%%)todefinewhereand how-to uplink packets.NSE01support ATCommands,usercan use a USB toTTL adapter toconnectoNSE01 and useATCommandstoconfigureit,asbelow.236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 171 171 ))) 238 + 239 +((( 240 +Generally, the EC value of irrigation water is less than 800uS / cm. 172 172 ))) 173 173 243 +((( 244 + 245 +))) 174 174 175 -**Connection:** 247 +((( 248 + 249 +))) 176 176 177 - (% style="background-color:yellow"%)USBTTL GND<~-~-~-~-> GND251 +=== 2.3.7 MOD === 178 178 179 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD253 +Firmware version at least v2.1 supports changing mode. 180 180 181 - (% style="background-color:yellow"%)USB TTL RXD <~-~-~-~-> UART_TXD255 +For example, bytes[10]=90 182 182 257 +mod=(bytes[10]>>7)&0x01=1. 183 183 184 -In the PC, use below serial tool settings: 185 185 186 -* Baud: (% style="color:green" %)**9600** 187 -* Data bits:** (% style="color:green" %)8(%%)** 188 -* Stop bits: (% style="color:green" %)**1** 189 -* Parity: (% style="color:green" %)**None** 190 -* Flow Control: (% style="color:green" %)**None** 260 +**Downlink Command:** 191 191 192 -((( 193 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 194 -))) 262 +If payload = 0x0A00, workmode=0 195 195 196 - [[image:image-20220708110657-3.png]]264 +If** **payload =** **0x0A01, workmode=1 197 197 198 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 199 199 200 200 268 +=== 2.3.8 Decode payload in The Things Network === 201 201 202 - ===2.2.4UseCoAPprotocoltouplink data ===270 +While using TTN network, you can add the payload format to decode the payload. 203 203 204 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 205 205 273 +[[image:1654505570700-128.png]] 206 206 207 - **Usebelowcommands:**275 +The payload decoder function for TTN is here: 208 208 209 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 210 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 211 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 212 212 213 -For parameter description, please refer to AT command set 214 214 215 -[[image:1657249793983-486.png]] 216 216 281 +== 2.4 Uplink Interval == 217 217 218 - Afterconfigurethe serveraddress and(% style="color:green"%)**resetthedevice**(%%) (via AT+ATZ),NSE01willstarttouplinksensorvaluesto CoAP server.283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 219 219 220 -[[image:1657249831934-534.png]] 221 221 222 222 287 +== 2.5 Downlink Payload == 223 223 224 - ===2.2.5 UseUDPprotocoltouplinkdata(Default protocol)===289 +By default, LSE50 prints the downlink payload to console port. 225 225 226 - This features supported since firmwareversion v1.0.1291 +[[image:image-20220606165544-8.png]] 227 227 228 228 229 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 230 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 231 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 294 +**Examples:** 232 232 233 -[[image:1657249864775-321.png]] 234 234 297 +* **Set TDC** 235 235 236 - [[image:1657249930215-289.png]]299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 237 237 301 +Payload: 01 00 00 1E TDC=30S 238 238 303 +Payload: 01 00 00 3C TDC=60S 239 239 240 -=== 2.2.6 Use MQTT protocol to uplink data === 241 241 242 - Thisfeature issupported since firmware version v110306 +* **Reset** 243 243 308 +If payload = 0x04FF, it will reset the LSE01 244 244 245 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 247 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 248 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 249 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 250 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 251 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 252 252 253 - [[image:1657249978444-674.png]]311 +* **CFM** 254 254 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 255 255 256 -[[image:1657249990869-686.png]] 257 257 258 258 259 -((( 260 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 261 -))) 317 +== 2.6 Show Data in DataCake IoT Server == 262 262 319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 263 263 264 264 265 - ===2.2.7UseTCPprotocoltouplinkdata===322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 266 266 267 -T hisfeatureissupportedsincefirmwareversionv110324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 268 268 269 269 270 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 271 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 327 +[[image:1654505857935-743.png]] 272 272 273 -[[image:1657250217799-140.png]] 274 274 330 +[[image:1654505874829-548.png]] 275 275 276 - [[image:1657250255956-604.png]]332 +Step 3: Create an account or log in Datacake. 