Last modified by Bei Jinggeng on 2024/05/31 09:53

From version 65.7
edited by Xiaoling
on 2022/07/08 15:24
Change comment: There is no comment for this version
To version 36.1
edited by Xiaoling
on 2022/06/25 16:28
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -NSE01 - NB-IoT Soil Moisture & EC Sensor User Manual
1 +LSE01-LoRaWAN Soil Moisture & EC Sensor User Manual
Content
... ... @@ -20,73 +20,67 @@
20 20  
21 21  
22 22  
23 -= 1.  Introduction =
23 += 1. Introduction =
24 24  
25 -== 1.1 ​ What is LoRaWAN Soil Moisture & EC Sensor ==
25 +== 1.1 ​What is LoRaWAN Soil Moisture & EC Sensor ==
26 26  
27 27  (((
28 28  
29 29  
30 -Dragino NSE01 is an (% style="color:blue" %)**NB-IOT soil moisture & EC sensor**(%%) for agricultural IoT. Used to measure the soil moisture of saline-alkali soil and loam. The soil sensor uses the FDR method to calculate soil moisture and compensates it with soil temperature and electrical conductivity. It has also been calibrated for mineral soil types at the factory.
30 +The Dragino LSE01 is a (% style="color:#4f81bd" %)**LoRaWAN Soil Moisture & EC Sensor**(%%) for IoT of Agriculture. It is designed to measure the soil moisture of saline-alkali soil and loamy soil. The soil sensor uses FDR method to calculate the soil moisture with the compensation from soil temperature and conductivity. It also has been calibrated in factory for Mineral soil type.
31 +)))
31 31  
32 -It can detect (% style="color:blue" %)**Soil Moisture, Soil Temperature and Soil Conductivity**(%%), and upload its value to the server wirelessly.
33 +(((
34 +It detects (% style="color:#4f81bd" %)**Soil Moisture**(%%), (% style="color:#4f81bd" %)**Soil Temperature**(%%) and (% style="color:#4f81bd" %)**Soil Conductivity**(%%), and uploads the value via wireless to LoRaWAN IoT Server.
35 +)))
33 33  
34 -The wireless technology used in NSE01 allows the device to send data at a low data rate and reach ultra-long distances, providing ultra-long-distance spread spectrum Communication.
37 +(((
38 +The LoRa wireless technology used in LES01 allows device to send data and reach extremely long ranges at low data-rates. It provides ultra-long range spread spectrum communication and high interference immunity whilst minimizing current consumption.
39 +)))
35 35  
36 -NSE01 are powered by (% style="color:blue" %)**8500mAh Li-SOCI2**(%%) batteries, which can be used for up to 5 years.  
41 +(((
42 +LES01 is powered by (% style="color:#4f81bd" %)**4000mA or 8500mAh Li-SOCI2 battery**(%%), It is designed for long term use up to 10 years.
43 +)))
37 37  
38 -
45 +(((
46 +Each LES01 is pre-load with a set of unique keys for LoRaWAN registrations, register these keys to local LoRaWAN server and it will auto connect after power on.
39 39  )))
40 40  
49 +
41 41  [[image:1654503236291-817.png]]
42 42  
43 43  
44 -[[image:1657245163077-232.png]]
53 +[[image:1654503265560-120.png]]
45 45  
46 46  
47 47  
48 -== 1.2 ​ Features ==
57 +== 1.2 ​Features ==
49 49  
50 -* NB-IoT Bands: B1/B3/B8/B5/B20/B28 @H-FDD
59 +* LoRaWAN 1.0.3 Class A
60 +* Ultra low power consumption
51 51  * Monitor Soil Moisture
52 52  * Monitor Soil Temperature
53 53  * Monitor Soil Conductivity
64 +* Bands: CN470/EU433/KR920/US915/EU868/AS923/AU915/IN865
54 54  * AT Commands to change parameters
55 55  * Uplink on periodically
56 56  * Downlink to change configure
57 57  * IP66 Waterproof Enclosure
58 -* Ultra-Low Power consumption
59 -* AT Commands to change parameters
60 -* Micro SIM card slot for NB-IoT SIM
61 -* 8500mAh Battery for long term use
69 +* 4000mAh or 8500mAh Battery for long term use
62 62  
63 63  
64 -== 1.3  Specification ==
65 65  
66 66  
67 -(% style="color:#037691" %)**Common DC Characteristics:**
68 68  
69 -* Supply Voltage: 2.1v ~~ 3.6v
70 -* Operating Temperature: -40 ~~ 85°C
75 +== 1.3 Specification ==
71 71  
72 -(% style="color:#037691" %)**NB-IoT Spec:**
73 -
74 -* - B1 @H-FDD: 2100MHz
75 -* - B3 @H-FDD: 1800MHz
76 -* - B8 @H-FDD: 900MHz
77 -* - B5 @H-FDD: 850MHz
78 -* - B20 @H-FDD: 800MHz
79 -* - B28 @H-FDD: 700MHz
80 -
81 -Probe(% style="color:#037691" %)** Specification:**
82 -
83 83  Measure Volume: Base on the centra pin of the probe, a cylinder with 7cm diameter and 10cm height.
