Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 24 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220610172436-1.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -3,16 +3,8 @@ 3 3 4 4 5 5 6 +**Contents:** 6 6 7 - 8 - 9 - 10 - 11 - 12 - 13 - 14 -**Table of Contents:** 15 - 16 16 {{toc/}} 17 17 18 18 ... ... @@ -20,789 +20,1015 @@ 20 20 21 21 22 22 23 -= 1. 15 += 1. Introduction = 24 24 25 -== 1.1 17 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 - 20 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 21 +))) 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 23 +((( 24 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 25 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 27 +((( 28 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 29 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 31 +((( 32 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 33 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 37 - 38 - 35 +((( 36 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 39 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]43 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 47 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 49 +* LoRaWAN 1.0.3 Class A 50 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 54 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 59 +* 4000mAh or 8500mAh Battery for long term use 62 62 61 +== 1.3 Specification == 63 63 64 - ==1.3Specification==63 +Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 65 65 65 +[[image:image-20220606162220-5.png]] 66 66 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 71 71 72 - (% style="color:#037691"%)**NB-IoT Spec:**69 +== 1.4 Applications == 73 73 74 -* - B1 @H-FDD: 2100MHz 75 -* - B3 @H-FDD: 1800MHz 76 -* - B8 @H-FDD: 900MHz 77 -* - B5 @H-FDD: 850MHz 78 -* - B20 @H-FDD: 800MHz 79 -* - B28 @H-FDD: 700MHz 71 +* Smart Agriculture 80 80 81 -Probe(% style="color:#037691" %)** Specification:** 73 +(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 74 + 82 82 83 - MeasureVolume:Base on the centrapin of the probe,a cylinder with7cm diameter and 10cm height.76 +== 1.5 Firmware Change log == 84 84 85 -[[image:image-20220708101224-1.png]] 86 86 79 +**LSE01 v1.0 :** Release 87 87 88 88 89 -== 1.4 Applications == 90 90 91 - *SmartAgriculture83 += 2. Configure LSE01 to connect to LoRaWAN network = 92 92 93 -(% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 94 - 85 +== 2.1 How it works == 95 95 96 -== 1.5 Pin Definitions == 87 +((( 88 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 89 +))) 97 97 91 +((( 92 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 93 +))) 98 98 99 -[[image:1657246476176-652.png]] 100 100 101 101 97 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 102 102 103 - =2. UseNSE01to communicate withIoTServer=99 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 104 104 105 -== 2.1 How it works == 106 106 102 +[[image:1654503992078-669.png]] 107 107 104 + 105 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 106 + 107 + 108 +**Step 1**: Create a device in TTN with the OTAA keys from LSE01. 109 + 110 +Each LSE01 is shipped with a sticker with the default device EUI as below: 111 + 112 +[[image:image-20220606163732-6.jpeg]] 113 + 114 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 115 + 116 +**Add APP EUI in the application** 117 + 118 + 119 +[[image:1654504596150-405.png]] 120 + 121 + 122 + 123 +**Add APP KEY and DEV EUI** 124 + 125 +[[image:1654504683289-357.png]] 126 + 127 + 128 + 129 +**Step 2**: Power on LSE01 130 + 131 + 132 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 133 + 134 +[[image:image-20220606163915-7.png]] 135 + 136 + 137 +**Step 3:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 138 + 139 +[[image:1654504778294-788.png]] 140 + 141 + 142 + 143 +== 2.3 Uplink Payload == 144 + 145 +=== 2.3.1 MOD~=0(Default Mode) === 146 + 147 +LSE01 will uplink payload via LoRaWAN with below payload format: 148 + 149 + 150 +Uplink payload includes in total 11 bytes. 151 + 152 + 153 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 154 +|((( 155 +**Size** 156 + 157 +**(bytes)** 158 +)))|**2**|**2**|**2**|**2**|**2**|**1** 159 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 160 +Temperature 161 + 162 +(Reserve, Ignore now) 163 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 164 +MOD & Digital Interrupt 165 + 166 +(Optional) 167 +))) 168 + 169 + 170 + 171 +=== 2.3.2 MOD~=1(Original value) === 172 + 173 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 174 + 175 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 176 +|((( 177 +**Size** 178 + 179 +**(bytes)** 180 +)))|**2**|**2**|**2**|**2**|**2**|**1** 181 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 182 +Temperature 183 + 184 +(Reserve, Ignore now) 185 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 186 +MOD & Digital Interrupt 187 + 188 +(Optional) 189 +))) 190 + 191 + 192 + 193 +=== 2.3.3 Battery Info === 194 + 195 +Check the battery voltage for LSE01. 