Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,789 +20,1018 @@ 20 20 21 21 22 22 23 -= 1. 15 += 1. Introduction = 24 24 25 -== 1.1 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 - 38 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 39 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 47 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 62 62 61 +== 1.3 Specification == 63 63 64 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 65 +[[image:image-20220606162220-5.png]] 66 66 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 71 72 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 73 73 74 -* - B1 @H-FDD: 2100MHz 75 -* - B3 @H-FDD: 1800MHz 76 -* - B8 @H-FDD: 900MHz 77 -* - B5 @H-FDD: 850MHz 78 -* - B20 @H-FDD: 800MHz 79 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 80 80 81 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 82 82 83 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 84 84 85 -[[image:image-20220708101224-1.png]] 86 86 79 +**LSE01 v1.0 :** Release 87 87 88 88 89 -== 1.4 Applications == 90 90 91 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 92 92 93 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 94 - 85 +== 2.1 How it works == 95 95 96 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 97 97 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 98 98 99 -[[image:1657246476176-652.png]] 100 100 101 101 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 105 -== 2.1 How it works == 106 106 102 +[[image:1654503992078-669.png]] 107 107 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +(% class="wikigeneratedid" %) 146 +=== === 147 + 148 +=== 2.3.1 MOD~=0(Default Mode) === 149 + 150 +LSE01 will uplink payload via LoRaWAN with below payload format: 151 + 108 108 ((( 109 - The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware inNSE01 will get environment data from sensors and send the value to local NB-IoT networkviathe NB-IoT module. The NB-IoT network will forwardthis valueto IoTserverviathe protocoldefinedbyNSE01.153 +Uplink payload includes in total 11 bytes. 110 110 ))) 111 111 156 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 157 +|((( 158 +**Size** 112 112 113 -((( 114 -The diagram below shows the working flow in default firmware of NSE01: 160 +**(bytes)** 161 +)))|**2**|**2**|**2**|**2**|**2**|**1** 162 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 163 +Temperature 164 + 165 +(Reserve, Ignore now) 166 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 167 +MOD & Digital Interrupt 168 + 169 +(Optional) 115 115 ))) 116 116 117 -[[image:image-20220708101605-2.png]] 118 118 119 -((( 120 - 173 + 174 +=== 2.3.2 MOD~=1(Original value) === 175 + 176 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 177 + 178 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 179 +|((( 180 +**Size** 181 + 182 +**(bytes)** 183 +)))|**2**|**2**|**2**|**2**|**2**|**1** 184 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 185 +Temperature 186 + 187 +(Reserve, Ignore now) 188 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 189 +MOD & Digital Interrupt 190 + 191 +(Optional) 121 121 ))) 122 122 123 123 124 124 125 -== 2. 2Configurethe NSE01==196 +=== 2.3.3 Battery Info === 126 126 198 +Check the battery voltage for LSE01. 127 127 128 - === 2.2.1TestRequirement ===200 +Ex1: 0x0B45 = 2885mV 129 129 202 +Ex2: 0x0B49 = 2889mV 130 130 131 -To use NSE01 in your city, make sure meet below requirements: 132 132 133 -* Your local operator has already distributed a NB-IoT Network there. 134 -* The local NB-IoT network used the band that NSE01 supports. 135 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 136 136 137 -((( 138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 139 -))) 206 +=== 2.3.4 Soil Moisture === 140 140 208 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 141 141 142 - [[image:1657249419225-449.png]]210 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 143 143 144 144 213 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 145 145 146 -=== 2.2.2 Insert SIM card === 147 147 148 -Insert the NB-IoT Card get from your provider. 