Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.9
edited by Xiaoling
on 2022/07/08 15:38
Change comment: There is no comment for this version
To version 32.14
edited by Xiaoling
on 2022/06/07 11:40
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -3,16 +3,8 @@
3 3  
4 4  
5 5  
6 +**Contents:**
6 6  
7 -
8 -
9 -
10 -
11 -
12 -
13 -
14 -**Table of Contents:**
15 -
16 16  {{toc/}}
17 17  
18 18  
... ... @@ -20,798 +20,1065 @@
20 20  
21 21  
22 22  
15 += 1. Introduction =
23 23  
24 -= 1.  Introduction =
17 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
25 25  
26 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
27 -
28 28  (((
29 -
20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
21 +)))
30 30  
31 31  (((
32 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
33 33  )))
34 34  
35 35  (((
36 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
37 37  )))
38 38  
39 39  (((
40 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
41 41  )))
42 42  
43 43  (((
44 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
45 45  )))
46 46  
47 -
48 -)))
49 49  
50 50  [[image:1654503236291-817.png]]
51 51  
52 52  
53 -[[image:1657245163077-232.png]]
43 +[[image:1654503265560-120.png]]
54 54  
55 55  
56 56  
57 -== 1.2 ​ Features ==
47 +== 1.2 ​Features ==
58 58  
59 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
49 +* LoRaWAN 1.0.3 Class A
50 +* Ultra low power consumption
60 60  * Monitor Soil Moisture
61 61  * Monitor Soil Temperature
62 62  * Monitor Soil Conductivity
54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
63 63  * AT Commands to change parameters
64 64  * Uplink on periodically
65 65  * Downlink to change configure
66 66  * IP66 Waterproof Enclosure
67 -* Ultra-Low Power consumption
68 -* AT Commands to change parameters
69 -* Micro SIM card slot for NB-IoT SIM
70 -* 8500mAh Battery for long term use
59 +* 4000mAh or 8500mAh Battery for long term use
71 71  
61 +== 1.3 Specification ==
72 72  
73 -== 1.3  Specification ==
63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
74 74  
65 +[[image:image-20220606162220-5.png]]
75 75  
76 -(% style="color:#037691" %)**Common DC Characteristics:**
77 77  
78 -* Supply Voltage: 2.1v ~~ 3.6v
79 -* Operating Temperature: -40 ~~ 85°C
80 80  
81 -(% style="color:#037691" %)**NB-IoT Spec:**
69 +== ​1.4 Applications ==
82 82  
83 -* - B1 @H-FDD: 2100MHz
84 -* - B3 @H-FDD: 1800MHz
85 -* - B8 @H-FDD: 900MHz
86 -* - B5 @H-FDD: 850MHz
87 -* - B20 @H-FDD: 800MHz
88 -* - B28 @H-FDD: 700MHz
71 +* Smart Agriculture
89 89  
90 -Probe(% style="color:#037691" %)** Specification:**
73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
74 +​
91 91  
92 -Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
76 +== 1.5 Firmware Change log ==
93 93  
94 -[[image:image-20220708101224-1.png]]
95 95  
79 +**LSE01 v1.0 :**  Release
96 96  
97 97  
98 -== ​1.4  Applications ==
99 99  
100 -* Smart Agriculture
83 += 2. Configure LSE01 to connect to LoRaWAN network =
101 101  
102 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
103 -​
85 +== 2.1 How it works ==
104 104  
105 -== 1.5  Pin Definitions ==
87 +(((
88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
89 +)))
106 106  
91 +(((
92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
93 +)))
107 107  
108 -[[image:1657246476176-652.png]]
109 109  
110 110  
97 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
111 111  
112 -= 2.  Use NSE01 to communicate with IoT Server =
99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
113 113  
114 -== 2.1  How it works ==
115 115  
102 +[[image:1654503992078-669.png]]
116 116  
104 +
105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
106 +
107 +
108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01.
109 +
110 +Each LSE01 is shipped with a sticker with the default device EUI as below:
111 +
112 +[[image:image-20220606163732-6.jpeg]]
113 +
114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
115 +
116 +**Add APP EUI in the application**
117 +
118 +
119 +[[image:1654504596150-405.png]]
120 +
121 +
122 +
123 +**Add APP KEY and DEV EUI**
124 +
125 +[[image:1654504683289-357.png]]
126 +
127 +
128 +
129 +**Step 2**: Power on LSE01
130 +
131 +
132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
133 +
134 +[[image:image-20220606163915-7.png]]
135 +
136 +
137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
138 +
139 +[[image:1654504778294-788.png]]
140 +
141 +
142 +
143 +== 2.3 Uplink Payload ==
144 +
145 +(% class="wikigeneratedid" %)
146 +=== ===
147 +
148 +=== 2.3.1 MOD~=0(Default Mode) ===
149 +
150 +LSE01 will uplink payload via LoRaWAN with below payload format: 
151 +
117 117  (((
118 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module.  The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
153 +Uplink payload includes in total 11 bytes.