277 277 334 +Step 4: Search the LSE01 and add DevEUI. 278 278 279 279 280 - === 2.2.8 ChangeUpdate Interval ===337 +[[image:1654505905236-553.png]] 281 281 282 -User can use below command to change the (% style="color:green" %)**uplink interval**. 283 283 284 - *(%style="color:blue"%)**AT+TDC=600** (%%)~/~/ SetUpdateIntervalto600s340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 285 285 286 -((( 287 -(% style="color:red" %)**NOTE:** 288 -))) 342 +[[image:1654505925508-181.png]] 289 289 290 -((( 291 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 292 -))) 293 293 294 294 346 +== 2.7 Frequency Plans == 295 295 296 - ==2.3UplinkPayload==348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 297 297 298 -In this mode, uplink payload includes in total 18 bytes 299 299 300 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 301 -|=(% style="width: 50px;" %)((( 302 -**Size(bytes)** 303 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 304 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 351 +=== 2.7.1 EU863-870 (EU868) === 305 305 306 - Ifwe usethe MQTT client to subscribe tothis MQTT topic, we can see the following information when the NSE01uplinkdata.353 +(% style="color:#037691" %)** Uplink:** 307 307 355 +868.1 - SF7BW125 to SF12BW125 308 308 309 - [[image:image-20220708111918-4.png]]357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 310 310 359 +868.5 - SF7BW125 to SF12BW125 311 311 312 - Thepayloadis ASCIIstring,representative same HEX:361 +867.1 - SF7BW125 to SF12BW125 313 313 314 - 0x72403155615900640c7817075e0a8c02f900 where:363 +867.3 - SF7BW125 to SF12BW125 315 315 316 -* Device ID: 0x 724031556159 = 724031556159 317 -* Version: 0x0064=100=1.0.0 365 +867.5 - SF7BW125 to SF12BW125 318 318 319 -* BAT: 0x0c78 = 3192 mV = 3.192V 320 -* Singal: 0x17 = 23 321 -* Soil Moisture: 0x075e= 1886 = 18.86 % 322 -* Soil Temperature:0x0a8c =2700=27 °C 323 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 324 -* Interrupt: 0x00 = 0 367 +867.7 - SF7BW125 to SF12BW125 325 325 369 +867.9 - SF7BW125 to SF12BW125 326 326 327 - == 2.4Payload Explanation andSensor Interface ==371 +868.8 - FSK 328 328 329 329 330 - ===2.4.1 DeviceID===374 +(% style="color:#037691" %)** Downlink:** 331 331 332 - By default, the DeviceID equal to theast6bytes of IMEI.376 +Uplink channels 1-9 (RX1) 333 333 334 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID378 +869.525 - SF9BW125 (RX2 downlink only) 335 335 336 -**Example:** 337 337 338 -AT+DEUI=A84041F15612 339 339 340 - TheDeviceID is stored in a none-erase area,Upgradethe firmware or run AT+FDR won't erase Device ID.382 +=== 2.7.2 US902-928(US915) === 341 341 384 +Used in USA, Canada and South America. Default use CHE=2 342 342 386 +(% style="color:#037691" %)**Uplink:** 343 343 344 - ===2.4.2VersionInfo ===388 +903.9 - SF7BW125 to SF10BW125 345 345 346 - Specify the software version:0x64=100,meansfirmwareversion1.00.390 +904.1 - SF7BW125 to SF10BW125 347 347 348 - For example:0x00 64:this device is NSE01with firmware version1.0.0.392 +904.3 - SF7BW125 to SF10BW125 349 349 394 +904.5 - SF7BW125 to SF10BW125 350 350 396 +904.7 - SF7BW125 to SF10BW125 351 351 352 - === 2.4.3BatteryInfo===398 +904.9 - SF7BW125 to SF10BW125 353 353 354 -((( 355 -Check the battery voltage for LSE01. 