149 149 150 - Userneedtotake out the NB-IoToduleand insert the SIM card likebelow:217 +=== 2.3.5 Soil Temperature === 151 151 219 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 152 152 153 - [[image:1657249468462-536.png]]221 +**Example**: 154 154 223 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 155 155 225 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 156 156 157 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 158 158 228 + 229 +=== 2.3.6 Soil Conductivity (EC) === 230 + 159 159 ((( 232 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 233 +))) 234 + 160 160 ((( 161 - User need toconfigureNSE01 via serialportto set the(% style="color:blue"%)**ServerAddress** / **Uplink Topic**(%%)todefinewhereand how-to uplink packets.NSE01support ATCommands,usercan use a USB toTTL adapter toconnectoNSE01 and useATCommandstoconfigureit,asbelow.236 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 162 162 ))) 238 + 239 +((( 240 +Generally, the EC value of irrigation water is less than 800uS / cm. 163 163 ))) 164 164 243 +((( 244 + 245 +))) 165 165 166 -**Connection:** 247 +((( 248 + 249 +))) 167 167 168 - (% style="background-color:yellow"%)USBTTL GND<~-~-~-~-> GND251 +=== 2.3.7 MOD === 169 169 170 - (%style="background-color:yellow"%)USBTTL TXD <~-~-~-~-> UART_RXD253 +Firmware version at least v2.1 supports changing mode. 171 171 172 - (% style="background-color:yellow"%)USB TTL RXD <~-~-~-~-> UART_TXD255 +For example, bytes[10]=90 173 173 257 +mod=(bytes[10]>>7)&0x01=1. 174 174 175 -In the PC, use below serial tool settings: 176 176 177 -* Baud: (% style="color:green" %)**9600** 178 -* Data bits:** (% style="color:green" %)8(%%)** 179 -* Stop bits: (% style="color:green" %)**1** 180 -* Parity: (% style="color:green" %)**None** 181 -* Flow Control: (% style="color:green" %)**None** 260 +**Downlink Command:** 182 182 183 -((( 184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 185 -))) 262 +If payload = 0x0A00, workmode=0 186 186 187 - [[image:image-20220708110657-3.png]]264 +If** **payload =** **0x0A01, workmode=1 188 188 189 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 190 190 191 191 268 +=== 2.3.8 Decode payload in The Things Network === 192 192 193 - ===2.2.4UseCoAPprotocoltouplink data ===270 +While using TTN network, you can add the payload format to decode the payload. 194 194 195 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 196 196 273 +[[image:1654505570700-128.png]] 197 197 198 - **Usebelowcommands:**275 +The payload decoder function for TTN is here: 199 199 200 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 201 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 202 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 277 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 203 203 204 -For parameter description, please refer to AT command set 205 205 206 -[[image:1657249793983-486.png]] 207 207 281 +== 2.4 Uplink Interval == 208 208 209 - Afterconfigurethe serveraddress and(% style="color:green"%)**resetthedevice**(%%) (via AT+ATZ),NSE01willstarttouplinksensorvaluesto CoAP server.283 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 210 210 211 -[[image:1657249831934-534.png]] 212 212 213 213 287 +== 2.5 Downlink Payload == 214 214 215 - ===2.2.5 UseUDPprotocoltouplinkdata(Default protocol)===289 +By default, LSE50 prints the downlink payload to console port. 216 216 217 - This features supported since firmwareversion v1.0.1291 +[[image:image-20220606165544-8.png]] 218 218 219 219 220 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 222 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 294 +**Examples:** 223 223 224 -[[image:1657249864775-321.png]] 225 225 297 +* **Set TDC** 226 226 227 - [[image:1657249930215-289.png]]299 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 228 228 301 +Payload: 01 00 00 1E TDC=30S 229 229 303 +Payload: 01 00 00 3C TDC=60S 230 230 231 -=== 2.2.6 Use MQTT protocol to uplink data === 232 232 233 - Thisfeature issupported since firmware version v110306 +* **Reset** 234 234 308 +If payload = 0x04FF, it will reset the LSE01 235 235 236 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 238 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 239 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 240 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 241 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 242 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 243 243 244 - [[image:1657249978444-674.png]]311 +* **CFM** 245 245 313 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 246 246 