196 + 197 +Ex1: 0x0B45 = 2885mV 198 + 199 +Ex2: 0x0B49 = 2889mV 200 + 201 + 202 + 203 +=== 2.3.4 Soil Moisture === 204 + 205 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 206 + 207 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 208 + 209 + 210 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 211 + 212 + 213 + 214 +=== 2.3.5 Soil Temperature === 215 + 216 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 217 + 218 +**Example**: 219 + 220 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 221 + 222 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 223 + 224 + 225 + 226 +=== 2.3.6 Soil Conductivity (EC) === 227 + 108 108 ((( 109 - The NSE01 is equipped withaNB-IoTmodule, the pre-loaded firmware in NSE01willgetenvironmentdata fromsensorsandsendthe valuetolocal NB-IoTnetworkviatheNB-IoT module.NB-IoTnetworkwillforwardthisvaluetoIoT server viaheprotocoldefinedby NSE01.229 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 110 110 ))) 111 111 232 +((( 233 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 234 +))) 112 112 113 113 ((( 114 - Thediagram belowshowstheworkingflowin defaultfirmwareofNSE01:237 +Generally, the EC value of irrigation water is less than 800uS / cm. 115 115 ))) 116 116 117 -[[image:image-20220708101605-2.png]] 240 +((( 241 + 242 +))) 118 118 119 119 ((( 120 120 121 121 ))) 122 122 248 +=== 2.3.7 MOD === 123 123 250 +Firmware version at least v2.1 supports changing mode. 124 124 125 - == 2.2 Configure theNSE01=252 +For example, bytes[10]=90 126 126 254 +mod=(bytes[10]>>7)&0x01=1. 127 127 128 -=== 2.2.1 Test Requirement === 129 129 257 +**Downlink Command:** 130 130 131 - TouseNSE01inyourcity, make suremeet below requirements:259 +If payload = 0x0A00, workmode=0 132 132 133 -* Your local operator has already distributed a NB-IoT Network there. 134 -* The local NB-IoT network used the band that NSE01 supports. 135 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 261 +If** **payload =** **0x0A01, workmode=1 136 136 137 -((( 138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 139 -))) 140 140 141 141 142 - [[image:1657249419225-449.png]]265 +=== 2.3.8 Decode payload in The Things Network === 143 143 267 +While using TTN network, you can add the payload format to decode the payload. 144 144 145 145 146 - ===2.2.2 Insert SIM card ===270 +[[image:1654505570700-128.png]] 147 147 148 - Insert theNB-IoT Cardgetfromyourprovider.272 +The payload decoder function for TTN is here: 149 149 150 - Userneedtotakeout theNB-IoT moduleandsert theIM cardkebelow:274 +LSE01 TTN Payload Decoder: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Payload_Decoder/]] 151 151 152 152 153 -[[image:1657249468462-536.png]] 154 154 278 +== 2.4 Uplink Interval == 155 155 280 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 156 156 157 -=== 2.2.3 Connect USB – TTL to NSE01 to configure it === 158 158 159 -((( 160 -((( 161 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 162 -))) 163 -))) 164 164 284 +== 2.5 Downlink Payload == 165 165 166 - **Connection:**286 +By default, LSE50 prints the downlink payload to console port. 167 167 168 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND288 +[[image:image-20220606165544-8.png]] 169 169 170 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD 171 171 172 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD291 +**Examples:** 173 173 174 174 175 - InthePC, use below serialtoolsettings:294 +* **Set TDC** 176 176 177 -* Baud: (% style="color:green" %)**9600** 178 -* Data bits:** (% style="color:green" %)8(%%)** 179 -* Stop bits: (% style="color:green" %)**1** 180 -* Parity: (% style="color:green" %)**None** 181 -* Flow Control: (% style="color:green" %)**None** 296 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 182 182 183 -((( 184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 185 -))) 298 +Payload: 01 00 00 1E TDC=30S 186 186 187 - [[image:image-20220708110657-3.png]]300 +Payload: 01 00 00 3C TDC=60S 188 188 189 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 190 190 303 +* **Reset** 191 191 305 +If payload = 0x04FF, it will reset the LSE01 192 192 193 -=== 2.2.4 Use CoAP protocol to uplink data === 194 194 195 - (%style="color:red" %)Note: if you don't haveCoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]308 +* **CFM** 196 196 310 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 197 197 198 -**Use below commands:** 199 199 200 