Changes for page NDDS75 -- NB-IoT Distance Detect Sensor User Manual
Last modified by Bei Jinggeng on 2024/05/31 09:53
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 23 removed)
- 1657245163077-232.png
- 1657246476176-652.png
- 1657249419225-449.png
- 1657249468462-536.png
- 1657249793983-486.png
- 1657249831934-534.png
- 1657249864775-321.png
- 1657249930215-289.png
- 1657249978444-674.png
- 1657249990869-686.png
- 1657250217799-140.png
- 1657250255956-604.png
- 1657259653666-883.png
- 1657260785982-288.png
- 1657261119050-993.png
- 1657261278785-153.png
- image-20220708101224-1.png
- image-20220708101605-2.png
- image-20220708110657-3.png
- image-20220708111918-4.png
- image-20220708133731-5.png
- image-20220708140453-6.png
- image-20220708141352-7.jpeg
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 - NSE01NB-IoTSoil Moisture & EC Sensor User Manual1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual - Content
-
... ... @@ -20,73 +20,67 @@ 20 20 21 21 22 22 23 -= 1. 23 += 1. Introduction = 24 24 25 -== 1.1 25 +== 1.1 What is LoRaWAN Soil Moisture & EC Sensor == 26 26 27 27 ((( 28 28 29 29 30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory. 30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type. 31 +))) 31 31 32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly. 33 +((( 34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server. 35 +))) 33 33 34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication. 37 +((( 38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption. 39 +))) 35 35 36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years. 41 +((( 42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years. 43 +))) 37 37 38 - 45 +((( 46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on. 39 39 ))) 40 40 49 + 41 41 [[image:1654503236291-817.png]] 42 42 43 43 44 -[[image:165 7245163077-232.png]]53 +[[image:1654503265560-120.png]] 45 45 46 46 47 47 48 -== 1.2 57 +== 1.2 Features == 49 49 50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD 59 +* LoRaWAN 1.0.3 Class A 60 +* Ultra low power consumption 51 51 * Monitor Soil Moisture 52 52 * Monitor Soil Temperature 53 53 * Monitor Soil Conductivity 64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865 54 54 * AT Commands to change parameters 55 55 * Uplink on periodically 56 56 * Downlink to change configure 57 57 * IP66 Waterproof Enclosure 58 -* Ultra-Low Power consumption 59 -* AT Commands to change parameters 60 -* Micro SIM card slot for NB-IoT SIM 61 -* 8500mAh Battery for long term use 69 +* 4000mAh or 8500mAh Battery for long term use 62 62 63 63 64 -== 1.3 Specification == 65 65 66 66 67 -(% style="color:#037691" %)**Common DC Characteristics:** 68 68 69 -* Supply Voltage: 2.1v ~~ 3.6v 70 -* Operating Temperature: -40 ~~ 85°C 75 +== 1.3 Specification == 71 71 72 -(% style="color:#037691" %)**NB-IoT Spec:** 73 - 74 -* - B1 @H-FDD: 2100MHz 75 -* - B3 @H-FDD: 1800MHz 76 -* - B8 @H-FDD: 900MHz 77 -* - B5 @H-FDD: 850MHz 78 -* - B20 @H-FDD: 800MHz 79 -* - B28 @H-FDD: 700MHz 80 - 81 -Probe(% style="color:#037691" %)** Specification:** 82 - 83 83 Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height. 84 84 85 -[[image:image-20220 708101224-1.png]]79 +[[image:image-20220606162220-5.png]] 86 86 87 87 88 88 89 -== 1.4 83 +== 1.4 Applications == 90 90 91 91 * Smart Agriculture 92 92 ... ... @@ -93,716 +93,1013 @@ 93 93 (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %) 94 94 95 95 96 -== 1.5 Pin Definitions==90 +== 1.5 Firmware Change log == 97 97 98 98 99 - [[image:1657246476176-652.png]]93 +**LSE01 v1.0 :** Release 100 100 101 101 102 102 103 -= 2. UseNSE01 to communicatewithIoTServer=97 += 2. Configure LSE01 to connect to LoRaWAN network = 104 104 105 -== 2.1 99 +== 2.1 How it works == 106 106 107 - 108 108 ((( 109 -The NSE01 isequippedwithaNB-IoT module,thepre-loadedfirmwareinNSE01willgetenvironmentdatafrom sensorsandsend thevaluetolocalNB-IoTnetworkviatheNB-IoTmodule.The NB-IoTnetworkwillforwardthisvaluetoIoTserver viatheprotocoldefinedbyNSE01.102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value 110 110 ))) 111 111 112 - 113 113 ((( 114 - Thediagrambelowshows theworkingflowindefaultfirmware ofNSE01:106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]]. 115 115 ))) 116 116 117 -[[image:image-20220708101605-2.png]] 118 118 119 -((( 120 - 121 -))) 122 122 111 +== 2.2 Quick guide to connect to LoRaWAN server (OTAA) == 123 123 113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example. 124 124 125 -== 2.2 Configure the NSE01 == 126 126 116 +[[image:1654503992078-669.png]] 127 127 128 -=== 2.2.1 Test Requirement === 129 129 119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server. 130 130 131 -To use NSE01 in your city, make sure meet below requirements: 132 132 133 -* Your local operator has already distributed a NB-IoT Network there. 134 -* The local NB-IoT network used the band that NSE01 supports. 135 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server. 122 +(% style="color:blue" %)**Step 1**(%%): Create a device in TTN with the OTAA keys from LSE01. 136 136 137 -((( 138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8. The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server 139 -))) 124 +Each LSE01 is shipped with a sticker with the default device EUI as below: 140 140 126 +[[image:image-20220606163732-6.jpeg]] 141 141 142 - [[image:1657249419225-449.png]]128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot: 143 143 130 +**Add APP EUI in the application** 144 144 145 145 146 - === 2.2.2 Insert SIM card ===133 +[[image:1654504596150-405.png]] 147 147 148 -Insert the NB-IoT Card get from your provider. 