247 -[[image:1657249990869-686.png]] 248 248 249 249 250 -((( 251 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 252 -))) 317 +== 2.6 Show Data in DataCake IoT Server == 253 253 319 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 254 254 255 255 256 - ===2.2.7UseTCPprotocoltouplinkdata===322 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 257 257 258 -T hisfeatureissupportedsincefirmwareversionv110324 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 259 259 260 260 261 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 327 +[[image:1654505857935-743.png]] 263 263 264 -[[image:1657250217799-140.png]] 265 265 330 +[[image:1654505874829-548.png]] 266 266 267 - [[image:1657250255956-604.png]]332 +Step 3: Create an account or log in Datacake. 268 268 334 +Step 4: Search the LSE01 and add DevEUI. 269 269 270 270 271 - === 2.2.8 ChangeUpdate Interval ===337 +[[image:1654505905236-553.png]] 272 272 273 -User can use below command to change the (% style="color:green" %)**uplink interval**. 274 274 275 - *(%style="color:blue"%)**AT+TDC=600** (%%)~/~/ SetUpdateIntervalto600s340 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 276 276 277 -((( 278 -(% style="color:red" %)**NOTE:** 279 -))) 342 +[[image:1654505925508-181.png]] 280 280 281 -((( 282 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 283 -))) 284 284 285 285 346 +== 2.7 Frequency Plans == 286 286 287 - ==2.3UplinkPayload==348 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 288 288 289 -In this mode, uplink payload includes in total 18 bytes 290 290 291 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 292 -|=(% style="width: 50px;" %)((( 293 -**Size(bytes)** 294 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 295 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 351 +=== 2.7.1 EU863-870 (EU868) === 296 296 297 - Ifwe usethe MQTT client to subscribe tothis MQTT topic, we can see the following information when the NSE01uplinkdata.353 +(% style="color:#037691" %)** Uplink:** 298 298 355 +868.1 - SF7BW125 to SF12BW125 299 299 300 - [[image:image-20220708111918-4.png]]357 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 301 301 359 +868.5 - SF7BW125 to SF12BW125 302 302 303 - Thepayloadis ASCIIstring,representative same HEX:361 +867.1 - SF7BW125 to SF12BW125 304 304 305 - 0x72403155615900640c7817075e0a8c02f900 where:363 +867.3 - SF7BW125 to SF12BW125 306 306 307 -* Device ID: 0x 724031556159 = 724031556159 308 -* Version: 0x0064=100=1.0.0 365 +867.5 - SF7BW125 to SF12BW125 309 309 310 -* BAT: 0x0c78 = 3192 mV = 3.192V 311 -* Singal: 0x17 = 23 312 -* Soil Moisture: 0x075e= 1886 = 18.86 % 313 -* Soil Temperature:0x0a8c =2700=27 °C 314 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 315 -* Interrupt: 0x00 = 0 367 +867.7 - SF7BW125 to SF12BW125 316 316 369 +867.9 - SF7BW125 to SF12BW125 317 317 318 - == 2.4Payload Explanation andSensor Interface ==371 +868.8 - FSK 319 319 320 320 321 - ===2.4.1 DeviceID===374 +(% style="color:#037691" %)** Downlink:** 322 322 323 - By default, the DeviceID equal to theast6bytes of IMEI.376 +Uplink channels 1-9 (RX1) 324 324 325 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID378 +869.525 - SF9BW125 (RX2 downlink only) 326 326 327 -**Example:** 328 328 329 -AT+DEUI=A84041F15612 330 330 331 - TheDeviceID is stored in a none-erase area,Upgradethe firmware or run AT+FDR won't erase Device ID.382 +=== 2.7.2 US902-928(US915) === 332 332 384 +Used in USA, Canada and South America. Default use CHE=2 333 333 386 +(% style="color:#037691" %)**Uplink:** 334 334 335 - ===2.4.2VersionInfo ===388 +903.9 - SF7BW125 to SF10BW125 336 336 337 - Specify the software version:0x64=100,meansfirmwareversion1.00.390 +904.1 - SF7BW125 to SF10BW125 338 338 339 - For example:0x00 64:this device is NSE01with firmware version1.0.0.392 +904.3 - SF7BW125 to SF10BW125 340 340 394 +904.5 - SF7BW125 to SF10BW125 341 341 396 +904.7 - SF7BW125 to SF10BW125 342 342 343 - === 2.4.3BatteryInfo===398 +904.9 - SF7BW125 to SF10BW125 344 344 345 -((( 346 -Check the battery voltage for LSE01. 