119 119  )))
120 120  
156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
157 +|(((
158 +**Size**
121 121  
160 +**(bytes)**
161 +)))|**2**|**2**|**2**|**2**|**2**|**1**
162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
163 +Temperature
164 +
165 +(Reserve, Ignore now)
166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
167 +MOD & Digital Interrupt
168 +
169 +(Optional)
170 +)))
171 +
172 +
173 +
174 +=== 2.3.2 MOD~=1(Original value) ===
175 +
176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
177 +
178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
179 +|(((
180 +**Size**
181 +
182 +**(bytes)**
183 +)))|**2**|**2**|**2**|**2**|**2**|**1**
184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
185 +Temperature
186 +
187 +(Reserve, Ignore now)
188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
189 +MOD & Digital Interrupt
190 +
191 +(Optional)
192 +)))
193 +
194 +
195 +
196 +=== 2.3.3 Battery Info ===
197 +
122 122  (((
123 -The diagram below shows the working flow in default firmware of NSE01:
199 +Check the battery voltage for LSE01.
124 124  )))
125 125  
126 -[[image:image-20220708101605-2.png]]
202 +(((
203 +Ex1: 0x0B45 = 2885mV
204 +)))
127 127  
128 128  (((
207 +Ex2: 0x0B49 = 2889mV
208 +)))
209 +
210 +
211 +
212 +=== 2.3.4 Soil Moisture ===
213 +
214 +(((
215 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
216 +)))
217 +
218 +(((
219 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
220 +)))
221 +
222 +(((
129 129  
130 130  )))
131 131  
226 +(((
227 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
228 +)))
132 132  
133 133  
134 -== 2.2 ​ Configure the NSE01 ==
135 135  
232 +=== 2.3.5 Soil Temperature ===
136 136  
137 -=== 2.2.1 Test Requirement ===
234 +(((
235 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
236 +)))
138 138  
238 +(((
239 +**Example**:
240 +)))
139 139  
140 -To use NSE01 in your city, make sure meet below requirements:
242 +(((
243 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
244 +)))
141 141  
142 -* Your local operator has already distributed a NB-IoT Network there.
143 -* The local NB-IoT network used the band that NSE01 supports.
144 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
246 +(((
247 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
248 +)))
145 145  
250 +
251 +
252 +=== 2.3.6 Soil Conductivity (EC) ===
253 +
146 146  (((
147 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
255 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
148 148  )))
149 149  
258 +(((
259 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
260 +)))
150 150  
151 -[[image:1657249419225-449.png]]
262 +(((
263 +Generally, the EC value of irrigation water is less than 800uS / cm.
264 +)))
152 152  
266 +(((
267 +
268 +)))
153 153  
270 +(((
271 +
272 +)))
154 154  
155 -=== 2.2.2 Insert SIM card ===
274 +=== 2.3.7 MOD ===
156 156  
157 -Insert the NB-IoT Card get from your provider.
276 +Firmware version at least v2.1 supports changing mode.
158 158  
159 -User need to take out the NB-IoT module and insert the SIM card like below:
278 +For example, bytes[10]=90
160 160  
280 +mod=(bytes[10]>>7)&0x01=1.
161 161  
162 -[[image:1657249468462-536.png]]
163 163  
283 +**Downlink Command:**
164 164  
285 +If payload = 0x0A00, workmode=0
165 165  
166 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it ===
287 +If** **payload =** **0x0A01, workmode=1
167 167  
289 +
290 +
291 +=== 2.3.8 ​Decode payload in The Things Network ===
292 +
293 +While using TTN network, you can add the payload format to decode the payload.
294 +
295 +
296 +[[image:1654505570700-128.png]]
297 +
168 168  (((
299 +The payload decoder function for TTN is here:
300 +)))
301 +
169 169  (((
170 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
303 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]]
171 171  )))
172 -)))
173 173  
174 174  
175 -**Connection:**
176 176  
177 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
308 +== 2.4 Uplink Interval ==
178 178  
179 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
310 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
180 180  
181 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
182 182  
183 183  
184 -In the PC, use below serial tool settings:
314 +== 2.5 Downlink Payload ==
185 185  
186 -* Baud:  (% style="color:green" %)**9600**
187 -* Data bits:** (% style="color:green" %)8(%%)**
188 -* Stop bits: (% style="color:green" %)**1**
189 -* Parity:  (% style="color:green" %)**None**
190 -* Flow Control: (% style="color:green" %)**None**
316 +By default, LSE50 prints the downlink payload to console port.