149 149 150 -User need to take out the NB-IoT module and insert the SIM card like below: 151 151 137 +**Add APP KEY and DEV EUI** 152 152 153 -[[image:165 7249468462-536.png]]139 +[[image:1654504683289-357.png]] 154 154 155 155 156 156 157 - ===2.2.3 ConnectUSB–TTLtoNSE01to configure it ===143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01 158 158 159 -((( 160 -((( 161 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below. 162 -))) 163 -))) 164 164 146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position). 165 165 166 - **Connection:**148 +[[image:image-20220606163915-7.png]] 167 167 168 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND 169 169 170 - background-color:yellow" %)USBTTL TXD<~-~-~-~->UART_RXD151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel. 171 171 172 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD153 +[[image:1654504778294-788.png]] 173 173 174 174 175 -In the PC, use below serial tool settings: 176 176 177 -* Baud: (% style="color:green" %)**9600** 178 -* Data bits:** (% style="color:green" %)8(%%)** 179 -* Stop bits: (% style="color:green" %)**1** 180 -* Parity: (% style="color:green" %)**None** 181 -* Flow Control: (% style="color:green" %)**None** 157 +== 2.3 Uplink Payload == 182 182 183 -((( 184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input. 185 -))) 186 186 187 - [[image:image-20220708110657-3.png]]160 +=== 2.3.1 MOD~=0(Default Mode) === 188 188 189 - (%style="color:red"%)Note: the validAT Commandscanbe foundat:(%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]162 +LSE01 will uplink payload via LoRaWAN with below payload format: 190 190 164 +((( 165 +Uplink payload includes in total 11 bytes. 166 +))) 191 191 168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 169 +|((( 170 +**Size** 192 192 193 -=== 2.2.4 Use CoAP protocol to uplink data === 172 +**(bytes)** 173 +)))|**2**|**2**|**2**|**2**|**2**|**1** 174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 175 +Temperature 194 194 195 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]] 177 +(Reserve, Ignore now) 178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|((( 179 +MOD & Digital Interrupt 196 196 181 +(Optional) 182 +))) 197 197 198 -**Use below commands:** 199 199 200 -* (% style="color:blue" %)**AT+PRO=1** (%%) ~/~/ Set to use CoAP protocol to uplink 201 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683 ** (%%)~/~/ to set CoAP server address and port 202 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path 203 203 204 -For parameter description, please refer to AT command set 205 205 206 -[[image:1657249793983-486.png]] 207 207 208 208 209 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server. 210 210 211 - [[image:1657249831934-534.png]]190 +=== 2.3.2 MOD~=1(Original value) === 212 212 192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation). 213 213 194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %) 195 +|((( 196 +**Size** 214 214 215 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) === 198 +**(bytes)** 199 +)))|**2**|**2**|**2**|**2**|**2**|**1** 200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|((( 201 +Temperature 216 216 217 -This feature is supported since firmware version v1.0.1 203 +(Reserve, Ignore now) 204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|((( 205 +MOD & Digital Interrupt 218 218 207 +(Optional) 208 +))) 219 219 220 -* (% style="color:blue" %)**AT+PRO=2 ** (%%) ~/~/ Set to use UDP protocol to uplink 221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601 ** (%%) ~/~/ to set UDP server address and port 222 -* (% style="color:blue" %)**AT+CFM=1 ** (%%) ~/~/If the server does not respond, this command is unnecessary 223 223 224 -[[image:1657249864775-321.png]] 225 225 226 226 227 -[[image:1657249930215-289.png]] 228 228 229 229 230 230 231 -=== 2. 2.6UseMQTT protocoltouplink data===216 +=== 2.3.3 Battery Info === 232 232 233 -This feature is supported since firmware version v110 218 +((( 219 +Check the battery voltage for LSE01. 220 +))) 234 234 222 +((( 223 +Ex1: 0x0B45 = 2885mV 224 +))) 235 235 236 -* (% style="color:blue" %)**AT+PRO=3 ** (%%) ~/~/Set to use MQTT protocol to uplink 237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883 ** (%%) ~/~/Set MQTT server address and port 238 -* (% style="color:blue" %)**AT+CLIENT=CLIENT ** (%%)~/~/Set up the CLIENT of MQTT 239 -* (% style="color:blue" %)**AT+UNAME=UNAME **(%%)~/~/Set the username of MQTT 240 -* (% style="color:blue" %)**AT+PWD=PWD **(%%)~/~/Set the password of MQTT 241 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB **(%%)~/~/Set the sending topic of MQTT 242 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB **(%%) ~/~/Set the subscription topic of MQTT 226 +((( 227 +Ex2: 0x0B49 = 2889mV 228 +))) 243 243 244 -[[image:1657249978444-674.png]] 245 245 246 246 247 - [[image:1657249990869-686.png]]232 +=== 2.3.4 Soil Moisture === 248 248 234 +((( 235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil. 236 +))) 249 249 250 250 ((( 251 - MQTTprotocol hasamuchhigherpowerconsumptioncomparevsUDP/CoAPprotocol. Please checkthepower analyzedocumentandadjusttheuplink period to asuitableinterval.239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is 252 252 ))) 253 253 242 +((( 243 + 244 +))) 254 254 246 +((( 247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.