347 -))) 400 +905.1 - SF7BW125 to SF10BW125 348 348 349 -((( 350 -Ex1: 0x0B45 = 2885mV 351 -))) 402 +905.3 - SF7BW125 to SF10BW125 352 352 353 -((( 354 -Ex2: 0x0B49 = 2889mV 355 -))) 356 356 405 +(% style="color:#037691" %)**Downlink:** 357 357 407 +923.3 - SF7BW500 to SF12BW500 358 358 359 - ===2.4.4SignalStrength===409 +923.9 - SF7BW500 to SF12BW500 360 360 361 - NB-IoTNetworksignalStrength.411 +924.5 - SF7BW500 to SF12BW500 362 362 363 - **Ex1:0x1d=29**413 +925.1 - SF7BW500 to SF12BW500 364 364 365 - (%style="color:blue"%)**0**(%%)-113dBm or less415 +925.7 - SF7BW500 to SF12BW500 366 366 367 - (%style="color:blue"%)**1**(%%) -111dBm417 +926.3 - SF7BW500 to SF12BW500 368 368 369 - (% style="color:blue" %)**2...30**(%%) -109dBm...-53dBm419 +926.9 - SF7BW500 to SF12BW500 370 370 371 - (%style="color:blue" %)**31** (%%)-51dBmorgreater421 +927.5 - SF7BW500 to SF12BW500 372 372 373 - (% style="color:blue" %)**99**(%%)Not known ornot detectable423 +923.3 - SF12BW500(RX2 downlink only) 374 374 375 375 376 376 377 -=== 2. 4.5SoilMoisture===427 +=== 2.7.3 CN470-510 (CN470) === 378 378 379 -((( 380 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 381 -))) 429 +Used in China, Default use CHE=1 382 382 383 -((( 384 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 385 -))) 431 +(% style="color:#037691" %)**Uplink:** 386 386 387 -((( 388 - 389 -))) 433 +486.3 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 393 -))) 435 +486.5 - SF7BW125 to SF12BW125 394 394 437 +486.7 - SF7BW125 to SF12BW125 395 395 439 +486.9 - SF7BW125 to SF12BW125 396 396 397 - === 2.4.6SoilTemperature===441 +487.1 - SF7BW125 to SF12BW125 398 398 399 -((( 400 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 401 -))) 443 +487.3 - SF7BW125 to SF12BW125 402 402 403 -((( 404 -**Example**: 405 -))) 445 +487.5 - SF7BW125 to SF12BW125 406 406 407 -((( 408 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 409 -))) 447 +487.7 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 413 -))) 414 414 450 +(% style="color:#037691" %)**Downlink:** 415 415 452 +506.7 - SF7BW125 to SF12BW125 416 416 417 - === 2.4.7SoilConductivity(EC) ===454 +506.9 - SF7BW125 to SF12BW125 418 418 419 -((( 420 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 421 -))) 456 +507.1 - SF7BW125 to SF12BW125 422 422 423 -((( 424 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 425 -))) 458 +507.3 - SF7BW125 to SF12BW125 426 426 427 -((( 428 -Generally, the EC value of irrigation water is less than 800uS / cm. 429 -))) 460 +507.5 - SF7BW125 to SF12BW125 430 430 431 -((( 432 - 433 -))) 462 +507.7 - SF7BW125 to SF12BW125 434 434 435 -((( 436 - 437 -))) 464 +507.9 - SF7BW125 to SF12BW125 438 438 439 - ===2.4.8DigitalInterrupt ===466 +508.1 - SF7BW125 to SF12BW125 440 440 441 - DigitalInterruptrefersto pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.468 +505.3 - SF12BW125 (RX2 downlink only) 442 442 443 -The command is: 444 444 445 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 446 446 472 +=== 2.7.4 AU915-928(AU915) === 447 447 448 - Thelowerfour bits of this data field shows if this packet is generated by interrupt or not. Click here forthehardware andsoftwareset up.474 +Default use CHE=2 449 449 476 +(% style="color:#037691" %)**Uplink:** 450 450 451 - Example:478 +916.8 - SF7BW125 to SF12BW125 452 452 453 -0 x(00):Normaluplinkpacket.480 +917.0 - SF7BW125 to SF12BW125 454 454 455 - 0x(01):InterruptUplinkPacket.482 +917.2 - SF7BW125 to SF12BW125 456 456 484 +917.4 - SF7BW125 to SF12BW125 457 457 486 +917.6 - SF7BW125 to SF12BW125 458 458 459 - === 2.4.9+5VOutput===488 +917.8 - SF7BW125 to SF12BW125 460 460 461 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.490 +918.0 - SF7BW125 to SF12BW125 462 462 492 +918.2 - SF7BW125 to SF12BW125 463 463 464 -The 5V output time can be controlled by AT Command. 465 465 466 -(% style="color: blue" %)**AT+5VT=1000**495 +(% style="color:#037691" %)**Downlink:** 467 467 468 - Meansset5V valid time to have 1000ms.Sothe real 5Voutputwill actually have1000ms + sampling time for other sensors.497 +923.3 - SF7BW500 to SF12BW500 469 469 499 +923.9 - SF7BW500 to SF12BW500 470 470 501 +924.5 - SF7BW500 to SF12BW500 471 471 472 - ==2.5DownlinkPayload ==503 +925.1 - SF7BW500 to SF12BW500 473 473 474 - Bydefault,NSE01prints the downlinkpayload to console port.505 +925.7 - SF7BW500 to SF12BW500 475 475 476 - [[image:image-20220708133731-5.png]]507 +926.3 - SF7BW500 to SF12BW500 477 477 509 +926.9 - SF7BW500 to SF12BW500 478 478 479 -((( 480 -(% style="color:blue" %)**Examples:** 481 -))) 511 +927.5 - SF7BW500 to SF12BW500 482 482 483 -((( 484 - 485 -))) 513 +923.3 - SF12BW500(RX2 