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 201 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 202 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 203 203 204 - Forparameterdescription,pleaserefer toATcommand set314 +== 2.6 Show Data in DataCake IoT Server == 205 205 206 -[[ima ge:1657249793983-486.png]]316 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 207 207 208 208 209 - Afterconfigure theserveraddressand(% style="color:green" %)**reset thedevice**(%%) (via AT+ATZ ), NSE01willstart to uplinksensorvaluesto CoAP server.319 +**Step 1**: Be sure that your device is programmed and properly connected to the network at this time. 210 210 211 - [[image:1657249831934-534.png]]321 +**Step 2**: To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 212 212 213 213 324 +[[image:1654505857935-743.png]] 214 214 215 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 216 216 217 - This feature is supported since firmwareversion v1.0.1327 +[[image:1654505874829-548.png]] 218 218 329 +Step 3: Create an account or log in Datacake. 219 219 220 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 222 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 331 +Step 4: Search the LSE01 and add DevEUI. 223 223 224 -[[image:1657249864775-321.png]] 225 225 334 +[[image:1654505905236-553.png]] 226 226 227 -[[image:1657249930215-289.png]] 228 228 337 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 229 229 339 +[[image:1654505925508-181.png]] 230 230 231 -=== 2.2.6 Use MQTT protocol to uplink data === 232 232 233 -This feature is supported since firmware version v110 234 234 343 +== 2.7 Frequency Plans == 235 235 236 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 238 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 239 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 240 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 241 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 242 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 345 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 243 243 244 -[[image:1657249978444-674.png]] 245 245 348 +=== 2.7.1 EU863-870 (EU868) === 246 246 247 - [[image:1657249990869-686.png]]350 +(% style="color:#037691" %)** Uplink:** 248 248 352 +868.1 - SF7BW125 to SF12BW125 249 249 250 -((( 251 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval. 252 -))) 354 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 253 253 356 +868.5 - SF7BW125 to SF12BW125 254 254 358 +867.1 - SF7BW125 to SF12BW125 255 255 256 - === 2.2.7UseTCP protocolto uplink data ===360 +867.3 - SF7BW125 to SF12BW125 257 257 258 - Thisfeatureissupported since firmware versionv110362 +867.5 - SF7BW125 to SF12BW125 259 259 364 +867.7 - SF7BW125 to SF12BW125 260 260 261 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 366 +867.9 - SF7BW125 to SF12BW125 263 263 264 - [[image:1657250217799-140.png]]368 +868.8 - FSK 265 265 266 266 267 - [[image:1657250255956-604.png]]371 +(% style="color:#037691" %)** Downlink:** 268 268 373 +Uplink channels 1-9 (RX1) 269 269 375 +869.525 - SF9BW125 (RX2 downlink only) 270 270 271 -=== 2.2.8 Change Update Interval === 272 272 273 -User can use below command to change the (% style="color:green" %)**uplink interval**. 274 274 275 - * (% style="color:blue" %)**AT+TDC=600**%%)~/~/Set Update Interval to 600s379 +=== 2.7.2 US902-928(US915) === 276 276 277 -((( 278 -(% style="color:red" %)**NOTE:** 279 -))) 381 +Used in USA, Canada and South America. Default use CHE=2 280 280 281 -((( 282 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour. 283 -))) 383 +(% style="color:#037691" %)**Uplink:** 284 284 385 +903.9 - SF7BW125 to SF10BW125 285 285 387 +904.1 - SF7BW125 to SF10BW125 286 286 287 - == 2.3UplinkPayload==389 +904.3 - SF7BW125 to SF10BW125 288 288 289 - Inthismode,uplink payload includes intotal18 bytes391 +904.5 - SF7BW125 to SF10BW125 290 290 291 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 292 -|=(% style="width: 50px;" %)((( 293 -**Size(bytes)** 294 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 295 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 393 +904.7 - SF7BW125 to SF10BW125 296 296 297 - Ifweusethe MQTT client tosubscribe to this MQTT topic, we can see the following information when the NSE01uplink data.395 +904.9 - SF7BW125 to SF10BW125 298 298 397 +905.1 - SF7BW125 to SF10BW125 299 299 300 - [[image:image-20220708111918-4.png]]399 +905.3 - SF7BW125 to SF10BW125 301 301 302 302 303 - Thepayload is ASCII string,representative same HEX:402 +(% style="color:#037691" %)**Downlink:** 304 304 305 - 0x72403155615900640c7817075e0a8c02f900 where:404 +923.3 - SF7BW500 to SF12BW500 306 306 307 -* Device ID: 0x 724031556159 = 724031556159 308 -* Version: 