** 248 +))) 255 255 256 -=== 2.2.7 Use TCP protocol to uplink data === 257 257 258 -This feature is supported since firmware version v110 259 259 252 +=== 2.3.5 Soil Temperature === 260 260 261 -* (% style="color:blue" %)**AT+PRO=4 ** (%%) ~/~/ Set to use TCP protocol to uplink 262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600 **(%%) ~/~/ to set TCP server address and port 254 +((( 255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is 256 +))) 263 263 264 -[[image:1657250217799-140.png]] 258 +((( 259 +**Example**: 260 +))) 265 265 262 +((( 263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 264 +))) 266 266 267 -[[image:1657250255956-604.png]] 266 +((( 267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 268 +))) 268 268 269 269 270 270 271 -=== 2. 2.8Change Update Interval===272 +=== 2.3.6 Soil Conductivity (EC) === 272 272 273 -User can use below command to change the (% style="color:green" %)**uplink interval**. 274 +((( 275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 276 +))) 274 274 275 -* (% style="color:blue" %)**AT+TDC=600 ** (%%)~/~/ Set Update Interval to 600s 278 +((( 279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 280 +))) 276 276 277 277 ((( 278 - (%style="color:red"%)**NOTE:**283 +Generally, the EC value of irrigation water is less than 800uS / cm. 279 279 ))) 280 280 281 281 ((( 282 - (%style="color:red" %)1. By default, the device will send an uplink message every 1 hour.287 + 283 283 ))) 284 284 290 +((( 291 + 292 +))) 285 285 294 +=== 2.3.7 MOD === 286 286 287 - ==2.3UplinkPayload==296 +Firmware version at least v2.1 supports changing mode. 288 288 289 - In this mode,uplink payload includesin total 18bytes298 +For example, bytes[10]=90 290 290 291 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %) 292 -|=(% style="width: 50px;" %)((( 293 -**Size(bytes)** 294 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1** 295 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]] 300 +mod=(bytes[10]>>7)&0x01=1. 296 296 297 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data. 298 298 303 +**Downlink Command:** 299 299 300 - [[image:image-20220708111918-4.png]]305 +If payload = 0x0A00, workmode=0 301 301 307 +If** **payload =** **0x0A01, workmode=1 302 302 303 -The payload is ASCII string, representative same HEX: 304 304 305 -0x72403155615900640c7817075e0a8c02f900 where: 306 306 307 -* Device ID: 0x 724031556159 = 724031556159 308 -* Version: 0x0064=100=1.0.0 311 +=== 2.3.8 Decode payload in The Things Network === 309 309 310 -* BAT: 0x0c78 = 3192 mV = 3.192V 311 -* Singal: 0x17 = 23 312 -* Soil Moisture: 0x075e= 1886 = 18.86 % 313 -* Soil Temperature:0x0a8c =2700=27 °C 314 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm 315 -* Interrupt: 0x00 = 0 313 +While using TTN network, you can add the payload format to decode the payload. 316 316 317 317 318 - ==2.4 Payload Explanation and Sensor Interface ==316 +[[image:1654505570700-128.png]] 319 319 318 +((( 319 +The payload decoder function for TTN is here: 320 +))) 320 320 321 -=== 2.4.1 Device ID === 322 +((( 323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]] 324 +))) 322 322 323 -By default, the Device ID equal to the last 6 bytes of IMEI. 324 324 325 - Usercanuse (% style="color:blue"%)**AT+DEUI**(%%)to set DeviceID327 +== 2.4 Uplink Interval == 326 326 327 - **Example:**329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]] 328 328 329 -AT+DEUI=A84041F15612 330 330 331 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID. 332 332 333 +== 2.5 Downlink Payload == 333 333 335 +By default, LSE50 prints the downlink payload to console port. 334 334 335 - ===2.4.2 VersionInfo ===337 +[[image:image-20220606165544-8.png]] 336 336 337 -Specify the software version: 0x64=100, means firmware version 1.00. 338 338 339 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0. 340 +((( 341 +**Examples:** 342 +))) 340 340 344 +((( 345 + 346 +))) 341 341 348 +* ((( 349 +**Set TDC** 350 +))) 342 342 343 -=== 2.4.3 Battery Info === 352 +((( 353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01. 354 +))) 344 344 345 345 ((( 346 - Check the batteryvoltageforLSE01.357 +Payload: 01 00 00 1E TDC=30S 347 347 ))) 348 348 349 349 ((( 350 - Ex1: 0x0B45=2885mV361 +Payload: 01 00 00 3C TDC=60S 351 351 ))) 352 352 353 353 ((( 354 - Ex2:0x0B49 = 2889mV365 + 355 355 ))) 356 356 368 +* ((( 369 +**Reset** 370 +))) 357 357 372 +((( 373 +If payload = 0x04FF, it will reset the LSE01 374 +))) 358 358 359 -=== 2.4.4 Signal Strength === 360 360 361 - NB-IoTNetwork signal Strength.377 +* **CFM** 362 362 363 - **Ex1: 0x1d=29**379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0 364 364 365 -(% style="color:blue" %)**0**(%%) -113dBm or less 366 366 367 -(% style="color:blue" %)**1**(%%) -111dBm 368 368 369 - (%style="color:blue"%)**2...30**(%%) -109dBm... -53dBm383 +== 2.6 Show Data in DataCake IoT Server == 370 370 371 -(% style="color:blue" %)**31** (%%) -51dBm or greater 372 - 373 -(% style="color:blue" %)**99** (%%) Not known or not detectable 374 - 375 - 376 - 377 -=== 2.4.5 Soil Moisture === 378 - 379 379 ((( 380 - Gethemoisturecontent of thesoil.Thevaluegeoftheregisteris0-10000(Decimal),dividethisvalueby100togetthepercentageofmoistureinthe soil.386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps: 381 381 ))) 382 382 383 383 ((( 384 - Forexample, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is390 + 385 385 ))) 386 386 387 387 ((( 388 - 394 +(% style="color:blue" %)**Step 1**(%%): Be sure that your device is programmed and properly connected to the network at this time. 389 389 ))) 390 390 391 391 ((( 392 -(% style="color: #4f81bd" %)**05DC(H)=1500(D)/100=15%.