downlink only) 486 486 487 -* ((( 488 -(% style="color:blue" %)**Set TDC** 489 -))) 490 490 491 -((( 492 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 493 -))) 494 494 495 -((( 496 -Payload: 01 00 00 1E TDC=30S 497 -))) 517 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 498 498 499 -((( 500 -Payload: 01 00 00 3C TDC=60S 501 -))) 519 +(% style="color:#037691" %)**Default Uplink channel:** 502 502 503 -((( 504 - 505 -))) 521 +923.2 - SF7BW125 to SF10BW125 506 506 507 -* ((( 508 -(% style="color:blue" %)**Reset** 509 -))) 523 +923.4 - SF7BW125 to SF10BW125 510 510 511 -((( 512 -If payload = 0x04FF, it will reset the NSE01 513 -))) 514 514 526 +(% style="color:#037691" %)**Additional Uplink Channel**: 515 515 516 - *(%style="color:blue"%)**INTMOD**528 +(OTAA mode, channel added by JoinAccept message) 517 517 518 - DownlinkPayload:00003, Set AT+INTMOD=3530 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 519 519 532 +922.2 - SF7BW125 to SF10BW125 520 520 534 +922.4 - SF7BW125 to SF10BW125 521 521 522 - ==2.6LEDIndicator==536 +922.6 - SF7BW125 to SF10BW125 523 523 524 -((( 525 -The NSE01 has an internal LED which is to show the status of different state. 538 +922.8 - SF7BW125 to SF10BW125 526 526 540 +923.0 - SF7BW125 to SF10BW125 527 527 528 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 529 -* Then the LED will be on for 1 second means device is boot normally. 530 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 531 -* For each uplink probe, LED will be on for 500ms. 532 -))) 542 +922.0 - SF7BW125 to SF10BW125 533 533 534 534 545 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 535 535 547 +923.6 - SF7BW125 to SF10BW125 536 536 537 - ==2.7InstallationinSoil ==549 +923.8 - SF7BW125 to SF10BW125 538 538 539 - __**Measurementthesoilsurface**__551 +924.0 - SF7BW125 to SF10BW125 540 540 541 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]553 +924.2 - SF7BW125 to SF10BW125 542 542 543 - [[image:1657259653666-883.png]]555 +924.4 - SF7BW125 to SF10BW125 544 544 557 +924.6 - SF7BW125 to SF10BW125 545 545 546 -((( 547 - 548 548 549 -((( 550 -Dig a hole with diameter > 20CM. 551 -))) 560 +(% style="color:#037691" %)** Downlink:** 552 552 553 -((( 554 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 555 -))) 556 -))) 562 +Uplink channels 1-8 (RX1) 557 557 558 - [[image:1654506665940-119.png]]564 +923.2 - SF10BW125 (RX2) 559 559 560 -((( 561 - 562 -))) 563 563 564 564 565 -== 2. 8FirmwareChangeLog==568 +=== 2.7.6 KR920-923 (KR920) === 566 566 570 +Default channel: 567 567 568 - DownloadURL&FirmwareChange log572 +922.1 - SF7BW125 to SF12BW125 569 569 570 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]574 +922.3 - SF7BW125 to SF12BW125 571 571 576 +922.5 - SF7BW125 to SF12BW125 572 572 573 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 574 574 579 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 575 575 581 +922.1 - SF7BW125 to SF12BW125 576 576 577 - ==2.9BatteryAnalysis ==583 +922.3 - SF7BW125 to SF12BW125 578 578 579 - ===2.9.1BatteryType ===585 +922.5 - SF7BW125 to SF12BW125 580 580 587 +922.7 - SF7BW125 to SF12BW125 581 581 582 - TheNSE01battery is a combinationof an 8500mAh Li/SOCI2attery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.589 +922.9 - SF7BW125 to SF12BW125 583 583 591 +923.1 - SF7BW125 to SF12BW125 584 584 585 - Thebatteryisdesignedtolast for several years depends on the actually use environment and update interval.593 +923.3 - SF7BW125 to SF12BW125 586 586 587 587 588 - Thebatteryrelated documents as below:596 +(% style="color:#037691" %)**Downlink:** 589 589 590 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 591 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 592 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 598 +Uplink channels 1-7(RX1) 593 593 600 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 601 + 602 + 603 + 604 +=== 2.7.7 IN865-867 (IN865) === 605 + 606 +(% style="color:#037691" %)** Uplink:** 607 + 608 +865.0625 - SF7BW125 to SF12BW125 609 + 610 +865.4025 - SF7BW125 to SF12BW125 611 + 612 +865.9850 - SF7BW125 to SF12BW125 613 + 614 + 615 +(% style="color:#037691" %) **Downlink:** 616 + 617 +Uplink channels 1-3 (RX1) 618 + 619 +866.550 - SF10BW125 (RX2) 620 + 621 + 622 + 623 + 624 +== 2.8 LED Indicator == 625 + 626 +The LSE01 has an internal LED which is to show the status of different state. 