191 191  
318 +[[image:image-20220606165544-8.png]]
319 +
320 +
192 192  (((
193 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
322 +**Examples:**
194 194  )))
195 195  
196 -[[image:image-20220708110657-3.png]]
325 +(((
326 +
327 +)))
197 197  
198 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
329 +* (((
330 +**Set TDC**
331 +)))
199 199  
333 +(((
334 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
335 +)))
200 200  
337 +(((
338 +Payload:    01 00 00 1E    TDC=30S
339 +)))
201 201  
202 -=== 2.2.4 Use CoAP protocol to uplink data ===
341 +(((
342 +Payload:    01 00 00 3C    TDC=60S
343 +)))
203 203  
204 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
345 +(((
346 +
347 +)))
205 205  
349 +* (((
350 +**Reset**
351 +)))
206 206  
207 -**Use below commands:**
353 +(((
354 +If payload = 0x04FF, it will reset the LSE01
355 +)))
208 208  
209 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
210 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
211 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
212 212  
213 -For parameter description, please refer to AT command set
358 +* **CFM**
214 214  
215 -[[image:1657249793983-486.png]]
360 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
216 216  
217 217  
218 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
219 219  
220 -[[image:1657249831934-534.png]]
364 +== 2.6 ​Show Data in DataCake IoT Server ==
221 221  
366 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
222 222  
223 223  
224 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
369 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time.
225 225  
226 -This feature is supported since firmware version v1.0.1
371 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
227 227  
228 228  
229 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
230 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
231 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
374 +[[image:1654505857935-743.png]]
232 232  
233 -[[image:1657249864775-321.png]]
234 234  
377 +[[image:1654505874829-548.png]]
235 235  
236 -[[image:1657249930215-289.png]]
379 +Step 3: Create an account or log in Datacake.
237 237  
381 +Step 4: Search the LSE01 and add DevEUI.
238 238  
239 239  
240 -=== 2.2.6 Use MQTT protocol to uplink data ===
384 +[[image:1654505905236-553.png]]
241 241  
242 -This feature is supported since firmware version v110
243 243  
387 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
244 244  
245 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
246 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
247 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
248 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
249 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
250 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
251 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
389 +[[image:1654505925508-181.png]]
252 252  
253 -[[image:1657249978444-674.png]]
254 254  
255 255  
256 -[[image:1657249990869-686.png]]
393 +== 2.7 Frequency Plans ==
257 257  
395 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
258 258  
259 -(((
260 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
261 -)))
262 262  
398 +=== 2.7.1 EU863-870 (EU868) ===
263 263  
400 +(% style="color:#037691" %)** Uplink:**
264 264  
265 -=== 2.2.7 Use TCP protocol to uplink data ===
402 +868.1 - SF7BW125 to SF12BW125
266 266  
267 -This feature is supported since firmware version v110
404 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
268 268  
406 +868.5 - SF7BW125 to SF12BW125
269 269  
270 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
271 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
408 +867.1 - SF7BW125 to SF12BW125
272 272  
273 -[[image:1657250217799-140.png]]
410 +867.3 - SF7BW125 to SF12BW125
274 274  
412 +867.5 - SF7BW125 to SF12BW125
275 275  
276 -[[image:1657250255956-604.png]]
414 +867.7 - SF7BW125 to SF12BW125
277 277  
416 +867.9 - SF7BW125 to SF12BW125
278 278  
418 +868.8 - FSK
279 279  
280 -=== 2.2.8 Change Update Interval ===
281 281  
282 -User can use below command to change the (% style="color:green" %)**uplink interval**.