0x0064=100=1.0.0 406 +923.9 - SF7BW500 to SF12BW500 309 309 310 -* BAT: 0x0c78 = 3192 mV = 3.192V 311 -* Singal: 0x17 = 23 312 -* Soil Moisture: 0x075e= 1886 = 18.86 % 313 -* Soil Temperature:0x0a8c =2700=27 °C 314 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 315 -* Interrupt: 0x00 = 0 408 +924.5 - SF7BW500 to SF12BW500 316 316 410 +925.1 - SF7BW500 to SF12BW500 317 317 318 - ==2.4PayloadExplanation andSensorInterface==412 +925.7 - SF7BW500 to SF12BW500 319 319 414 +926.3 - SF7BW500 to SF12BW500 320 320 321 - ===2.4.1 DeviceID===416 +926.9 - SF7BW500 to SF12BW500 322 322 323 - Bydefault,theDevice ID equaltothe last 6 bytes of IMEI.418 +927.5 - SF7BW500 to SF12BW500 324 324 325 - Usercanuse(%style="color:blue" %)**AT+DEUI**(%%) to set Device ID420 +923.3 - SF12BW500(RX2 downlink only) 326 326 327 -**Example:** 328 328 329 -AT+DEUI=A84041F15612 330 330 331 - TheDeviceID is stored in a none-erasearea,Upgrade the firmware or run AT+FDR won't erase Device ID.424 +=== 2.7.3 CN470-510 (CN470) === 332 332 426 +Used in China, Default use CHE=1 333 333 428 +(% style="color:#037691" %)**Uplink:** 334 334 335 - === 2.4.2VersionInfo ===430 +486.3 - SF7BW125 to SF12BW125 336 336 337 - Specifythesoftware version: 0x64=100,means firmware version1.00.432 +486.5 - SF7BW125 to SF12BW125 338 338 339 - For example: 0x00 64:this device is NSE01with firmware version1.0.0.434 +486.7 - SF7BW125 to SF12BW125 340 340 436 +486.9 - SF7BW125 to SF12BW125 341 341 438 +487.1 - SF7BW125 to SF12BW125 342 342 343 - === 2.4.3atteryInfo===440 +487.3 - SF7BW125 to SF12BW125 344 344 345 -((( 346 -Check the battery voltage for LSE01. 347 -))) 442 +487.5 - SF7BW125 to SF12BW125 348 348 349 -((( 350 -Ex1: 0x0B45 = 2885mV 351 -))) 444 +487.7 - SF7BW125 to SF12BW125 352 352 353 -((( 354 -Ex2: 0x0B49 = 2889mV 355 -))) 356 356 447 +(% style="color:#037691" %)**Downlink:** 357 357 449 +506.7 - SF7BW125 to SF12BW125 358 358 359 - === 2.4.4SignalStrength===451 +506.9 - SF7BW125 to SF12BW125 360 360 361 - NB-IoTNetworksignalStrength.453 +507.1 - SF7BW125 to SF12BW125 362 362 363 - **Ex1:0x1d=29**455 +507.3 - SF7BW125 to SF12BW125 364 364 365 - (% style="color:blue" %)**0**(%%)113dBmorless457 +507.5 - SF7BW125 to SF12BW125 366 366 367 - (%style="color:blue"%)**1**(%%)-111dBm459 +507.7 - SF7BW125 to SF12BW125 368 368 369 - (%style="color:blue"%)**2...30**(%%)-109dBm... -53dBm461 +507.9 - SF7BW125 to SF12BW125 370 370 371 - (% style="color:blue" %)**31**(%%)-51dBmorgreater463 +508.1 - SF7BW125 to SF12BW125 372 372 373 - (%style="color:blue"%)**99**(%%)Not known ornot detectable465 +505.3 - SF12BW125 (RX2 downlink only) 374 374 375 375 376 376 377 -=== 2. 4.5Soil Moisture===469 +=== 2.7.4 AU915-928(AU915) === 378 378 379 -((( 380 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 381 -))) 471 +Default use CHE=2 382 382 383 -((( 384 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is 385 -))) 473 +(% style="color:#037691" %)**Uplink:** 386 386 387 -((( 388 - 389 -))) 475 +916.8 - SF7BW125 to SF12BW125 390 390 391 -((( 392 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 393 -))) 477 +917.0 - SF7BW125 to SF12BW125 394 394 479 +917.2 - SF7BW125 to SF12BW125 395 395 481 +917.4 - SF7BW125 to SF12BW125 396 396 397 - === 2.4.6oilTemperature===483 +917.6 - SF7BW125 to SF12BW125 398 398 399 -((( 400 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 401 -))) 485 +917.8 - SF7BW125 to SF12BW125 402 402 403 -((( 404 -**Example**: 405 -))) 487 +918.0 - SF7BW125 to SF12BW125 406 406 407 -((( 408 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 409 -))) 489 +918.2 - SF7BW125 to SF12BW125 410 410 411 -((( 412 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 413 -))) 414 414 492 +(% style="color:#037691" %)**Downlink:** 415 415 494 +923.3 - SF7BW500 to SF12BW500 416 416 417 - ===2.4.7SoilConductivity(EC) ===496 +923.9 - SF7BW500 to SF12BW500 418 418 419 -((( 420 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 421 -))) 498 +924.5 - SF7BW500 to SF12BW500 422 422 423 -((( 424 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 425 -))) 500 +925.1 - SF7BW500 to SF12BW500 426 426 427 -((( 428 -Generally, the EC value of irrigation water is less than 800uS / cm. 429 -))) 502 +925.7 - SF7BW500 to SF12BW500 430 430 431 -((( 432 - 433 -))) 504 +926.3 - SF7BW500 to SF12BW500 434 434 435 -((( 436 - 437 -))) 506 +926.9 - SF7BW500 to SF12BW500 438 438 439 - ===2.4.8DigitalInterrupt===508 +927.5 - SF7BW500 to SF12BW500 440 440 441 - DigitalInterruptrefers to pin(% style="color:blue" %)**GPIO_EXTI**(%%),andthere are different trigger methods. When there is a trigger, the NSE01will send a packettothe server.510 +923.3 - SF12BW500(RX2 downlink only) 442 442 443 -The command is: 444 444 445 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.