356 -))) 400 +905.1 - SF7BW125 to SF10BW125 357 357 358 -((( 359 -Ex1: 0x0B45 = 2885mV 360 -))) 402 +905.3 - SF7BW125 to SF10BW125 361 361 362 -((( 363 -Ex2: 0x0B49 = 2889mV 364 -))) 365 365 405 +(% style="color:#037691" %)**Downlink:** 366 366 407 +923.3 - SF7BW500 to SF12BW500 367 367 368 - ===2.4.4SignalStrength===409 +923.9 - SF7BW500 to SF12BW500 369 369 370 - NB-IoTNetworksignalStrength.411 +924.5 - SF7BW500 to SF12BW500 371 371 372 - **Ex1:0x1d=29**413 +925.1 - SF7BW500 to SF12BW500 373 373 374 - (%style="color:blue"%)**0**(%%)-113dBm or less415 +925.7 - SF7BW500 to SF12BW500 375 375 376 - (%style="color:blue"%)**1**(%%) -111dBm417 +926.3 - SF7BW500 to SF12BW500 377 377 378 - (% style="color:blue" %)**2...30**(%%) -109dBm...-53dBm419 +926.9 - SF7BW500 to SF12BW500 379 379 380 - (%style="color:blue" %)**31** (%%)-51dBmorgreater421 +927.5 - SF7BW500 to SF12BW500 381 381 382 - (% style="color:blue" %)**99**(%%)Not known ornot detectable423 +923.3 - SF12BW500(RX2 downlink only) 383 383 384 384 385 385 386 -=== 2. 4.5SoilMoisture===427 +=== 2.7.3 CN470-510 (CN470) === 387 387 388 -((( 389 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 390 -))) 429 +Used in China, Default use CHE=1 391 391 392 -((( 393 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 394 -))) 431 +(% style="color:#037691" %)**Uplink:** 395 395 396 -((( 397 - 398 -))) 433 +486.3 - SF7BW125 to SF12BW125 399 399 400 -((( 401 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 402 -))) 435 +486.5 - SF7BW125 to SF12BW125 403 403 437 +486.7 - SF7BW125 to SF12BW125 404 404 439 +486.9 - SF7BW125 to SF12BW125 405 405 406 - === 2.4.6SoilTemperature===441 +487.1 - SF7BW125 to SF12BW125 407 407 408 -((( 409 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 410 -))) 443 +487.3 - SF7BW125 to SF12BW125 411 411 412 -((( 413 -**Example**: 414 -))) 445 +487.5 - SF7BW125 to SF12BW125 415 415 416 -((( 417 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 418 -))) 447 +487.7 - SF7BW125 to SF12BW125 419 419 420 -((( 421 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 422 -))) 423 423 450 +(% style="color:#037691" %)**Downlink:** 424 424 452 +506.7 - SF7BW125 to SF12BW125 425 425 426 - === 2.4.7SoilConductivity(EC) ===454 +506.9 - SF7BW125 to SF12BW125 427 427 428 -((( 429 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 430 -))) 456 +507.1 - SF7BW125 to SF12BW125 431 431 432 -((( 433 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 434 -))) 458 +507.3 - SF7BW125 to SF12BW125 435 435 436 -((( 437 -Generally, the EC value of irrigation water is less than 800uS / cm. 438 -))) 460 +507.5 - SF7BW125 to SF12BW125 439 439 440 -((( 441 - 442 -))) 462 +507.7 - SF7BW125 to SF12BW125 443 443 444 -((( 445 - 446 -))) 464 +507.9 - SF7BW125 to SF12BW125 447 447 448 - ===2.4.8DigitalInterrupt ===466 +508.1 - SF7BW125 to SF12BW125 449 449 450 - DigitalInterruptrefersto pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.468 +505.3 - SF12BW125 (RX2 downlink only) 451 451 452 -The command is: 453 453 454 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 455 455 472 +=== 2.7.4 AU915-928(AU915) === 456 456 457 - Thelowerfour bits of this data field shows if this packet is generated by interrupt or not. Click here forthehardware andsoftwareset up.474 +Default use CHE=2 458 458 476 +(% style="color:#037691" %)**Uplink:** 459 459 460 - Example:478 +916.8 - SF7BW125 to SF12BW125 461 461 462 -0 x(00):Normaluplinkpacket.480 +917.0 - SF7BW125 to SF12BW125 463 463 464 - 0x(01):InterruptUplinkPacket.482 +917.2 - SF7BW125 to SF12BW125 465 465 484 +917.4 - SF7BW125 to SF12BW125 466 466 486 +917.6 - SF7BW125 to SF12BW125 467 467 468 - === 2.4.9+5VOutput===488 +917.8 - SF7BW125 to SF12BW125 469 469 470 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.490 +918.0 - SF7BW125 to SF12BW125 471 471 492 +918.2 - SF7BW125 to SF12BW125 472 472 473 -The 5V output time can be controlled by AT Command. 