421 +(% style="color:#037691" %)** Downlink:**
283 283  
284 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
423 +Uplink channels 1-9 (RX1)
285 285  
286 -(((
287 -(% style="color:red" %)**NOTE:**
288 -)))
425 +869.525 - SF9BW125 (RX2 downlink only)
289 289  
290 -(((
291 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
292 -)))
293 293  
294 294  
429 +=== 2.7.2 US902-928(US915) ===
295 295  
296 -== 2.3  Uplink Payload ==
431 +Used in USA, Canada and South America. Default use CHE=2
297 297  
298 -In this mode, uplink payload includes in total 18 bytes
433 +(% style="color:#037691" %)**Uplink:**
299 299  
300 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
301 -|=(% style="width: 50px;" %)(((
302 -**Size(bytes)**
303 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
304 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
435 +903.9 - SF7BW125 to SF10BW125
305 305  
306 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
437 +904.1 - SF7BW125 to SF10BW125
307 307  
439 +904.3 - SF7BW125 to SF10BW125
308 308  
309 -[[image:image-20220708111918-4.png]]
441 +904.5 - SF7BW125 to SF10BW125
310 310  
443 +904.7 - SF7BW125 to SF10BW125
311 311  
312 -The payload is ASCII string, representative same HEX:
445 +904.9 - SF7BW125 to SF10BW125
313 313  
314 -0x72403155615900640c7817075e0a8c02f900 where:
447 +905.1 - SF7BW125 to SF10BW125
315 315  
316 -* Device ID: 0x 724031556159 = 724031556159
317 -* Version: 0x0064=100=1.0.0
449 +905.3 - SF7BW125 to SF10BW125
318 318  
319 -* BAT: 0x0c78 = 3192 mV = 3.192V
320 -* Singal: 0x17 = 23
321 -* Soil Moisture: 0x075e= 1886 = 18.86  %
322 -* Soil Temperature:0x0a8c =2700=27 °C
323 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
324 -* Interrupt: 0x00 = 0
325 325  
452 +(% style="color:#037691" %)**Downlink:**
326 326  
327 -== 2. Payload Explanation and Sensor Interface ==
454 +923.3 - SF7BW500 to SF12BW500
328 328  
456 +923.9 - SF7BW500 to SF12BW500
329 329  
330 -=== 2.4.1  Device ID ===
458 +924.5 - SF7BW500 to SF12BW500
331 331  
332 -By default, the Device ID equal to the last 6 bytes of IMEI.
460 +925.1 - SF7BW500 to SF12BW500
333 333  
334 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
462 +925.7 - SF7BW500 to SF12BW500
335 335  
336 -**Example:**
464 +926.3 - SF7BW500 to SF12BW500
337 337  
338 -AT+DEUI=A84041F15612
466 +926.9 - SF7BW500 to SF12BW500
339 339  
340 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
468 +927.5 - SF7BW500 to SF12BW500
341 341  
470 +923.3 - SF12BW500(RX2 downlink only)
342 342  
343 343  
344 -=== 2.4.2  Version Info ===
345 345  
346 -Specify the software version: 0x64=100, means firmware version 1.00.
474 +=== 2.7.3 CN470-510 (CN470) ===
347 347  
348 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
476 +Used in China, Default use CHE=1
349 349  
478 +(% style="color:#037691" %)**Uplink:**
350 350  
480 +486.3 - SF7BW125 to SF12BW125
351 351  
352 -=== 2.4. Battery Info ===
482 +486.5 - SF7BW125 to SF12BW125
353 353  
354 -(((
355 -Check the battery voltage for LSE01.
356 -)))
484 +486.7 - SF7BW125 to SF12BW125
357 357  
358 -(((
359 -Ex1: 0x0B45 = 2885mV
360 -)))
486 +486.9 - SF7BW125 to SF12BW125
361 361  
362 -(((
363 -Ex2: 0x0B49 = 2889mV
364 -)))
488 +487.1 - SF7BW125 to SF12BW125
365 365  
490 +487.3 - SF7BW125 to SF12BW125
366 366  
492 +487.5 - SF7BW125 to SF12BW125
367 367  
368 -=== 2.4. Signal Strength ===
494 +487.7 - SF7BW125 to SF12BW125
369 369  
370 -NB-IoT Network signal Strength.
371 371  
372 -**Ex1: 0x1d = 29**
497 +(% style="color:#037691" %)**Downlink:**
373 373  
374 -(% style="color:blue" %)**0**(%%)  -113dBm or less
499 +506.7 - SF7BW125 to SF12BW125
375 375  
376 -(% style="color:blue" %)**1**(%%)  -111dBm
501 +506.9 - SF7BW125 to SF12BW125
377 377  
378 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
503 +507.1 - SF7BW125 to SF12BW125
379 379  
380 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
505 +507.3 - SF7BW125 to SF12BW125
381 381  
382 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
507 +507.5 - SF7BW125 to SF12BW125
383 383  
509 +507.7 - SF7BW125 to SF12BW125
384 384  
511 +507.9 - SF7BW125 to SF12BW125
385 385  
386 -=== 2.4.5  Soil Moisture ===
513 +508.1 - SF7BW125 to SF12BW125
387 387  
388 -(((
389 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
390 -)))
515 +505.3 - SF12BW125 (RX2 downlink only)
391 391  
392 -(((
393 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
394 -)))
395 395  
396 -(((
397 -
398 -)))
399 399  
400 -(((
401 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
402 -)))
519 +=== 2.7.4 AU915-928(AU915) ===
403 403  
521 +Default use CHE=2
404 404  
523 +(% style="color:#037691" %)**Uplink:**
405 405  
406 -=== 2.4.6  Soil Temperature ===
525 +916.8 - SF7BW125 to SF12BW125
407 407  
408 -(((
409 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
410 -)))
527 +917.0 - SF7BW125 to SF12BW125
411 411  
412 -(((
413 -**Example**:
414 -)))
529 +917.2 - SF7BW125 to SF12BW125
415 415  
416 -(((
417 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
418 -)))
531 +917.4 - SF7BW125 to SF12BW125
419 419  
420 -(((
421 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
422 -)))
533 +917.6 - SF7BW125 to SF12BW125
423 423  
535 +917.8 - SF7BW125 to SF12BW125
424 424  
537 +918.0 - SF7BW125 to SF12BW125
425 425  
426 -=== 2.4.7  Soil Conductivity (EC) ===
539 +918.2 - SF7BW125 to SF12BW125
427 427  
428 -(((
429 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
430 -)))
431 431  
432 -(((
433 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
434 -)))
542 +(% style="color:#037691" %)**Downlink:**
435 435  
436 -(((
437 -Generally, the EC value of irrigation water is less than 800uS / cm.