** 446 446 514 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 447 447 448 - Thelower four bitsofthis data field shows if this packet is generatedby interruptor not. Click here for the hardware and softwareset up.516 +(% style="color:#037691" %)**Default Uplink channel:** 449 449 518 +923.2 - SF7BW125 to SF10BW125 450 450 451 - Example:520 +923.4 - SF7BW125 to SF10BW125 452 452 453 -0x(00): Normal uplink packet. 454 454 455 - 0x(01):Interrupt UplinkPacket.523 +(% style="color:#037691" %)**Additional Uplink Channel**: 456 456 525 +(OTAA mode, channel added by JoinAccept message) 457 457 527 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 458 458 459 - ===2.4.9+5VOutput===529 +922.2 - SF7BW125 to SF10BW125 460 460 461 - NSE01willenable +5Voutput beforeall sampling and disable the +5v after all sampling.531 +922.4 - SF7BW125 to SF10BW125 462 462 533 +922.6 - SF7BW125 to SF10BW125 463 463 464 - The5Voutput time can be controlledby AT Command.535 +922.8 - SF7BW125 to SF10BW125 465 465 466 - (%style="color:blue"%)**AT+5VT=1000**537 +923.0 - SF7BW125 to SF10BW125 467 467 468 - Meansset5Vvalidtime tohave 1000ms.So the real 5V output will actually have1000ms + sampling time for other sensors.539 +922.0 - SF7BW125 to SF10BW125 469 469 470 470 542 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 471 471 472 - ==2.5DownlinkPayload ==544 +923.6 - SF7BW125 to SF10BW125 473 473 474 - Bydefault,NSE01prints the downlinkpayload to console port.546 +923.8 - SF7BW125 to SF10BW125 475 475 476 - [[image:image-20220708133731-5.png]]548 +924.0 - SF7BW125 to SF10BW125 477 477 550 +924.2 - SF7BW125 to SF10BW125 478 478 479 -((( 480 -(% style="color:blue" %)**Examples:** 481 -))) 552 +924.4 - SF7BW125 to SF10BW125 482 482 483 -((( 484 - 485 -))) 554 +924.6 - SF7BW125 to SF10BW125 486 486 487 -* ((( 488 -(% style="color:blue" %)**Set TDC** 489 -))) 490 490 491 -((( 492 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 493 -))) 557 +(% style="color:#037691" %)** Downlink:** 494 494 495 -((( 496 -Payload: 01 00 00 1E TDC=30S 497 -))) 559 +Uplink channels 1-8 (RX1) 498 498 499 -((( 500 -Payload: 01 00 00 3C TDC=60S 501 -))) 561 +923.2 - SF10BW125 (RX2) 502 502 503 -((( 504 - 505 -))) 506 506 507 -* ((( 508 -(% style="color:blue" %)**Reset** 509 -))) 510 510 511 -((( 512 -If payload = 0x04FF, it will reset the NSE01 513 -))) 565 +=== 2.7.6 KR920-923 (KR920) === 514 514 567 +Default channel: 515 515 516 - *(%style="color:blue"%)**INTMOD**569 +922.1 - SF7BW125 to SF12BW125 517 517 518 - Downlink Payload: 06000003,SetAT+INTMOD=3571 +922.3 - SF7BW125 to SF12BW125 519 519 573 +922.5 - SF7BW125 to SF12BW125 520 520 521 521 522 - ==2.6LEDIndicator==576 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 523 523 524 -((( 525 -The NSE01 has an internal LED which is to show the status of different state. 578 +922.1 - SF7BW125 to SF12BW125 526 526 580 +922.3 - SF7BW125 to SF12BW125 527 527 528 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 529 -* Then the LED will be on for 1 second means device is boot normally. 530 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 531 -* For each uplink probe, LED will be on for 500ms. 532 -))) 582 +922.5 - SF7BW125 to SF12BW125 533 533 584 +922.7 - SF7BW125 to SF12BW125 534 534 586 +922.9 - SF7BW125 to SF12BW125 535 535 588 +923.1 - SF7BW125 to SF12BW125 536 536 537 - ==2.7InstallationinSoil ==590 +923.3 - SF7BW125 to SF12BW125 538 538 539 -__**Measurement the soil surface**__ 540 540 541 - Choosethe proper measuring position. Avoid the probe to touch rocks or hard things. Split thesurface soilaccording to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]593 +(% style="color:#037691" %)**Downlink:** 542 542 543 - [[image:1657259653666-883.png]] 595 +Uplink channels 1-7(RX1) 544 544 597 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 545 545 546 -((( 547 - 548 548 549 -((( 550 -Dig a hole with diameter > 20CM. 551 -))) 552 552 553 -((( 554 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 555 -))) 556 -))) 601 +=== 2.7.7 IN865-867 (IN865) === 557 557 558 - [[image:1654506665940-119.png]]603 +(% style="color:#037691" %)** Uplink:** 559 559 560 -((( 561 - 562 -))) 605 +865.0625 - SF7BW125 to SF12BW125 563 563 607 +865.4025 - SF7BW125 to SF12BW125 564 564 565 - == 2.8FirmwareChange Log==609 +865.9850 - SF7BW125 to SF12BW125 566 566 567 567 568 - DownloadURL& Firmware Changelog612 +(% style="color:#037691" %) **Downlink:** 569 569 570 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]614 +Uplink channels 1-3 (RX1) 571 571 616 +866.550 - SF10BW125 (RX2) 572 572 573 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]] 574 574 575 575 576 576 577 -== 2. 