**398 +(% style="color:blue" %)**Step 2**(%%): To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps: 393 393 ))) 394 394 395 395 402 +[[image:1654505857935-743.png]] 396 396 397 -=== 2.4.6 Soil Temperature === 398 398 399 -((( 400 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is 401 -))) 405 +[[image:1654505874829-548.png]] 402 402 403 -((( 404 -**Example**: 405 -))) 406 406 407 -((( 408 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C 409 -))) 408 +(% style="color:blue" %)**Step 3**(%%)**:** Create an account or log in Datacake. 410 410 411 -((( 412 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C 413 -))) 410 +(% style="color:blue" %)**Step 4**(%%)**:** Search the LSE01 and add DevEUI. 414 414 415 415 413 +[[image:1654505905236-553.png]] 416 416 417 -=== 2.4.7 Soil Conductivity (EC) === 418 418 419 -((( 420 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000). 421 -))) 416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices. 422 422 423 -((( 424 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm. 425 -))) 418 +[[image:1654505925508-181.png]] 426 426 427 -((( 428 -Generally, the EC value of irrigation water is less than 800uS / cm. 429 -))) 430 430 431 -((( 432 - 433 -))) 434 434 435 -((( 436 - 437 -))) 422 +== 2.7 Frequency Plans == 438 438 439 - ===2.4.8Digital Interrupt===424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets. 440 440 441 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server. 442 442 443 - Thecommandis:427 +=== 2.7.1 EU863-870 (EU868) === 444 444 445 -(% style="color: blue" %)**AT+INTMOD=3**(%%) ~/~/(more info about INMODplease refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**429 +(% style="color:#037691" %)** Uplink:** 446 446 431 +868.1 - SF7BW125 to SF12BW125 447 447 448 - Thelowerfourbitsofthisdata field shows if this packet is generatedby interrupt or not. Click here for the hardware and software set up.433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250 449 449 435 +868.5 - SF7BW125 to SF12BW125 450 450 451 - Example:437 +867.1 - SF7BW125 to SF12BW125 452 452 453 - 0x(00):Normaluplinkpacket.439 +867.3 - SF7BW125 to SF12BW125 454 454 455 - 0x(01):InterruptUplinkPacket.441 +867.5 - SF7BW125 to SF12BW125 456 456 443 +867.7 - SF7BW125 to SF12BW125 457 457 445 +867.9 - SF7BW125 to SF12BW125 458 458 459 - === 2.4.9+5V Output ===447 +868.8 - FSK 460 460 461 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 462 462 450 +(% style="color:#037691" %)** Downlink:** 463 463 464 - The 5V output timecanbe controlledbyAT Command.452 +Uplink channels 1-9 (RX1) 465 465 466 -( %style="color:blue" %)**AT+5VT=1000**454 +869.525 - SF9BW125 (RX2 downlink only) 467 467 468 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors. 469 469 470 470 458 +=== 2.7.2 US902-928(US915) === 471 471 472 - ==2.5 DownlinkPayload ==460 +Used in USA, Canada and South America. Default use CHE=2 473 473 474 - Bydefault, NSE01 prints the downlinkpayload to console port.462 +(% style="color:#037691" %)**Uplink:** 475 475 476 - [[image:image-20220708133731-5.png]]464 +903.9 - SF7BW125 to SF10BW125 477 477 466 +904.1 - SF7BW125 to SF10BW125 478 478 479 -((( 480 -(% style="color:blue" %)**Examples:** 481 -))) 468 +904.3 - SF7BW125 to SF10BW125 482 482 483 -((( 484 - 485 -))) 470 +904.5 - SF7BW125 to SF10BW125 486 486 487 -* ((( 488 -(% style="color:blue" %)**Set TDC** 489 -))) 472 +904.7 - SF7BW125 to SF10BW125 490 490 491 -((( 492 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01. 493 -))) 474 +904.9 - SF7BW125 to SF10BW125 494 494 495 -((( 496 -Payload: 01 00 00 1E TDC=30S 497 -))) 476 +905.1 - SF7BW125 to SF10BW125 498 498 499 -((( 500 -Payload: 01 00 00 3C TDC=60S 501 -))) 478 +905.3 - SF7BW125 to SF10BW125 502 502 503 -((( 504 - 505 -))) 506 506 507 -* ((( 508 -(% style="color:blue" %)**Reset** 509 -))) 481 +(% style="color:#037691" %)**Downlink:** 510 510 511 -((( 512 -If payload = 0x04FF, it will reset the NSE01 513 -))) 483 +923.3 - SF7BW500 to SF12BW500 514 514 485 +923.9 - SF7BW500 to SF12BW500 515 515 516 - *(%style="color:blue"%)**INTMOD**487 +924.5 - SF7BW500 to SF12BW500 517 517 518 - DownlinkPayload:06000003,SetAT+INTMOD=3489 +925.1 - SF7BW500 to SF12BW500 519 519 491 +925.7 - SF7BW500 to SF12BW500 520 520 493 +926.3 - SF7BW500 to SF12BW500 521 521 522 - ==2.6LEDIndicator==495 +926.9 - SF7BW500 to SF12BW500 523 523 524 -((( 525 -The NSE01 has an internal LED which is to show the status of different state. 497 +927.5 - SF7BW500 to SF12BW500 526 526 499 +923.3 - SF12BW500(RX2 downlink only) 527 527 528 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe) 529 -* Then the LED will be on for 1 second means device is boot normally. 530 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds. 531 -* For each uplink probe, LED will be on for 500ms. 532 -))) 533 533 534 534 503 +=== 2.7.3 CN470-510 (CN470) === 535 535 505 +Used in China, Default use CHE=1 536 536 537 - ==2.7 InstallationinSoil ==507 +(% style="color:#037691" %)**Uplink:** 538 538 539 - __**Measurementthesoilsurface**__509 +486.3 - SF7BW125 to SF12BW125 540 540 541 - Choose the proper measuring position.Avoidthe probe to touch rocks or hard things.Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]511 +486.5 - SF7BW125 to SF12BW125 542 542 543 - [[image:1657259653666-883.png]]513 +486.7 - SF7BW125 to SF12BW125 544 544 515 +486.9 - SF7BW125 to SF12BW125 545 545 546 -((( 547 - 517 +487.1 - SF7BW125 to SF12BW125 548 548 549 -((( 550 -Dig a hole with diameter > 20CM. 551 -))) 519 +487.3 - SF7BW125 to SF12BW125 552 552 553 -((( 554 -Horizontal insert the probe to the soil and fill the hole for long term measurement. 