84 84  
85 -[[image:image-20220708101224-1.png]]
79 +[[image:image-20220606162220-5.png]]
86 86  
87 87  
88 88  
89 -== ​1.4  Applications ==
83 +== ​1.4 Applications ==
90 90  
91 91  * Smart Agriculture
92 92  
... ... @@ -93,716 +93,1013 @@
93 93  (% class="wikigeneratedid" id="H200B1.5FirmwareChangelog" %)
94 94  ​
95 95  
96 -== 1.5  Pin Definitions ==
90 +== 1.5 Firmware Change log ==
97 97  
98 98  
99 -[[image:1657246476176-652.png]]
93 +**LSE01 v1.0 :**  Release
100 100  
101 101  
102 102  
103 -= 2.  Use NSE01 to communicate with IoT Server =
97 += 2. Configure LSE01 to connect to LoRaWAN network =
104 104  
105 -== 2.1  How it works ==
99 +== 2.1 How it works ==
106 106  
107 -
108 108  (((
109 -The NSE01 is equipped with a NB-IoT module, the pre-loaded firmware in NSE01 will get environment data from sensors and send the value to local NB-IoT network via the NB-IoT module The NB-IoT network will forward this value to IoT server via the protocol defined by NSE01.
102 +The LSE01 is configured as LoRaWAN OTAA Class A mode by default. It has OTAA keys to join LoRaWAN network. To connect a local LoRaWAN network, you need to input the OTAA keys in the LoRaWAN IoT server and power on the LSE0150. It will automatically join the network via OTAA and start to send the sensor value
110 110  )))
111 111  
112 -
113 113  (((
114 -The diagram below shows the working flow in default firmware of NSE01:
106 +In case you can’t set the OTAA keys in the LoRaWAN OTAA server, and you have to use the keys from the server, you can [[use AT Commands >>||anchor="H3.200BUsingtheATCommands"]].
115 115  )))
116 116  
117 -[[image:image-20220708101605-2.png]]
118 118  
119 -(((
120 -
121 -)))
122 122  
111 +== 2.2 ​Quick guide to connect to LoRaWAN server (OTAA) ==
123 123  
113 +Following is an example for how to join the [[TTN v3 LoRaWAN Network>>url:https://console.cloud.thethings.network/]]. Below is the network structure; we use the [[LG308>>url:http://www.dragino.com/products/lora/item/140-lg308.html]] as a LoRaWAN gateway in this example.
124 124  
125 -== 2.2 ​ Configure the NSE01 ==
126 126  
116 +[[image:1654503992078-669.png]]
127 127  
128 -=== 2.2.1 Test Requirement ===
129 129  
119 +The LG308 is already set to connected to [[TTN network >>url:https://console.cloud.thethings.network/]], so what we need to now is configure the TTN server.
130 130  
131 -To use NSE01 in your city, make sure meet below requirements:
132 132  
133 -* Your local operator has already distributed a NB-IoT Network there.
134 -* The local NB-IoT network used the band that NSE01 supports.
135 -* Your operator is able to distribute the data received in their NB-IoT network to your IoT server.
122 +(% style="color:blue" %)**Step 1**(%%):  Create a device in TTN with the OTAA keys from LSE01.
136 136  
137 -(((
138 -Below figure shows our testing structure. Here we have NB-IoT network coverage by China Mobile, the band they use is B8.  The NSE01 will use CoAP((% style="color:red" %)120.24.4.116:5683)(%%) or raw UDP((% style="color:red" %)120.24.4.116:5601)(%%) or MQTT((% style="color:red" %)120.24.4.116:1883)(%%)or TCP((% style="color:red" %)120.24.4.116:5600)(%%)protocol to send data to the test server
139 -)))
124 +Each LSE01 is shipped with a sticker with the default device EUI as below:
140 140  
126 +[[image:image-20220606163732-6.jpeg]]
141 141  
142 -[[image:1657249419225-449.png]]
128 +You can enter this key in the LoRaWAN Server portal. Below is TTN screen shot:
143 143  
130 +**Add APP EUI in the application**
144 144  
145 145  
146 -=== 2.2.2 Insert SIM card ===
133 +[[image:1654504596150-405.png]]
147 147  
148 -Insert the NB-IoT Card get from your provider.