9BatteryAnalysis==621 +== 2.8 LED Indicator == 578 578 579 - ===2.9.1BatteryType===623 +The LSE01 has an internal LED which is to show the status of different state. 580 580 625 +* Blink once when device power on. 626 +* Solid ON for 5 seconds once device successful Join the network. 627 +* Blink once when device transmit a packet. 581 581 582 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 583 583 584 584 585 - Thebatteryis designed to lastfor severalyears depends onthe actually use environmentandupdateinterval.631 +== 2.9 Installation in Soil == 586 586 633 +**Measurement the soil surface** 587 587 588 -The battery related documents as below: 589 589 590 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 591 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 592 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 636 +[[image:1654506634463-199.png]] 593 593 594 594 ((( 595 -[[image:image-20220708140453-6.png]] 639 +((( 640 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 596 596 ))) 642 +))) 597 597 598 598 645 +[[image:1654506665940-119.png]] 599 599 600 -=== 2.9.2 Power consumption Analyze === 647 +((( 648 +Dig a hole with diameter > 20CM. 649 +))) 601 601 602 602 ((( 603 - Draginobattery powered productare allrunsinLow Powermode. Wehavean update battery calculator whichbase onthemeasurementof the realdevice. User canuse this calculatorto checkthebatterylife andcalculatethe batterylifeif want to use different transmit interval.652 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 604 604 ))) 605 605 606 606 656 +== 2.10 Firmware Change Log == 657 + 607 607 ((( 608 - Instructiontouseasbelow:659 +**Firmware download link:** 609 609 ))) 610 610 611 611 ((( 612 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]663 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 613 613 ))) 614 614 666 +((( 667 + 668 +))) 615 615 616 616 ((( 617 - (% style="color:blue" %)**Step2: **(%%)Openithoose671 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 618 618 ))) 619 619 620 - *(((621 - ProductModel674 +((( 675 + 622 622 ))) 623 -* ((( 624 -Uplink Interval 677 + 678 +((( 679 +**V1.0.** 625 625 ))) 626 -* ((( 627 -Working Mode 628 -))) 629 629 630 630 ((( 631 - And theLifeexpectation in difference casewill be shown on the right.683 +Release 632 632 ))) 633 633 634 -[[image:image-20220708141352-7.jpeg]] 635 635 687 +== 2.11 Battery Analysis == 636 636 689 +=== 2.11.1 Battery Type === 637 637 638 -=== 2.9.3 Battery Note === 691 +((( 692 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 693 +))) 639 639 640 640 ((( 641 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.696 +The battery is designed to last for more than 5 years for the LSN50. 642 642 ))) 643 643 699 +((( 700 +((( 701 +The battery-related documents are as below: 702 +))) 703 +))) 644 644 705 +* ((( 706 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 707 +))) 708 +* ((( 709 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 710 +))) 711 +* ((( 712 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 713 +))) 645 645 646 - ===2.9.4 Replacethe battery ===715 + [[image:image-20220606171726-9.png]] 647 647 717 + 718 + 719 +=== 2.11.2 Battery Note === 720 + 648 648 ((( 649 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).722 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 650 650 ))) 651 651 652 652 653 653 654 -= 3. AccessNB-IoTModule =727 +=== 2.11.3 Replace the battery === 655 655 656 656 ((( 657 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.730 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 658 658 ))) 659 659 660 660 ((( 661 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]734 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 662 662 ))) 663 663 664 -[[image:1657261278785-153.png]] 737 +((( 738 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 739 +))) 665 665 666 666 667 667 668 -= 4.743 += 3. Using the AT Commands = 669 669 670 -== 4.1745 +== 3.1 Access AT Commands == 671 671 672 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 673 673 748 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 674 674 675 - AT+<CMD>? : Helpon<CMD>750 +[[image:1654501986557-872.png||height="391" width="800"]] 676 676 677 -AT+<CMD> : Run <CMD> 678 678 679 - AT+<CMD>=<value>: Setthevalue753 +Or if you have below board, use below connection: 680 680 681 -AT+<CMD>=? : Get the value 682 682 756 +[[image:1654502005655-729.png||height="503" width="801"]] 683 683 758 + 759 + 760 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 761 + 762 + 763 + [[image:1654502050864-459.png||height="564" width="806"]] 764 + 765 + 766 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]]: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/]] 767 + 