555 -))) 556 -))) 521 +487.5 - SF7BW125 to SF12BW125 557 557 558 - [[image:1654506665940-119.png]]523 +487.7 - SF7BW125 to SF12BW125 559 559 560 -((( 561 - 562 -))) 563 563 526 +(% style="color:#037691" %)**Downlink:** 564 564 565 - == 2.8FirmwareChange Log==528 +506.7 - SF7BW125 to SF12BW125 566 566 530 +506.9 - SF7BW125 to SF12BW125 567 567 568 - DownloadURL&FirmwareChange log532 +507.1 - SF7BW125 to SF12BW125 569 569 570 - [[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]534 +507.3 - SF7BW125 to SF12BW125 571 571 536 +507.5 - SF7BW125 to SF12BW125 572 572 573 - UpgradeInstruction:[[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]538 +507.7 - SF7BW125 to SF12BW125 574 574 540 +507.9 - SF7BW125 to SF12BW125 575 575 542 +508.1 - SF7BW125 to SF12BW125 576 576 577 - == 2.9BatteryAnalysis==544 +505.3 - SF12BW125 (RX2 downlink only) 578 578 579 -=== 2.9.1 Battery Type === 580 580 581 581 582 - TheNSE01 battery is a combination of an 8500mAh Li/SOCI2Battery and a Super Capacitor.The battery is none-rechargeable battery type with a low discharge rate (<2% per year).This type of battery is commonly used in IoT devices such as water meter.548 +=== 2.7.4 AU915-928(AU915) === 583 583 550 +Default use CHE=2 584 584 585 - Thebatteryis designed toast forseveral years depends on the actually use environment and update interval.552 +(% style="color:#037691" %)**Uplink:** 586 586 554 +916.8 - SF7BW125 to SF12BW125 587 587 588 - Thebatteryrelateddocuments as below:556 +917.0 - SF7BW125 to SF12BW125 589 589 590 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 591 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 592 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]] 558 +917.2 - SF7BW125 to SF12BW125 593 593 560 +917.4 - SF7BW125 to SF12BW125 561 + 562 +917.6 - SF7BW125 to SF12BW125 563 + 564 +917.8 - SF7BW125 to SF12BW125 565 + 566 +918.0 - SF7BW125 to SF12BW125 567 + 568 +918.2 - SF7BW125 to SF12BW125 569 + 570 + 571 +(% style="color:#037691" %)**Downlink:** 572 + 573 +923.3 - SF7BW500 to SF12BW500 574 + 575 +923.9 - SF7BW500 to SF12BW500 576 + 577 +924.5 - SF7BW500 to SF12BW500 578 + 579 +925.1 - SF7BW500 to SF12BW500 580 + 581 +925.7 - SF7BW500 to SF12BW500 582 + 583 +926.3 - SF7BW500 to SF12BW500 584 + 585 +926.9 - SF7BW500 to SF12BW500 586 + 587 +927.5 - SF7BW500 to SF12BW500 588 + 589 +923.3 - SF12BW500(RX2 downlink only) 590 + 591 + 592 + 593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) === 594 + 595 +(% style="color:#037691" %)**Default Uplink channel:** 596 + 597 +923.2 - SF7BW125 to SF10BW125 598 + 599 +923.4 - SF7BW125 to SF10BW125 600 + 601 + 602 +(% style="color:#037691" %)**Additional Uplink Channel**: 603 + 604 +(OTAA mode, channel added by JoinAccept message) 605 + 606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**: 607 + 608 +922.2 - SF7BW125 to SF10BW125 609 + 610 +922.4 - SF7BW125 to SF10BW125 611 + 612 +922.6 - SF7BW125 to SF10BW125 613 + 614 +922.8 - SF7BW125 to SF10BW125 615 + 616 +923.0 - SF7BW125 to SF10BW125 617 + 618 +922.0 - SF7BW125 to SF10BW125 619 + 620 + 621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**: 622 + 623 +923.6 - SF7BW125 to SF10BW125 624 + 625 +923.8 - SF7BW125 to SF10BW125 626 + 627 +924.0 - SF7BW125 to SF10BW125 628 + 629 +924.2 - SF7BW125 to SF10BW125 630 + 631 +924.4 - SF7BW125 to SF10BW125 632 + 633 +924.6 - SF7BW125 to SF10BW125 634 + 635 + 636 +(% style="color:#037691" %)** Downlink:** 637 + 638 +Uplink channels 1-8 (RX1) 639 + 640 +923.2 - SF10BW125 (RX2) 641 + 642 + 643 + 644 +=== 2.7.6 KR920-923 (KR920) === 645 + 646 +Default channel: 647 + 648 +922.1 - SF7BW125 to SF12BW125 649 + 650 +922.3 - SF7BW125 to SF12BW125 651 + 652 +922.5 - SF7BW125 to SF12BW125 653 + 654 + 655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)** 656 + 657 +922.1 - SF7BW125 to SF12BW125 658 + 659 +922.3 - SF7BW125 to SF12BW125 660 + 661 +922.5 - SF7BW125 to SF12BW125 662 + 663 +922.7 - SF7BW125 to SF12BW125 664 + 665 +922.9 - SF7BW125 to SF12BW125 666 + 667 +923.1 - SF7BW125 to SF12BW125 668 + 669 +923.3 - SF7BW125 to SF12BW125 670 + 671 + 672 +(% style="color:#037691" %)**Downlink:** 673 + 674 +Uplink channels 1-7(RX1) 675 + 676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125) 677 + 678 + 679 + 680 +=== 2.7.7 IN865-867 (IN865) === 681 + 682 +(% style="color:#037691" %)** Uplink:** 683 + 684 +865.0625 - SF7BW125 to SF12BW125 685 + 686 +865.4025 - SF7BW125 to SF12BW125 687 + 688 +865.9850 - SF7BW125 to SF12BW125 689 + 690 + 691 +(% style="color:#037691" %) **Downlink:** 692 + 693 +Uplink channels 1-3 (RX1) 694 + 695 +866.550 - SF10BW125 (RX2) 696 + 697 + 698 + 699 + 700 +== 2.8 LED Indicator == 701 + 702 +The LSE01 has an internal LED which is to show the status of different state. 703 + 704 +* Blink once when device power on. 705 +* Solid ON for 5 seconds once device successful Join the network. 706 +* Blink once when device transmit a packet. 707 + 708 +== 2.9 Installation in Soil == 709 + 710 +**Measurement the soil surface** 711 + 712 + 713 +[[image:1654506634463-199.png]] 714 + 594 594 ((( 595 -[[image:image-20220708140453-6.png]] 716 +((( 717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. 596 596 ))) 719 +))) 597 597 598 598 599 599 600 - === 2.9.2 Power consumptionAnalyze ===723 +[[image:1654506665940-119.png]] 601 601 602 602 ((( 603 -D raginobatterypowered product are all runs in Low Powermode. We have an update battery calculatorwhich base onthemeasurement of the realdevice. User can usehis calculator to check the batterylifeand calculate the battery life if want to use different transmit interval.726 +Dig a hole with diameter > 20CM. 604 604 ))) 605 605 729 +((( 730 +Horizontal insert the probe to the soil and fill the hole for long term measurement. 