438 -)))
544 +923.3 - SF7BW500 to SF12BW500
439 439  
440 -(((
441 -
442 -)))
546 +923.9 - SF7BW500 to SF12BW500
443 443  
444 -(((
445 -
446 -)))
548 +924.5 - SF7BW500 to SF12BW500
447 447  
448 -=== 2.4.8  Digital Interrupt ===
550 +925.1 - SF7BW500 to SF12BW500
449 449  
450 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
552 +925.7 - SF7BW500 to SF12BW500
451 451  
452 -The command is:
554 +926.3 - SF7BW500 to SF12BW500
453 453  
454 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
556 +926.9 - SF7BW500 to SF12BW500
455 455  
558 +927.5 - SF7BW500 to SF12BW500
456 456  
457 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
560 +923.3 - SF12BW500(RX2 downlink only)
458 458  
459 459  
460 -Example:
461 461  
462 -0x(00): Normal uplink packet.
564 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
463 463  
464 -0x(01): Interrupt Uplink Packet.
566 +(% style="color:#037691" %)**Default Uplink channel:**
465 465  
568 +923.2 - SF7BW125 to SF10BW125
466 466  
570 +923.4 - SF7BW125 to SF10BW125
467 467  
468 -=== 2.4.9  ​+5V Output ===
469 469  
470 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
573 +(% style="color:#037691" %)**Additional Uplink Channel**:
471 471  
575 +(OTAA mode, channel added by JoinAccept message)
472 472  
473 -The 5V output time can be controlled by AT Command.
577 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
474 474  
475 -(% style="color:blue" %)**AT+5VT=1000**
579 +922.2 - SF7BW125 to SF10BW125
476 476  
477 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
581 +922.4 - SF7BW125 to SF10BW125
478 478  
583 +922.6 - SF7BW125 to SF10BW125
479 479  
585 +922.8 - SF7BW125 to SF10BW125
480 480  
481 -== 2.5  Downlink Payload ==
587 +923.0 - SF7BW125 to SF10BW125
482 482  
483 -By default, NSE01 prints the downlink payload to console port.
589 +922.0 - SF7BW125 to SF10BW125
484 484  
485 -[[image:image-20220708133731-5.png]]
486 486  
592 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
487 487  
488 -(((
489 -(% style="color:blue" %)**Examples:**
490 -)))
594 +923.6 - SF7BW125 to SF10BW125
491 491  
492 -(((
493 -
494 -)))
596 +923.8 - SF7BW125 to SF10BW125
495 495  
496 -* (((
497 -(% style="color:blue" %)**Set TDC**
498 -)))
598 +924.0 - SF7BW125 to SF10BW125
499 499  
500 -(((
501 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
502 -)))
600 +924.2 - SF7BW125 to SF10BW125
503 503  
504 -(((
505 -Payload:    01 00 00 1E    TDC=30S
506 -)))
602 +924.4 - SF7BW125 to SF10BW125
507 507  
508 -(((
509 -Payload:    01 00 00 3C    TDC=60S
510 -)))
604 +924.6 - SF7BW125 to SF10BW125
511 511  
512 -(((
513 -
514 -)))
515 515  
516 -* (((
517 -(% style="color:blue" %)**Reset**
518 -)))
607 +(% style="color:#037691" %)** Downlink:**
519 519  
520 -(((
521 -If payload = 0x04FF, it will reset the NSE01
522 -)))
609 +Uplink channels 1-8 (RX1)
523 523  
611 +923.2 - SF10BW125 (RX2)
524 524  
525 -* (% style="color:blue" %)**INTMOD**
526 526  
527 -Downlink Payload: 06000003, Set AT+INTMOD=3
528 528  
615 +=== 2.7.6 KR920-923 (KR920) ===
529 529  
617 +Default channel:
530 530  
531 -== 2. ​LED Indicator ==
619 +922.1 - SF7BW125 to SF12BW125
532 532  
533 -(((
534 -The NSE01 has an internal LED which is to show the status of different state.