149 149  
150 -User need to take out the NB-IoT module and insert the SIM card like below:
151 151  
137 +**Add APP KEY and DEV EUI**
152 152  
153 -[[image:1657249468462-536.png]]
139 +[[image:1654504683289-357.png]]
154 154  
155 155  
156 156  
157 -=== 2.2.3 Connect USB TTL to NSE01 to configure it ===
143 +(% style="color:blue" %)**Step 2**(%%): Power on LSE01
158 158  
159 -(((
160 -(((
161 -User need to configure NSE01 via serial port to set the (% style="color:blue" %)**Server Address** / **Uplink Topic** (%%)to define where and how-to uplink packets. NSE01 support AT Commands, user can use a USB to TTL adapter to connect to NSE01 and use AT Commands to configure it, as below.
162 -)))
163 -)))
164 164  
146 +Put a Jumper on JP2 to power on the device. ( The Jumper must be in FLASH position).
165 165  
166 -**Connection:**
148 +[[image:image-20220606163915-7.png]]
167 167  
168 - (% style="background-color:yellow" %)USB TTL GND <~-~-~-~-> GND
169 169  
170 - (% style="background-color:yellow" %)USB TTL TXD <~-~-~-~-> UART_RXD
151 +(% style="color:blue" %)**Step 3**(%%)**:** The LSE01 will auto join to the TTN network. After join success, it will start to upload messages to TTN and you can see the messages in the panel.
171 171  
172 - (% style="background-color:yellow" %)USB TTL RXD <~-~-~-~-> UART_TXD
153 +[[image:1654504778294-788.png]]
173 173  
174 174  
175 -In the PC, use below serial tool settings:
176 176  
177 -* Baud:  (% style="color:green" %)**9600**
178 -* Data bits:** (% style="color:green" %)8(%%)**
179 -* Stop bits: (% style="color:green" %)**1**
180 -* Parity:  (% style="color:green" %)**None**
181 -* Flow Control: (% style="color:green" %)**None**
157 +== 2.3 Uplink Payload ==
182 182  
183 -(((
184 -Make sure the switch is in FLASH position, then power on device by connecting the jumper on NSE01. NSE01 will output system info once power on as below, we can enter the (% style="color:green" %)**password: 12345678**(%%) to access AT Command input.
185 -)))
186 186  
187 -[[image:image-20220708110657-3.png]]
160 +=== 2.3.1 MOD~=0(Default Mode) ===
188 188  
189 -(% style="color:red" %)Note: the valid AT Commands can be found at: (%%)[[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
162 +LSE01 will uplink payload via LoRaWAN with below payload format: 
190 190  
164 +(((
165 +Uplink payload includes in total 11 bytes.
166 +)))
191 191  
168 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
169 +|(((
170 +**Size**
192 192  
193 -=== 2.2.4 Use CoAP protocol to uplink data ===
172 +**(bytes)**
173 +)))|**2**|**2**|**2**|**2**|**2**|**1**
174 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
175 +Temperature
194 194  
195 -(% style="color:red" %)Note: if you don't have CoAP server, you can refer this link to set up one: (%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/>>http://wiki.dragino.com/xwiki/bin/view/Main/Set%20up%20CoAP%20Server/]]
177 +(Reserve, Ignore now)
178 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]]|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]]|(((
179 +MOD & Digital Interrupt
196 196  
181 +(Optional)
182 +)))
197 197  
198 -**Use below commands:**
199 199  
200 -* (% style="color:blue" %)**AT+PRO=1**  (%%) ~/~/ Set to use CoAP protocol to uplink
201 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5683   ** (%%)~/~/ to set CoAP server address and port
202 -* (% style="color:blue" %)**AT+URI=5,11,"mqtt",11,"coap",12,"0",15,"c=text1",23,"0" ** (%%) ~/~/Set COAP resource path
203 203  
204 -For parameter description, please refer to AT command set
205 205  
206 -[[image:1657249793983-486.png]]
207 207  
208 208  
209 -After configure the server address and (% style="color:green" %)**reset the device**(%%) (via AT+ATZ ), NSE01 will start to uplink sensor values to CoAP server.