731 +))) 606 606 733 + 734 +== 2.10 Firmware Change Log == 735 + 607 607 ((( 608 - Instructiontouseasbelow:737 +**Firmware download link:** 609 609 ))) 610 610 611 611 ((( 612 - (% style="color:blue" %)**Step 1: **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from:[[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]] 613 613 ))) 614 614 744 +((( 745 + 746 +))) 615 615 616 616 ((( 617 - (% style="color:blue" %)**Step2: **(%%)Openithoose749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]] 618 618 ))) 619 619 620 - *(((621 - ProductModel752 +((( 753 + 622 622 ))) 623 -* ((( 624 -Uplink Interval 755 + 756 +((( 757 +**V1.0.** 625 625 ))) 626 -* ((( 627 -Working Mode 628 -))) 629 629 630 630 ((( 631 - And theLifeexpectation in difference casewill be shown on the right.761 +Release 632 632 ))) 633 633 634 -[[image:image-20220708141352-7.jpeg]] 635 635 765 +== 2.11 Battery Analysis == 636 636 767 +=== 2.11.1 Battery Type === 637 637 638 -=== 2.9.3 Battery Note === 769 +((( 770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter. 771 +))) 639 639 640 640 ((( 641 -The Li-SICObattery is designedfor small current/ longperiod application. It isnotgood to use a high current,short period transmit method. Therecommendedminimum period for use ofthis batteryis5minutes. Ifyou useshorterperiod time to transmitLoRa,thenthe battery life may be decreased.774 +The battery is designed to last for more than 5 years for the LSN50. 642 642 ))) 643 643 777 +((( 778 +((( 779 +The battery-related documents are as below: 780 +))) 781 +))) 644 644 783 +* ((( 784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]], 785 +))) 786 +* ((( 787 +[[Lithium-Thionyl Chloride Battery datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]], 788 +))) 789 +* ((( 790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]] 791 +))) 645 645 646 - ===2.9.4 Replacethe battery ===793 + [[image:image-20220610172436-1.png]] 647 647 795 + 796 + 797 +=== 2.11.2 Battery Note === 798 + 648 648 ((( 649 -The defaultbatterypackofNSE01includesaER26500 plussupercapacitor. Ifusercan'tfind this pack locally,theycanfindER26500 orquivalence withoutthe SPC1520 capacitor, which will alsowork inmostcase. TheSPCcanlarge thebatterylifeforhigh frequency use(update periodbelow5minutes).800 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased. 650 650 ))) 651 651 652 652 653 653 654 -= 3. AccessNB-IoTModule =805 +=== 2.11.3 Replace the battery === 655 655 656 656 ((( 657 - Userscan directlyaccesstheAT command setoftheNB-IoTmodule.808 +If Battery is lower than 2.7v, user should replace the battery of LSE01. 658 658 ))) 659 659 660 660 ((( 661 - The AT Commandsetcanrefer theBC35-G NB-IoTModuleATCommand: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]]812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board. 662 662 ))) 663 663 664 -[[image:1657261278785-153.png]] 815 +((( 816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes) 817 +))) 665 665 666 666 667 667 668 -= 4.821 += 3. Using the AT Commands = 669 669 670 -== 4.1823 +== 3.1 Access AT Commands == 671 671 672 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]] 673 673 826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below. 674 674 675 - AT+<CMD>? : Helpon<CMD>828 +[[image:1654501986557-872.png||height="391" width="800"]] 676 676 677 -AT+<CMD> : Run <CMD> 678 678 679 - AT+<CMD>=<value>: Setthevalue831 +Or if you have below board, use below connection: 680 680 681 -AT+<CMD>=? : Get the value 682 682 834 +[[image:1654502005655-729.png||height="503" width="801"]] 683 683 836 + 837 + 838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below: 839 + 840 + 841 + [[image:1654502050864-459.png||height="564" width="806"]] 842 + 843 + 844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]] 845 + 846 + 847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD> 848 + 849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD> 850 + 851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value 852 + 853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%) : Get the value 854 + 855 + 684 684 (% style="color:#037691" %)**General Commands**(%%) 685 685 686 -AT 858 +(% style="background-color:#dcdcdc" %)**AT**(%%) : Attention 687 687 688 -AT? 860 +(% style="background-color:#dcdcdc" %)**AT?**(%%) : Short Help 689 689 690 -ATZ 862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%) : MCU Reset 691 691 692 -AT+TDC 864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%) : Application Data Transmission Interval 693 693 694 -AT+CFG : Print all configurations 695 695 696 - AT+CFGMOD: Workingmode selection867 +(% style="color:#037691" %)**Keys, IDs and EUIs management** 697 697 698 -AT+I NTMOD:Setthe trigger interruptmode869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%) : Application EUI 699 699 700 -AT+ 5VTSetextend the timeof5V power871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%) : Application Key 701 701 702 -AT+P ROChooseagreement873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%) : Application Session Key 703 703 704 -AT+ WEIGREGet weightorsetweight to 0875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%) : Device Address 705 705 706 -AT+ WEIGAPGet or SettheGapValue of weight877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%) : Device EUI 707 707 708 -AT+ RXDL: Extendthe sendingandreceivingtime879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%) : Network