768 + 769 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 770 + 771 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 772 + 773 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 774 + 775 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 776 + 777 + 684 684 (% style="color:#037691" %)**General Commands**(%%) 685 685 686 -AT 780 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 687 687 688 -AT? 782 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 689 689 690 -ATZ 784 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 691 691 692 -AT+TDC 786 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 693 693 694 -AT+CFG : Print all configurations 695 695 696 - AT+CFGMOD: Workingmode selection789 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 697 697 698 -AT+I NTMOD:Setthe trigger interruptmode791 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 699 699 700 -AT+ 5VTSetextend the timeof5V power793 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 701 701 702 -AT+P ROChooseagreement795 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 703 703 704 -AT+ WEIGREGet weightorsetweight to 0797 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 705 705 706 -AT+ WEIGAPGet or SettheGapValue of weight799 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 707 707 708 -AT+ RXDL: Extendthe sendingandreceivingtime801 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 709 709 710 -AT+ CNTFACGettcountingparameters803 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 711 711 712 -AT+ SERVADDR:ServerAddress805 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 713 713 807 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 714 714 715 -(% style="color:# 037691" %)**COAPManagement**809 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 716 716 717 -AT+ URIsourceparameters811 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 718 718 813 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 719 719 720 -(% style="color:# 037691" %)**UDPManagement**815 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 721 721 722 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)817 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 723 723 819 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 724 724 725 -(% style="color:# 037691" %)**MQTTManagement**821 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 726 726 727 -AT+CLIENT : Get or Set MQTT client 728 728 729 - AT+UNAMEGetSetMQTT Username824 +(% style="color:#037691" %)**LoRa Network Management** 730 730 731 -AT+ PWDGetor SetMQTT password826 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 732 732 733 -AT+ PUBTOPICGetorSetMQTTpublishtopic828 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 734 734 735 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic830 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 736 736 832 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 737 737 738 -(% style="color:# 037691" %)**Information**834 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 739 739 740 -AT+F DRctoryDataReset836 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 741 741 742 -AT+ PWORDSerialAccessPassword838 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 743 743 840 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 744 744 842 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 745 745 746 -= 5.FAQ=844 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 747 747 748 -= =5.1HowtoUpgradeFirmware==846 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 749 749 848 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 750 750 850 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 851 + 852 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 853 + 854 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 855 + 856 + 857 +(% style="color:#037691" %)**Information** 858 + 859 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 860 + 861 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 862 + 863 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 864 + 865 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 866 + 867 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 868 + 869 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 870 + 871 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 872 + 873 + 874 += 4. FAQ = 875 + 876 +== 4.1 How to change the LoRa Frequency Bands/Region? == 877 + 751 751 ((( 752 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 879 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 880 +When downloading the images, choose the required image file for download. 