210 210  
211 -[[image:1657249831934-534.png]]
190 +=== 2.3.2 MOD~=1(Original value) ===
212 212  
192 +This mode can get the original AD value of moisture and original conductivity (with temperature drift compensation).
213 213  
194 +(% border="1" cellspacing="10" style="background-color:#ffffcc; width:500px" %)
195 +|(((
196 +**Size**
214 214  
215 -=== 2.2.5 Use UDP protocol to uplink data(Default protocol) ===
198 +**(bytes)**
199 +)))|**2**|**2**|**2**|**2**|**2**|**1**
200 +|**Value**|[[BAT>>||anchor="H2.3.3BatteryInfo"]]|(((
201 +Temperature
216 216  
217 -This feature is supported since firmware version v1.0.1
203 +(Reserve, Ignore now)
204 +)))|[[Soil Moisture>>||anchor="H2.3.4SoilMoisture"]](raw)|[[Soil Temperature>>||anchor="H2.3.5SoilTemperature"]]|[[Soil Conductivity (EC)>>||anchor="H2.3.6SoilConductivity28EC29"]](raw)|(((
205 +MOD & Digital Interrupt
218 218  
207 +(Optional)
208 +)))
219 219  
220 -* (% style="color:blue" %)**AT+PRO=2   ** (%%) ~/~/ Set to use UDP protocol to uplink
221 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5601   ** (%%) ~/~/ to set UDP server address and port
222 -* (% style="color:blue" %)**AT+CFM=1       ** (%%) ~/~/If the server does not respond, this command is unnecessary
223 223  
224 -[[image:1657249864775-321.png]]
225 225  
226 226  
227 -[[image:1657249930215-289.png]]
228 228  
229 229  
230 230  
231 -=== 2.2.6 Use MQTT protocol to uplink data ===
216 +=== 2.3.3 Battery Info ===
232 232  
233 -This feature is supported since firmware version v110
218 +(((
219 +Check the battery voltage for LSE01.
220 +)))
234 234  
222 +(((
223 +Ex1: 0x0B45 = 2885mV
224 +)))
235 235  
236 -* (% style="color:blue" %)**AT+PRO=3   ** (%%) ~/~/Set to use MQTT protocol to uplink
237 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,1883   ** (%%) ~/~/Set MQTT server address and port
238 -* (% style="color:blue" %)**AT+CLIENT=CLIENT       ** (%%)~/~/Set up the CLIENT of MQTT
239 -* (% style="color:blue" %)**AT+UNAME=UNAME                               **(%%)~/~/Set the username of MQTT
240 -* (% style="color:blue" %)**AT+PWD=PWD                                        **(%%)~/~/Set the password of MQTT
241 -* (% style="color:blue" %)**AT+PUBTOPIC=NSE01_PUB                    **(%%)~/~/Set the sending topic of MQTT
242 -* (% style="color:blue" %)**AT+SUBTOPIC=NSE01_SUB          **(%%) ~/~/Set the subscription topic of MQTT
226 +(((
227 +Ex2: 0x0B49 = 2889mV
228 +)))
243 243  
244 -[[image:1657249978444-674.png]]
245 245  
246 246  
247 -[[image:1657249990869-686.png]]
232 +=== 2.3.4 Soil Moisture ===
248 248  
234 +(((
235 +Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
236 +)))
249 249  
250 250  (((
251 -MQTT protocol has a much higher power consumption compare vs UDP / CoAP protocol. Please check the power analyze document and adjust the uplink period to a suitable interval.
239 +For example, if the data you get from the register is __0x05 0xDC__, the moisture content in the soil is
252 252  )))
253 253  
242 +(((
243 +
244 +)))
254 254  
246 +(((
247 +(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
248 +)))
255 255  
256 -=== 2.2.7 Use TCP protocol to uplink data ===
257 257  
258 -This feature is supported since firmware version v110
259 259  
252 +=== 2.3.5 Soil Temperature ===
260 260  
261 -* (% style="color:blue" %)**AT+PRO=4   ** (%%) ~/~/ Set to use TCP protocol to uplink
262 -* (% style="color:blue" %)**AT+SERVADDR=120.24.4.116,5600   **(%%) ~/~/ to set TCP server address and port
254 +(((
255 + Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is 0x09 0xEC, the temperature content in the soil is
256 +)))
263 263  
264 -[[image:1657250217799-140.png]]
258 +(((
259 +**Example**:
260 +)))
265 265  
262 +(((
263 +If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
264 +)))
266 266  
267 -[[image:1657250255956-604.png]]
266 +(((
267 +If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
268 +)))
268 268  
269 269  
270 270  
271 -=== 2.2.8 Change Update Interval ===
272 +=== 2.3.6 Soil Conductivity (EC) ===
272 272  
273 -User can use below command to change the (% style="color:green" %)**uplink interval**.