ID (You can enter this command change only after successful network connection) 709 709 710 -AT+ CNTFACGettcountingparameters881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%) : Network Session Key Joining and sending date on LoRa network 711 711 712 -AT+ SERVADDR:ServerAddress883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%) : Confirm Mode 713 713 885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%) : Confirm Status 714 714 715 -(% style="color:# 037691" %)**COAPManagement**887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%) : Join LoRa? Network 716 716 717 -AT+ URIsourceparameters889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%) : LoRa? Network Join Mode 718 718 891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%) : LoRa? Network Join Status 719 719 720 -(% style="color:# 037691" %)**UDPManagement**893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%) : Print Last Received Data in Raw Format 721 721 722 -AT+C FM:Uploadconfirmationmode (onlyvalid forUDP)895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%) : Print Last Received Data in Binary Format 723 723 897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%) : Send Text Data 724 724 725 -(% style="color:# 037691" %)**MQTTManagement**899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%) : Send Hexadecimal Data 726 726 727 -AT+CLIENT : Get or Set MQTT client 728 728 729 - AT+UNAMEGetSetMQTT Username902 +(% style="color:#037691" %)**LoRa Network Management** 730 730 731 -AT+ PWDGetor SetMQTT password904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%) : Adaptive Rate 732 732 733 -AT+ PUBTOPICGetorSetMQTTpublishtopic906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%) : LoRa Class(Currently only support class A 734 734 735 -AT+ SUBTOPIC :GetorSetMQTT subscriptiontopic908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%) : Duty Cycle Setting 736 736 910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%) : Data Rate (Can Only be Modified after ADR=0) 737 737 738 -(% style="color:# 037691" %)**Information**912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%) : Frame Counter Downlink 739 739 740 -AT+F DRctoryDataReset914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%) : Frame Counter Uplink 741 741 742 -AT+ PWORDSerialAccessPassword916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%) : Join Accept Delay1 743 743 918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%) : Join Accept Delay2 744 744 920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%) : Public Network Mode 745 745 746 -= 5.FAQ=922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%) : Receive Delay1 747 747 748 -= =5.1HowtoUpgradeFirmware==924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%) : Receive Delay2 749 749 926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%) : Rx2 Window Data Rate 750 750 928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%) : Rx2 Window Frequency 929 + 930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%) : Transmit Power 931 + 932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%) : Set work mode 933 + 934 + 935 +(% style="color:#037691" %)**Information** 936 + 937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%) : RSSI of the Last Received Packet 938 + 939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%) : SNR of the Last Received Packet 940 + 941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%) : Image Version and Frequency Band 942 + 943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%) : Factory Data Reset 944 + 945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%) : Application Port 946 + 947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%) : Get or Set Frequency (Unit: Hz) for Single Channel Mode 948 + 949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%) : Get or Set eight channels mode, Only for US915, AU915, CN470 950 + 951 + 952 += 4. FAQ = 953 + 954 +== 4.1 How to change the LoRa Frequency Bands/Region? == 955 + 751 751 ((( 752 -User can upgrade the firmware for 1) bug fix, 2) new feature release. 957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]]. 958 +When downloading the images, choose the required image file for download. 753 753 ))) 754 754 755 755 ((( 756 - Pleasesee this link for how to upgrade: [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]962 + 757 757 ))) 758 758 759 759 ((( 760 - (%style="color:red"%)Notice,NSE01andLSE01share thememotherboard.Theyuse thesameconnection andmethodto update.966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies. 761 761 ))) 762 762 969 +((( 970 + 971 +))) 763 763 973 +((( 974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA. 975 +))) 764 764 765 -= 6. Trouble Shooting = 977 +((( 978 + 979 +))) 766 766 767 -== 6.1 Connection problem when uploading firmware == 981 +((( 982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets. 983 +))) 768 768 985 +[[image:image-20220606154726-3.png]] 769 769 770 -(% class="wikigeneratedid" %) 987 + 988 +When you use the TTN network, the US915 frequency bands use are: 989 + 990 +* 903.9 - SF7BW125 to SF10BW125 991 +* 904.1 - SF7BW125 to SF10BW125 992 +* 904.3 - SF7BW125 to SF10BW125 993 +* 904.5 - SF7BW125 to SF10BW125 994 +* 904.7 - SF7BW125 to SF10BW125 995 +* 904.9 - SF7BW125 to SF10BW125 996 +* 905.1 - SF7BW125 to SF10BW125 997 +* 905.3 - SF7BW125 to SF10BW125 998 +* 904.6 - SF8BW500 999 + 771 771 ((( 772 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]] 1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run: 1002 + 1003 +* (% style="color:#037691" %)**AT+CHE=2** 1004 +* (% style="color:#037691" %)**ATZ** 773 773 ))) 774 774 1007 +((( 1008 + 775 775 1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink. 1011 +))) 776 776 777 -== 6.2 AT Command input doesn't work == 1013 +((( 1014 + 1015 +))) 778 778 779 779 ((( 780 - In thecaseif user can seethe console output but can't typeinput to the device. Pleasecheck if youalreadyincludethe(%style="color:green" %)**ENTER**(%%) while sendingout the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels. 781 781 ))) 782 782 1021 +[[image:image-20220606154825-4.png]] 783 783 784 784 785 -= 7. Order Info = 786 786 1025 += 5. Trouble Shooting = 787 787 788 - PartNumber**:** (%style="color:#4f81bd"%)**NSE01**1027 +== 5.1 Why I can’t join TTN in US915 / AU915 bands? == 789 789 1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details. 790 790 1031 + 1032 +== 5.2 AT Command input doesn’t work == 1033 + 1034 +((( 1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string. 1036 +))) 1037 + 1038 + 1039 +== 5.3 Device rejoin in at the second uplink packet == 1040 + 1041 +(% style="color:#4f81bd" %)**Issue describe as below:** 1042 + 1043 +[[image:1654500909990-784.png]] 1044 + 1045 + 1046 +(% style="color:#4f81bd" %)**Cause for this issue:** 1047 + 1048 +((( 1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin. 1050 +))) 1051 + 1052 + 1053 +(% style="color:#4f81bd" %)**Solution: ** 1054 + 1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below: 1056 + 1057 +[[image:1654500929571-736.png||height="458" width="832"]] 1058 + 1059 + 1060 += 6. Order Info = 1061 + 1062 + 1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY** 1064 + 1065 + 1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band 1067 + 1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band 1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band 1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band 1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band 1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band 1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band 1074 +* (% style="color:red" %)**IN865**(%%): LoRaWAN IN865 band 1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band 1076 + 1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option 1078 + 1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery 1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery 1081 + 791 791 (% class="wikigeneratedid" %) 792 792 ((( 793 793 794 794 ))) 795 795 796 -= 8.1087 += 7. Packing Info = 797 797 798 798 ((( 799 799 800 800 801 801 (% style="color:#037691" %)**Package Includes**: 1093 +))) 802 802 803 - 804 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1 805 -* External antenna x 1 1095 +* ((( 1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1 806 806 ))) 807 807 808 808 ((( ... ... @@ -809,20 +809,24 @@ 809 809 810 810 811 811 (% style="color:#037691" %)**Dimension and weight**: 1103 +))) 812 812 813 - 814 -* Size: 195 x 125 x 55 mm 815 -* Weight: 420g 1105 +* ((( 1106 +Device Size: cm 816 816 ))) 1108 +* ((( 1109 +Device Weight: g 1110 +))) 1111 +* ((( 1112 +Package Size / pcs : cm 1113 +))) 1114 +* ((( 1115 +Weight / pcs : g 817 817 818 -((( 819 819 820 - 821 - 822 - 823 823 ))) 824 824 825 -= 9.1120 += 8. Support = 826 826 827 827 * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule. 828 828 * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
- 1657245163077-232.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657246476176-652.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -492.6 KB - Content
- 1657249419225-449.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -81.0 KB - Content
- 1657249468462-536.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -483.6 KB - Content
- 1657249793983-486.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -85.8 KB - Content
- 1657249831934-534.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -72.5 KB - Content
- 1657249864775-321.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.0 KB - Content
- 1657249930215-289.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -77.3 KB - Content
- 1657249978444-674.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -139.5 KB - Content
- 1657249990869-686.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -96.9 KB - Content
- 1657250217799-140.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -98.7 KB - Content
- 1657250255956-604.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -99.0 KB - Content
- 1657259653666-883.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -344.4 KB - Content
- 1657260785982-288.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -138.2 KB - Content
- 1657261119050-993.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- 1657261278785-153.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -126.1 KB - Content
- image-20220708101224-1.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -22.2 KB - Content
- image-20220708101605-2.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -87.5 KB - Content
- image-20220708110657-3.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -251.7 KB - Content
- image-20220708111918-4.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -38.8 KB - Content
- image-20220708133731-5.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -8.7 KB - Content
- image-20220708140453-6.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -132.7 KB - Content
- image-20220708141352-7.jpeg
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Xiaoling - Size
-
... ... @@ -1,1 +1,0 @@ 1 -102.7 KB - Content