474 474 475 -(% style="color: blue" %)**AT+5VT=1000**495 +(% style="color:#037691" %)**Downlink:** 476 476 477 - Meansset5V valid time to have 1000ms.Sothe real 5Voutputwill actually have1000ms + sampling time for other sensors.497 +923.3 - SF7BW500 to SF12BW500 478 478 499 +923.9 - SF7BW500 to SF12BW500 479 479 501 +924.5 - SF7BW500 to SF12BW500 480 480 481 - ==2.5DownlinkPayload ==503 +925.1 - SF7BW500 to SF12BW500 482 482 483 - Bydefault,NSE01prints the downlinkpayload to console port.505 +925.7 - SF7BW500 to SF12BW500 484 484 485 - [[image:image-20220708133731-5.png]]507 +926.3 - SF7BW500 to SF12BW500 486 486 509 +926.9 - SF7BW500 to SF12BW500 487 487 488 -((( 489 -(% style="color:blue" %)**Examples:** 490 -))) 511 +927.5 - SF7BW500 to SF12BW500 491 491 492 -((( 493 - 494 -))) 513 +923.3 - SF12BW500(RX2 downlink only) 495 495 496 -* ((( 497 -(% style="color:blue" %)**Set TDC** 498 -))) 499 499 500 -((( 501 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 502 -))) 503 503 504 -((( 505 -Payload: 01 00 00 1E TDC=30S 506 -))) 517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 507 507 508 -((( 509 -Payload: 01 00 00 3C TDC=60S 510 -))) 519 +(% style="color:#037691" %)**Default Uplink channel:** 511 511 512 -((( 513 - 514 -))) 521 +923.2 - SF7BW125 to SF10BW125 515 515 516 -* ((( 517 -(% style="color:blue" %)**Reset** 518 -))) 523 +923.4 - SF7BW125 to SF10BW125 519 519 520 -((( 521 -If payload = 0x04FF, it will reset the NSE01 522 -))) 523 523 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 524 524 525 - *(%style="color:blue"%)**INTMOD**528 +(OTAA mode, channel added by JoinAccept message) 526 526 527 - DownlinkPayload:00003, Set AT+INTMOD=3530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 528 528 532 +922.2 - SF7BW125 to SF10BW125 529 529 534 +922.4 - SF7BW125 to SF10BW125 530 530 531 - ==2.6LEDIndicator==536 +922.6 - SF7BW125 to SF10BW125 532 532 533 -((( 534 -The NSE01 has an internal LED which is to show the status of different state. 538 +922.8 - SF7BW125 to SF10BW125 535 535 540 +923.0 - SF7BW125 to SF10BW125 536 536 537 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 538 -* Then the LED will be on for 1 second means device is boot normally. 539 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 540 -* For each uplink probe, LED will be on for 500ms. 541 -))) 542 +922.0 - SF7BW125 to SF10BW125 542 542 543 543 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 544 544 547 +923.6 - SF7BW125 to SF10BW125 545 545 546 - ==2.7InstallationinSoil ==549 +923.8 - SF7BW125 to SF10BW125 547 547 548 - __**Measurementthesoilsurface**__551 +924.0 - SF7BW125 to SF10BW125 549 549 550 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]553 +924.2 - SF7BW125 to SF10BW125 551 551 552 - [[image:1657259653666-883.png]]555 +924.4 - SF7BW125 to SF10BW125 553 553 557 +924.6 - SF7BW125 to SF10BW125 554 554 555 -((( 556 - 557 557 558 -((( 559 -Dig a hole with diameter > 20CM. 560 -))) 560 +(% style="color:#037691" %)** Downlink:** 561 561 562 -((( 563 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 564 -))) 565 -))) 562 +Uplink channels 1-8 (RX1) 566 566 567 - [[image:1654506665940-119.png]]564 +923.2 - SF10BW125 (RX2) 568 568 569 -((( 570 - 571 -))) 572 572 573 573 574 -== 2. 8FirmwareChangeLog==568 +=== 2.7.6 KR920-923 (KR920) === 575 575 570 +Default channel: 576 576 577 - DownloadURL&FirmwareChange log572 +922.1 - SF7BW125 to SF12BW125 578 578 579 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]574 +922.3 - SF7BW125 to SF12BW125 580 580 576 +922.5 - SF7BW125 to SF12BW125 581 581 582 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 583 583 579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 584 584 581 +922.1 - SF7BW125 to SF12BW125 585 585 586 - ==2.9BatteryAnalysis ==583 +922.3 - SF7BW125 to SF12BW125 587 587 588 - ===2.9.1BatteryType ===585 +922.5 - SF7BW125 to SF12BW125 589 589 587 +922.7 - SF7BW125 to SF12BW125 590 590 591 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.589 +922.9 - SF7BW125 to SF12BW125 592 592 591 +923.1 - SF7BW125 to SF12BW125 593 593 594 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.593 +923.3 - SF7BW125 to SF12BW125 595 595 596 596 597 - Thebatteryrelated documents as below:596 +(% style="color:#037691" %)**Downlink:** 598 598 599 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 600 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 601 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +Uplink channels 1-7(RX1) 602 602 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 603 603 ((( 604 -[[image:image-20220708140453-6.png]] 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 605 