274 +(((
275 +Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
276 +)))
274 274  
275 -* (% style="color:blue" %)**AT+TDC=600      ** (%%)~/~/ Set Update Interval to 600s
278 +(((
279 +For example, if the data you get from the register is 0x00 0xC8, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
280 +)))
276 276  
277 277  (((
278 -(% style="color:red" %)**NOTE:**
283 +Generally, the EC value of irrigation water is less than 800uS / cm.
279 279  )))
280 280  
281 281  (((
282 -(% style="color:red" %)1. By default, the device will send an uplink message every 1 hour.
287 +
283 283  )))
284 284  
290 +(((
291 +
292 +)))
285 285  
294 +=== 2.3.7 MOD ===
286 286  
287 -== 2. Uplink Payload ==
296 +Firmware version at least v2.1 supports changing mode.
288 288  
289 -In this mode, uplink payload includes in total 18 bytes
298 +For example, bytes[10]=90
290 290  
291 -(% border="1" cellspacing="10" style="background-color:#ffffcc; color:green; width:510px" %)
292 -|=(% style="width: 50px;" %)(((
293 -**Size(bytes)**
294 -)))|=(% style="width: 50px;" %)**6**|=(% style="width: 25px;" %)2|=(% style="width: 25px;" %)**2**|=(% style="width: 80px;" %)**1**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 80px;" %)**2**|=(% style="width: 40px;" %)**1**
295 -|(% style="width:97px" %)**Value**|(% style="width:83px" %)[[Device ID>>||anchor="H2.4.1A0A0DeviceID"]]|(% style="width:41px" %)[[Ver>>||anchor="H2.4.2A0VersionInfo"]]|(% style="width:46px" %)[[BAT>>||anchor="H2.4.3A0BatteryInfo"]]|(% style="width:123px" %)[[Signal Strength>>||anchor="H2.4.4A0SignalStrength"]]|(% style="width:108px" %)[[Soil Moisture>>||anchor="H2.4.5A0SoilMoisture"]]|(% style="width:133px" %)[[Soil Temperature>>||anchor="H2.4.6A0SoilTemperature"]]|(% style="width:159px" %)[[Soil Conductivity(EC)>>||anchor="H2.4.7A0SoilConductivity28EC29"]]|(% style="width:80px" %)[[Interrupt>>||anchor="H2.4.8A0DigitalInterrupt"]]
300 +mod=(bytes[10]>>7)&0x01=1.
296 296  
297 -If we use the MQTT client to subscribe to this MQTT topic, we can see the following information when the NSE01 uplink data.
298 298  
303 +**Downlink Command:**
299 299  
300 -[[image:image-20220708111918-4.png]]
305 +If payload = 0x0A00, workmode=0
301 301  
307 +If** **payload =** **0x0A01, workmode=1
302 302  
303 -The payload is ASCII string, representative same HEX:
304 304  
305 -0x72403155615900640c7817075e0a8c02f900 where:
306 306  
307 -* Device ID: 0x 724031556159 = 724031556159
308 -* Version: 0x0064=100=1.0.0
311 +=== 2.3.8 ​Decode payload in The Things Network ===
309 309  
310 -* BAT: 0x0c78 = 3192 mV = 3.192V
311 -* Singal: 0x17 = 23
312 -* Soil Moisture: 0x075e= 1886 = 18.86  %
313 -* Soil Temperature:0x0a8c =2700=27 °C
314 -* Soil Conductivity(EC) = 0x02f9 =761 uS /cm
315 -* Interrupt: 0x00 = 0
313 +While using TTN network, you can add the payload format to decode the payload.
316 316  
317 317  
318 -== 2.4  Payload Explanation and Sensor Interface ==
316 +[[image:1654505570700-128.png]]
319 319  
318 +(((
319 +The payload decoder function for TTN is here:
320 +)))
320 320  
321 -=== 2.4.1  Device ID ===
322 +(((
323 +LSE01 TTN Payload Decoder: [[https:~~/~~/www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0>>https://www.dropbox.com/sh/si8icbrjlamxqdb/AAACYwjsxxr5fj_vpqRtrETAa?dl=0]]
324 +)))
322 322  
323 -By default, the Device ID equal to the last 6 bytes of IMEI.