627 + 628 +* Blink once when device power on. 629 +* Solid ON for 5 seconds once device successful Join the network. 630 +* Blink once when device transmit a packet. 631 + 632 + 633 + 634 +== 2.9 Installation in Soil == 635 + 636 +**Measurement the soil surface** 637 + 638 + 639 +[[image:1654506634463-199.png]] 640 + 594 594 ((( 595 -[[image:image-20220708140453-6.png]] 642 +((( 643 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 596 596 ))) 645 +))) 597 597 598 598 648 +[[image:1654506665940-119.png]] 599 599 600 -=== 2.9.2 Power consumption Analyze === 650 +((( 651 +Dig a hole with diameter > 20CM. 652 +))) 601 601 602 602 ((( 603 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.655 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 604 604 ))) 605 605 606 606 659 +== 2.10 Firmware Change Log == 660 + 607 607 ((( 608 - Instructiontouseasbelow:662 +**Firmware download link:** 609 609 ))) 610 610 611 611 ((( 612 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]666 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 613 613 ))) 614 614 669 +((( 670 + 671 +))) 615 615 616 616 ((( 617 - (% style="color:blue" %)**Step2: **(%%)Openithoose674 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 618 618 ))) 619 619 620 - *(((621 - ProductModel677 +((( 678 + 622 622 ))) 623 -* ((( 624 -Uplink Interval 680 + 681 +((( 682 +**V1.0.** 625 625 ))) 626 -* ((( 627 -Working Mode 628 -))) 629 629 630 630 ((( 631 - And theLifeexpectation in difference casewill be shown on the right.686 +Release 632 632 ))) 633 633 634 -[[image:image-20220708141352-7.jpeg]] 635 635 690 +== 2.11 Battery Analysis == 636 636 692 +=== 2.11.1 Battery Type === 637 637 638 -=== 2.9.3 Battery Note === 694 +((( 695 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 696 +))) 639 639 640 640 ((( 641 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.699 +The battery is designed to last for more than 5 years for the LSN50. 642 642 ))) 643 643 702 +((( 703 +((( 704 +The battery-related documents are as below: 705 +))) 706 +))) 644 644 708 +* ((( 709 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 713 +))) 714 +* ((( 715 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 716 +))) 645 645 646 - ===2.9.4 Replacethe battery ===718 + [[image:image-20220606171726-9.png]] 647 647 720 + 721 + 722 +=== 2.11.2 Battery Note === 723 + 648 648 ((( 649 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).725 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 650 650 ))) 651 651 652 652 653 653 654 -= 3. AccessNB-IoTModule =730 +=== 2.11.3 Replace the battery === 655 655 656 656 ((( 657 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.733 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 658 658 ))) 659 659 660 660 ((( 661 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]737 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 662 662 ))) 663 663 664 -[[image:1657261278785-153.png]] 740 +((( 741 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 742 +))) 665 665 666 666 667 667 668 -= 4.746 += 3. Using the AT Commands = 669 669 670 -== 4.1748 +== 3.1 Access AT Commands == 671 671 672 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 673 673 751 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 674 674 675 - AT+<CMD>? : Helpon<CMD>753 +[[image:1654501986557-872.png||height="391" width="800"]] 676 676 677 -AT+<CMD> : Run <CMD> 678 678 679 - AT+<CMD>=<value>: Setthevalue756 +Or if you have below board, use below connection: 680 680 681 -AT+<CMD>=? : Get the value 682 682 759 +[[image:1654502005655-729.png||height="503" width="801"]] 683 683 761 + 762 + 763 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 764 + 765 + 766 + [[image:1654502050864-459.png||height="564" width="806"]] 767 + 768 + 769 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 770 + 771 + 772 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 773 + 774 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 775 + 776 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 777 + 778 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 779 + 780 + 684 684 (% style="color:#037691" %)**General Commands**(%%) 685 685 686 -AT 783 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 687 687 688 -AT? 785 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 689 689 690 -ATZ 787 