605 ))) 645 +))) 606 606 607 607 648 +[[image:1654506665940-119.png]] 608 608 609 -=== 2.9.2 Power consumption Analyze === 650 +((( 651 +Dig a hole with diameter > 20CM. 652 +))) 610 610 611 611 ((( 612 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 613 613 ))) 614 614 615 615 659 +== 2.10 Firmware Change Log == 660 + 616 616 ((( 617 - Instructiontouseasbelow:662 +**Firmware download link:** 618 618 ))) 619 619 620 620 ((( 621 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 622 622 ))) 623 623 669 +((( 670 + 671 +))) 624 624 625 625 ((( 626 - (% style="color:blue" %)**Step2: **(%%)Openithoose674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 627 627 ))) 628 628 629 - *(((630 - ProductModel677 +((( 678 + 631 631 ))) 632 -* ((( 633 -Uplink Interval 680 + 681 +((( 682 +**V1.0.** 634 634 ))) 635 -* ((( 636 -Working Mode 637 -))) 638 638 639 639 ((( 640 - And theLifeexpectation in difference casewill be shown on the right.686 +Release 641 641 ))) 642 642 643 -[[image:image-20220708141352-7.jpeg]] 644 644 690 +== 2.11 Battery Analysis == 645 645 692 +=== 2.11.1 Battery Type === 646 646 647 -=== 2.9.3 Battery Note === 694 +((( 695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 +))) 648 648 649 649 ((( 650 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.699 +The battery is designed to last for more than 5 years for the LSN50. 651 651 ))) 652 652 702 +((( 703 +((( 704 +The battery-related documents are as below: 705 +))) 706 +))) 653 653 708 +* ((( 709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 +))) 714 +* ((( 715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 +))) 654 654 655 - ===2.9.4 Replacethe battery ===718 + [[image:image-20220606171726-9.png]] 656 656 720 + 721 + 722 +=== 2.11.2 Battery Note === 723 + 657 657 ((( 658 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).725 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 659 659 ))) 660 660 661 661 662 662 663 -= 3. AccessNB-IoTModule =730 +=== 2.11.3 Replace the battery === 664 664 665 665 ((( 666 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 667 667 ))) 668 668 669 669 ((( 670 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 671 671 ))) 672 672 673 -[[image:1657261278785-153.png]] 740 +((( 741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 +))) 674 674 675 675 676 676 677 -= 4.746 += 3. Using the AT Commands = 678 678 679 -== 4.1748 +== 3.1 Access AT Commands == 680 680 681 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 682 682 751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 683 683 684 - AT+<CMD>? : Helpon<CMD>753 +[[image:1654501986557-872.png||height="391" width="800"]] 685 685 686 -AT+<CMD> : Run <CMD> 687 687 688 - AT+<CMD>=<value>: Setthevalue756 +Or if you have below board, use below connection: 689 689 690 -AT+<CMD>=? : Get the value 691 691 759 +[[image:1654502005655-729.png||height="503" width="801"]] 692 692 761 + 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 693 693 (% style="color:#037691" %)**General Commands**(%%) 694 694 695 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 696 696 697 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 698 698 699 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 700 700 701 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 702 702 703 -AT+CFG : Print all configurations 704 704 705 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 706 706 707 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 708 708 709 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 710 710 711 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 712 712 713 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 714 714 715 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 716 716 717 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 718 718 719 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 720 720 721 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 722 722 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 723 723 724 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 725 725 726 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 727 727 