621 +922.3 - SF7BW125 to SF12BW125
535 535  
623 +922.5 - SF7BW125 to SF12BW125
536 536  
537 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
538 -* Then the LED will be on for 1 second means device is boot normally.
539 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
540 -* For each uplink probe, LED will be on for 500ms.
541 -)))
542 542  
626 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
543 543  
628 +922.1 - SF7BW125 to SF12BW125
544 544  
630 +922.3 - SF7BW125 to SF12BW125
545 545  
546 -== 2.7  Installation in Soil ==
632 +922.5 - SF7BW125 to SF12BW125
547 547  
548 -__**Measurement the soil surface**__
634 +922.7 - SF7BW125 to SF12BW125
549 549  
550 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
636 +922.9 - SF7BW125 to SF12BW125
551 551  
552 -[[image:1657259653666-883.png]]
638 +923.1 - SF7BW125 to SF12BW125
553 553  
640 +923.3 - SF7BW125 to SF12BW125
554 554  
555 -(((
556 -
557 557  
558 -(((
559 -Dig a hole with diameter > 20CM.
560 -)))
643 +(% style="color:#037691" %)**Downlink:**
561 561  
562 -(((
563 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
564 -)))
565 -)))
645 +Uplink channels 1-7(RX1)
566 566  
567 -[[image:1654506665940-119.png]]
647 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
568 568  
569 -(((
570 -
571 -)))
572 572  
573 573  
574 -== 2.8  ​Firmware Change Log ==
651 +=== 2.7.7 IN865-867 (IN865) ===
575 575  
653 +(% style="color:#037691" %)** Uplink:**
576 576  
577 -Download URL & Firmware Change log
655 +865.0625 - SF7BW125 to SF12BW125
578 578  
579 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
657 +865.4025 - SF7BW125 to SF12BW125
580 580  
659 +865.9850 - SF7BW125 to SF12BW125
581 581  
582 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
583 583  
662 +(% style="color:#037691" %) **Downlink:**
584 584  
664 +Uplink channels 1-3 (RX1)
585 585  
586 -== 2. Battery Analysis ==
666 +866.550 - SF10BW125 (RX2)
587 587  
588 -=== 2.9.1  ​Battery Type ===
589 589  
590 590  
591 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
592 592  
671 +== 2.8 LED Indicator ==
593 593  
594 -The battery is designed to last for several years depends on the actually use environment and update interval. 
673 +The LSE01 has an internal LED which is to show the status of different state.
595 595  
675 +* Blink once when device power on.
676 +* Solid ON for 5 seconds once device successful Join the network.
677 +* Blink once when device transmit a packet.
596 596  
597 -The battery related documents as below:
598 598  
599 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
600 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
601 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
602 602  
681 +== 2.9 Installation in Soil ==
682 +
683 +**Measurement the soil surface**
684 +
685 +
686 +[[image:1654506634463-199.png]] ​
687 +
603 603  (((
604 -[[image:image-20220708140453-6.png]]
689 +(((
690 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
605 605  )))
692 +)))
606 606  
607 607  
695 +[[image:1654506665940-119.png]]
608 608  
609 -=== 2.9.2  Power consumption Analyze ===
697 +(((
698 +Dig a hole with diameter > 20CM.
699 +)))
610 610  
611 611  (((
612 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
702 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
613 613  )))
614 614  
615 615  
706 +== 2.10 ​Firmware Change Log ==
707 +
616 616  (((
617 -Instruction to use as below:
709 +**Firmware download link:**
618 618  )))
619 619  
620 620  (((
621 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
713 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
622 622  )))
623 623  
716 +(((
717 +
718 +)))
624 624  
625 625  (((
626 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
721 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
627 627  )))
628 628  
629 -* (((
630 -Product Model
724 +(((
725 +
631 631  )))
632 -* (((
633 -Uplink Interval
727 +
728 +(((
729 +**V1.0.**
634 634  )))
635 -* (((
636 -Working Mode
637 -)))
638 638  
639 639  (((
640 -And the Life expectation in difference case will be shown on the right.
733 +Release
641 641  )))
642 642  
643 -[[image:image-20220708141352-7.jpeg]]
644 644  
737 +== 2.11 ​Battery Analysis ==
645 645  
739 +=== 2.11.1 ​Battery Type ===
646 646  
647 -=== 2.9.3  ​Battery Note ===
741 +(((
742 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
743 +)))
648 648  
649 649  (((
650 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
746 +The battery is designed to last for more than 5 years for the LSN50.