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 691 691 692 -AT+TDC 789 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 693 693 694 -AT+CFG : Print all configurations 695 695 696 - AT+CFGMOD: Workingmode selection792 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 697 697 698 -AT+I NTMOD:Setthe trigger interruptmode794 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 699 699 700 -AT+ 5VTSetextend the timeof5V power796 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 701 701 702 -AT+P ROChooseagreement798 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 703 703 704 -AT+ WEIGREGet weightorsetweight to 0800 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 705 705 706 -AT+ WEIGAPGet or SettheGapValue of weight802 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 707 707 708 -AT+ RXDL: Extendthe sendingandreceivingtime804 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 709 709 710 -AT+ CNTFACGettcountingparameters806 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 711 711 712 -AT+ SERVADDR:ServerAddress808 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 713 713 810 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 714 714 715 -(% style="color:# 037691" %)**COAPManagement**812 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 716 716 717 -AT+ URIsourceparameters814 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 718 718 816 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 719 719 720 -(% style="color:# 037691" %)**UDPManagement**818 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 721 721 722 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)820 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 723 723 822 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 724 724 725 -(% style="color:# 037691" %)**MQTTManagement**824 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 726 726 727 -AT+CLIENT : Get or Set MQTT client 728 728 729 - AT+UNAMEGetSetMQTT Username827 +(% style="color:#037691" %)**LoRa Network Management** 730 730 731 -AT+ PWDGetor SetMQTT password829 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 732 732 733 -AT+ PUBTOPICGetorSetMQTTpublishtopic831 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 734 734 735 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic833 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 736 736 835 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 737 737 738 -(% style="color:# 037691" %)**Information**837 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 739 739 740 -AT+F DRctoryDataReset839 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 741 741 742 -AT+ PWORDSerialAccessPassword841 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 743 743 843 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 744 744 845 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 745 745 746 -= 5.FAQ=847 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 747 747 748 -= =5.1HowtoUpgradeFirmware==849 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 749 749 851 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 750 750 853 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 854 + 855 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 856 + 857 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 858 + 859 + 860 +(% style="color:#037691" %)**Information** 861 + 862 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 863 + 864 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 865 + 866 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 867 + 868 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 869 + 870 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 871 + 872 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 873 + 874 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 875 + 876 + 877 += 4. FAQ = 878 + 879 +== 4.1 How to change the LoRa Frequency Bands/Region? == 880 + 751 751 ((( 752 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 882 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 883 +When downloading the images, choose the required image file for download. 