753 753 ))) 754 754 755 755 ((( 756 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]884 + 757 757 ))) 758 758 759 759 ((( 760 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.888 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 761 761 ))) 762 762 891 +((( 892 + 893 +))) 763 763 895 +((( 896 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 897 +))) 764 764 765 -= 6. Trouble Shooting = 899 +((( 900 + 901 +))) 766 766 767 -== 6.1 Connection problem when uploading firmware == 903 +((( 904 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 905 +))) 768 768 907 +[[image:image-20220606154726-3.png]] 769 769 770 -(% class="wikigeneratedid" %) 909 + 910 +When you use the TTN network, the US915 frequency bands use are: 911 + 912 +* 903.9 - SF7BW125 to SF10BW125 913 +* 904.1 - SF7BW125 to SF10BW125 914 +* 904.3 - SF7BW125 to SF10BW125 915 +* 904.5 - SF7BW125 to SF10BW125 916 +* 904.7 - SF7BW125 to SF10BW125 917 +* 904.9 - SF7BW125 to SF10BW125 918 +* 905.1 - SF7BW125 to SF10BW125 919 +* 905.3 - SF7BW125 to SF10BW125 920 +* 904.6 - SF8BW500 921 + 771 771 ((( 772 - (%style="font-size:14px"%)**Pleasesee:**(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color:rgb(255,255,255);font-size:14px;"]]923 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 773 773 ))) 774 774 926 +(% class="box infomessage" %) 927 +((( 928 +**AT+CHE=2** 929 +))) 775 775 931 +(% class="box infomessage" %) 932 +((( 933 +**ATZ** 934 +))) 776 776 777 -== 6.2 AT Command input doesn't work == 936 +((( 937 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 938 +))) 778 778 779 779 ((( 780 - Inthe case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.941 + 781 781 ))) 782 782 944 +((( 945 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 946 +))) 783 783 948 +[[image:image-20220606154825-4.png]] 784 784 785 -= 7. Order Info = 786 786 787 787 788 - PartNumber**:** (% style="color:#4f81bd"%)**NSE01**952 += 5. Trouble Shooting = 789 789 954 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 790 790 956 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 957 + 958 + 959 +== 5.2 AT Command input doesn’t work == 960 + 961 +((( 962 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 963 +))) 964 + 965 + 966 +== 5.3 Device rejoin in at the second uplink packet == 967 + 968 +(% style="color:#4f81bd" %)**Issue describe as below:** 969 + 970 +[[image:1654500909990-784.png]] 971 + 972 + 973 +(% style="color:#4f81bd" %)**Cause for this issue:** 974 + 975 +((( 976 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 977 +))) 978 + 979 + 980 +(% style="color:#4f81bd" %)**Solution: ** 981 + 982 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 983 + 984 +[[image:1654500929571-736.png||height="458" width="832"]] 985 + 986 + 987 += 6. Order Info = 988 + 989 + 990 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 991 + 992 + 993 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 994 + 995 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 996 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 997 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 998 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 999 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1000 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1001 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1002 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1003 + 1004 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1005 + 1006 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1007 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1008 + 791 791 (% class="wikigeneratedid" %) 792 792 ((( 793 793 794 794 ))) 795 795 796 -= 8.1014 += 7. Packing Info = 797 797 798 798 ((( 799 799 800 800 801 801 (% style="color:#037691" %)**Package Includes**: 1020 +))) 802 802 803 - 804 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 805 -* External antenna x 1 1022 +* ((( 1023 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 806 806 ))) 807 807 808 808 ((( ... ... @@ -809,20 +809,30 @@ 809 809 810 810 811 811 (% style="color:#037691" %)**Dimension and weight**: 1030 +))) 812 812 813 - 814 -* Size: 195 x 125 x 55 mm 815 -* Weight: 420g 1032 +* ((( 1033 +Device Size: cm 816 816 ))) 1035 +* ((( 1036 +Device Weight: g 1037 +))) 1038 +* ((( 1039 +Package Size / pcs : cm 1040 +))) 1041 +* ((( 1042 +Weight / pcs : g 817 817 818 -((( 819 - 820 820 821 - 822 822 823 823 ))) 824 824 825 -= 9.1048 += 8. Support = 826 826 827 827 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 828 828 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]] 1052 + 1053 + 1054 +~)~)~) 1055 +~)~)~) 1056 +~)~)~)
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220610172436-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -370.3 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content