651 651  )))
652 652  
749 +(((
750 +(((
751 +The battery-related documents are as below:
752 +)))
753 +)))
653 653  
755 +* (((
756 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
757 +)))
758 +* (((
759 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
760 +)))
761 +* (((
762 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
763 +)))
654 654  
655 -=== 2.9.4  Replace the battery ===
765 + [[image:image-20220606171726-9.png]]
656 656  
767 +
768 +
769 +=== 2.11.2 ​Battery Note ===
770 +
657 657  (((
658 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
772 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
659 659  )))
660 660  
661 661  
662 662  
663 -= 3. ​ Access NB-IoT Module =
777 +=== 2.11.3 Replace the battery ===
664 664  
665 665  (((
666 -Users can directly access the AT command set of the NB-IoT module.
780 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
667 667  )))
668 668  
669 669  (((
670 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
784 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
671 671  )))
672 672  
673 -[[image:1657261278785-153.png]]
787 +(((
788 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
789 +)))
674 674  
675 675  
676 676  
677 -= 4.  Using the AT Commands =
793 += 3. Using the AT Commands =
678 678  
679 -== 4.1  Access AT Commands ==
795 +== 3.1 Access AT Commands ==
680 680  
681 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
682 682  
798 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
683 683  
684 -AT+<CMD>?  : Help on <CMD>
800 +[[image:1654501986557-872.png||height="391" width="800"]]
685 685  
686 -AT+<CMD>         : Run <CMD>
687 687  
688 -AT+<CMD>=<value> : Set the value
803 +Or if you have below board, use below connection:
689 689  
690 -AT+<CMD>=?  : Get the value
691 691  
806 +[[image:1654502005655-729.png||height="503" width="801"]]
692 692  
808 +
809 +
810 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
811 +
812 +
813 + [[image:1654502050864-459.png||height="564" width="806"]]
814 +
815 +
816 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]
817 +
818 +
819 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
820 +
821 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
822 +
823 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
824 +
825 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
826 +
827 +
693 693  (% style="color:#037691" %)**General Commands**(%%)      
694 694  
695 -AT  : Attention       
830 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
696 696  
697 -AT?  : Short Help     
832 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
698 698  
699 -ATZ  : MCU Reset    
834 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
700 700  
701 -AT+TDC  : Application Data Transmission Interval
836 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
702 702  
703 -AT+CFG  : Print all configurations
704 704  
705 -AT+CFGMOD           : Working mode selection
839 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
706 706  
707 -AT+INTMOD            : Set the trigger interrupt mode
841 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
708 708  
709 -AT+5VT  : Set extend the time of 5V power  
843 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
710 710  
711 -AT+PRO  : Choose agreement
845 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
712 712  
713 -AT+WEIGRE  : Get weight or set weight to 0
847 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
714 714  
715 -AT+WEIGAP  : Get or Set the GapValue of weight
849 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
716 716  
717 -AT+RXDL  : Extend the sending and receiving time
851 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
718 718  
719 -AT+CNTFAC  : Get or set counting parameters
853 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
720 720  
721 -AT+SERVADDR  : Server Address
855 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
722 722  
857 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
723 723  
724 -(% style="color:#037691" %)**COAP Management**      
859 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
725 725  
726 -AT+URI            : Resource parameters
861 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
727 727  
863 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
728 728  
729 -(% style="color:#037691" %)**UDP Management**
865 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
730 730  
731 -AT+CFM          : Upload confirmation mode (only valid for UDP)
867 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
732 732  
869 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
733 733  
734 -(% style="color:#037691" %)**MQTT Management**
871 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
735 735  
736 -AT+CLIENT               : Get or Set MQTT client
737 737  
738 -AT+UNAME  : Get or Set MQTT Username
874 +(% style="color:#037691" %)**LoRa Network Management**
739 739  
740 -AT+PWD                  : Get or Set MQTT password
876 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
741 741  
742 -AT+PUBTOPI : Get or Set MQTT publish topic
878 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
743 743  
744 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
880 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
745 745  
882 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
746 746  
747 -(% style="color:#037691" %)**Information**          
884 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
748 748  
749 -AT+FDR  : Factory Data Reset
886 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
750 750  
751 -AT+PWOR : Serial Access Password
888 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
752 752  
890 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
753 753  
892 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
754 754  
755 -= ​5.  FAQ =
894 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
756 756  
757 -== 5.1 How to Upgrade Firmware ==
896 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