753 753 ))) 754 754 755 755 ((( 756 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]887 + 757 757 ))) 758 758 759 759 ((( 760 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.891 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 761 761 ))) 762 762 894 +((( 895 + 896 +))) 763 763 898 +((( 899 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 900 +))) 764 764 765 -= 6. Trouble Shooting = 902 +((( 903 + 904 +))) 766 766 767 -== 6.1 Connection problem when uploading firmware == 906 +((( 907 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 908 +))) 768 768 910 +[[image:image-20220606154726-3.png]] 769 769 770 -(% class="wikigeneratedid" %) 912 + 913 +When you use the TTN network, the US915 frequency bands use are: 914 + 915 +* 903.9 - SF7BW125 to SF10BW125 916 +* 904.1 - SF7BW125 to SF10BW125 917 +* 904.3 - SF7BW125 to SF10BW125 918 +* 904.5 - SF7BW125 to SF10BW125 919 +* 904.7 - SF7BW125 to SF10BW125 920 +* 904.9 - SF7BW125 to SF10BW125 921 +* 905.1 - SF7BW125 to SF10BW125 922 +* 905.3 - SF7BW125 to SF10BW125 923 +* 904.6 - SF8BW500 924 + 771 771 ((( 772 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]926 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 773 773 ))) 774 774 929 +(% class="box infomessage" %) 930 +((( 931 +**AT+CHE=2** 932 +))) 775 775 934 +(% class="box infomessage" %) 935 +((( 936 +**ATZ** 937 +))) 776 776 777 -== 6.2 AT Command input doesn't work == 939 +((( 940 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 941 +))) 778 778 779 779 ((( 780 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.944 + 781 781 ))) 782 782 947 +((( 948 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 949 +))) 783 783 951 +[[image:image-20220606154825-4.png]] 784 784 785 -= 7. Order Info = 786 786 787 787 788 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**955 += 5. Trouble Shooting = 789 789 957 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 790 790 959 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 960 + 961 + 962 +== 5.2 AT Command input doesn’t work == 963 + 964 +((( 965 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 966 +))) 967 + 968 + 969 +== 5.3 Device rejoin in at the second uplink packet == 970 + 971 +(% style="color:#4f81bd" %)**Issue describe as below:** 972 + 973 +[[image:1654500909990-784.png]] 974 + 975 + 976 +(% style="color:#4f81bd" %)**Cause for this issue:** 977 + 978 +((( 979 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 980 +))) 981 + 982 + 983 +(% style="color:#4f81bd" %)**Solution: ** 984 + 985 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 986 + 987 +[[image:1654500929571-736.png||height="458" width="832"]] 988 + 989 + 990 += 6. Order Info = 991 + 992 + 993 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 994 + 995 + 996 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 997 + 998 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 999 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1000 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1001 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1002 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1003 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1004 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1005 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1006 + 1007 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1008 + 1009 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1010 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1011 + 791 791 (% class="wikigeneratedid" %) 792 792 ((( 793 793 794 794 ))) 795 795 796 -= 8.1017 += 7. Packing Info = 797 797 798 798 ((( 799 799 800 800 801 801 (% style="color:#037691" %)**Package Includes**: 1023 +))) 802 802 803 - 804 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 805 -* External antenna x 1 1025 +* ((( 1026 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 806 806 ))) 807 807 808 808 ((( ... ... @@ -809,20 +809,30 @@ 809 809 810 810 811 811 (% style="color:#037691" %)**Dimension and weight**: 1033 +))) 812 812 813 - 814 -* Size: 195 x 125 x 55 mm 815 -* Weight: 420g 1035 +* ((( 1036 +Device Size: cm 816 816 ))) 1038 +* ((( 1039 +Device Weight: g 1040 +))) 1041 +* ((( 1042 +Package Size / pcs : cm 1043 +))) 1044 +* ((( 1045 +Weight / pcs : g 817 817 818 -((( 819 - 820 820 821 - 822 822 823 823 ))) 824 824 825 -= 9.1051 += 8. Support = 826 826 827 827 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 828 828 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1055 + 1056 + 1057 +~)~)~) 1058 +~)~)~) 1059 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content