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 728 728 729 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 730 730 731 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 732 732 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 733 733 734 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 735 735 736 -AT+CLIENT : Get or Set MQTT client 737 737 738 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 739 739 740 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 741 741 742 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 743 743 744 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 745 745 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 746 746 747 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 748 748 749 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 750 750 751 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 752 752 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 753 753 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 754 754 755 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 756 756 757 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 758 758 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 759 759 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 760 760 ((( 761 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 762 762 ))) 763 763 764 764 ((( 765 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 766 766 ))) 767 767 768 768 ((( 769 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 770 770 ))) 771 771 894 +((( 895 + 896 +))) 772 772 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 773 773 774 -= 6. Trouble Shooting = 902 +((( 903 + 904 +))) 775 775 776 -== 6.1 Connection problem when uploading firmware == 906 +((( 907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 908 +))) 777 777 910 +[[image:image-20220606154726-3.png]] 778 778 779 -(% class="wikigeneratedid" %) 912 + 913 +When you use the TTN network, the US915 frequency bands use are: 914 + 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 924 + 780 780 ((( 781 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 782 782 ))) 783 783 929 +(% class="box infomessage" %) 930 +((( 931 +**AT+CHE=2** 932 +))) 784 784 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 785 785 786 -== 6.2 AT Command input doesn't work == 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 787 787 788 788 ((( 789 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.944 + 790 790 ))) 791 791 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 792 792 951 +[[image:image-20220606154825-4.png]] 793 793 794 -= 7. Order Info = 795 795 796 796 797 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**955 += 5. Trouble Shooting = 798 798 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 799 799 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 964 +((( 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 967 + 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 980 +))) 981 + 982 + 983 +(% style="color:#4f81bd" %)**Solution: ** 984 + 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 + 987 +[[image:1654500929571-736.png||height="458" width="832"]] 988 + 989 + 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 800 800 (% class="wikigeneratedid" %) 801 801 ((( 802 802 803 803 ))) 804 804 805 -= 8.1017 += 7. Packing Info = 806 806 807 807 ((( 808 808 809 809 810 810 (% style="color:#037691" %)**Package Includes**: 1023 +))) 811 811 812 - 813 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 814 -* External antenna x 1 1025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 815 815 ))) 816 816 817 817 ((( ... ... @@ -818,20 +818,30 @@ 818 818 819 819 820 820 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 821 821 822 - 823 -* Size: 195 x 125 x 55 mm 824 -* Weight: 420g 1035 +* ((( 1036 +Device Size: cm 825 825 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 826 826 827 -((( 828 - 829 829 830 - 831 831 832 832 ))) 833 833 834 -= 9.1051 += 8. Support = 835 835 836 836 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 837 837 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content