758 758  
898 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
759 759  
900 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
901 +
902 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
903 +
904 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
905 +
906 +
907 +(% style="color:#037691" %)**Information** 
908 +
909 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
910 +
911 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
912 +
913 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
914 +
915 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
916 +
917 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
918 +
919 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
920 +
921 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
922 +
923 +
924 += ​4. FAQ =
925 +
926 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
927 +
760 760  (((
761 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
929 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
930 +When downloading the images, choose the required image file for download. ​
762 762  )))
763 763  
764 764  (((
765 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
934 +
766 766  )))
767 767  
768 768  (((
769 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
938 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
770 770  )))
771 771  
941 +(((
942 +
943 +)))
772 772  
945 +(((
946 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
947 +)))
773 773  
774 -= 6.  Trouble Shooting =
949 +(((
950 +
951 +)))
775 775  
776 -== 6.1  ​Connection problem when uploading firmware ==
953 +(((
954 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
955 +)))
777 777  
957 +[[image:image-20220606154726-3.png]]
778 778  
779 -(% class="wikigeneratedid" %)
959 +
960 +When you use the TTN network, the US915 frequency bands use are:
961 +
962 +* 903.9 - SF7BW125 to SF10BW125
963 +* 904.1 - SF7BW125 to SF10BW125
964 +* 904.3 - SF7BW125 to SF10BW125
965 +* 904.5 - SF7BW125 to SF10BW125
966 +* 904.7 - SF7BW125 to SF10BW125
967 +* 904.9 - SF7BW125 to SF10BW125
968 +* 905.1 - SF7BW125 to SF10BW125
969 +* 905.3 - SF7BW125 to SF10BW125
970 +* 904.6 - SF8BW500
971 +
780 780  (((
781 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
973 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
782 782  )))
783 783  
976 +(% class="box infomessage" %)
977 +(((
978 +**AT+CHE=2**
979 +)))
784 784  
981 +(% class="box infomessage" %)
982 +(((
983 +**ATZ**
984 +)))
785 785  
786 -== 6.2  AT Command input doesn't work ==
986 +(((
987 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
988 +)))
787 787  
788 788  (((
789 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
991 +
790 790  )))
791 791  
994 +(((
995 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
996 +)))
792 792  
998 +[[image:image-20220606154825-4.png]]
793 793  
794 -= 7. ​ Order Info =
795 795  
796 796  
797 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1002 += 5. Trouble Shooting =
798 798  
1004 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
799 799  
1006 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
1007 +
1008 +
1009 +== 5.2 AT Command input doesn’t work ==
1010 +
1011 +(((
1012 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1013 +)))
1014 +
1015 +
1016 +== 5.3 Device rejoin in at the second uplink packet ==
1017 +
1018 +(% style="color:#4f81bd" %)**Issue describe as below:**
1019 +
1020 +[[image:1654500909990-784.png]]
1021 +
1022 +
1023 +(% style="color:#4f81bd" %)**Cause for this issue:**
1024 +
1025 +(((
1026 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1027 +)))
1028 +
1029 +
1030 +(% style="color:#4f81bd" %)**Solution: **
1031 +
1032 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1033 +
1034 +[[image:1654500929571-736.png||height="458" width="832"]]
1035 +
1036 +
1037 += 6. ​Order Info =
1038 +
1039 +
1040 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1041 +
1042 +
1043 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1044 +
1045 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1046 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1047 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1048 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1049 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1050 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1051 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1052 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1053 +
1054 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1055 +
1056 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1057 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1058 +
800 800  (% class="wikigeneratedid" %)
801 801  (((
802 802  
803 803  )))
804 804  
805 -= 8.  Packing Info =
1064 += 7. Packing Info =
806 806  
807 807  (((
808 808  
809 809  
810 810  (% style="color:#037691" %)**Package Includes**:
1070 +)))
811 811  
812 -
813 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
814 -* External antenna x 1
1072 +* (((
1073 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
815 815  )))
816 816  
817 817  (((
... ... @@ -818,20 +818,30 @@
818 818  
819 819  
820 820  (% style="color:#037691" %)**Dimension and weight**:
1080 +)))
821 821  
822 -
823 -* Size: 195 x 125 x 55 mm
824 -* Weight:   420g
1082 +* (((
1083 +Device Size: cm
825 825  )))
1085 +* (((
1086 +Device Weight: g
1087 +)))
1088 +* (((
1089 +Package Size / pcs : cm
1090 +)))
1091 +* (((
1092 +Weight / pcs : g
826 826  
827 -(((
828 -
829 829  
830 -
831 831  
832 832  )))
833 833  
834 -= 9.  Support =
1098 += 8. Support =
835 835  
836 836  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
837 837  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1102 +
1103 +
1104 +~)~)~)
1105 +~)~)~)
1106 +~)~)~)
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220610172436-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -370.3 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content