324 324  
325 -User can use (% style="color:blue" %)**AT+DEUI**(%%) to set Device ID
327 +== 2.4 Uplink Interval ==
326 326  
327 -**Example:**
329 +The LSE01 by default uplink the sensor data every 20 minutes. User can change this interval by AT Command or LoRaWAN Downlink Command. See this link: [[Change Uplink Interval>>doc:Main.End Device AT Commands and Downlink Command.WebHome||anchor="H4.1ChangeUplinkInterval"]]
328 328  
329 -AT+DEUI=A84041F15612
330 330  
331 -The Device ID is stored in a none-erase area, Upgrade the firmware or run AT+FDR won't erase Device ID.
332 332  
333 +== 2.5 Downlink Payload ==
333 333  
335 +By default, LSE50 prints the downlink payload to console port.
334 334  
335 -=== 2.4.2  Version Info ===
337 +[[image:image-20220606165544-8.png]]
336 336  
337 -Specify the software version: 0x64=100, means firmware version 1.00.
338 338  
339 -For example: 0x00 64 : this device is NSE01 with firmware version 1.0.0.
340 +(((
341 +**Examples:**
342 +)))
340 340  
344 +(((
345 +
346 +)))
341 341  
348 +* (((
349 +**Set TDC**
350 +)))
342 342  
343 -=== 2.4.3  Battery Info ===
352 +(((
353 +If the payload=0100003C, it means set the END Node’s TDC to 0x00003C=60(S), while type code is 01.
354 +)))
344 344  
345 345  (((
346 -Check the battery voltage for LSE01.
357 +Payload:    01 00 00 1E    TDC=30S
347 347  )))
348 348  
349 349  (((
350 -Ex1: 0x0B45 = 2885mV
361 +Payload:    01 00 00 3C    TDC=60S
351 351  )))
352 352  
353 353  (((
354 -Ex2: 0x0B49 = 2889mV
365 +
355 355  )))
356 356  
368 +* (((
369 +**Reset**
370 +)))
357 357  
372 +(((
373 +If payload = 0x04FF, it will reset the LSE01
374 +)))
358 358  
359 -=== 2.4.4  Signal Strength ===
360 360  
361 -NB-IoT Network signal Strength.
377 +* **CFM**
362 362  
363 -**Ex1: 0x1d = 29**
379 +Downlink Payload: 05000001, Set AT+CFM=1 or 05000000 , set AT+CFM=0
364 364  
365 -(% style="color:blue" %)**0**(%%)  -113dBm or less
366 366  
367 -(% style="color:blue" %)**1**(%%)  -111dBm
368 368  
369 -(% style="color:blue" %)**2...30**(%%) -109dBm... -53dBm
383 +== 2.6 ​Show Data in DataCake IoT Server ==
370 370  
371 -(% style="color:blue" %)**31**  (%%) -51dBm or greater
372 -
373 -(% style="color:blue" %)**99**   (%%) Not known or not detectable
374 -
375 -
376 -
377 -=== 2.4.5  Soil Moisture ===
378 -
379 379  (((
380 -Get the moisture content of the soil. The value range of the register is 0-10000(Decimal), divide this value by 100 to get the percentage of moisture in the soil.
386 +[[DATACAKE>>url:https://datacake.co/]] provides a human friendly interface to show the sensor data, once we have data in TTN, we can use [[DATACAKE>>url:https://datacake.co/]] to connect to TTN and see the data in DATACAKE. Below are the steps:
381 381  )))
382 382  
383 383  (((
384 -For example, if the data you get from the register is **__0x05 0xDC__**, the moisture content in the soil is
390 +
385 385  )))
386 386  
387 387  (((
388 -
394 +(% style="color:blue" %)**Step 1**(%%):  Be sure that your device is programmed and properly connected to the network at this time.
389 389  )))
390 390  
391 391  (((
392 -(% style="color:#4f81bd" %)**05DC(H) = 1500(D) /100 = 15%.**
398 +(% style="color:blue" %)**Step 2**(%%) To configure the Application to forward data to DATACAKE you will need to add integration. To add the DATACAKE integration, perform the following steps:
393 393  )))
394 394  
395 395  
402 +[[image:1654505857935-743.png]]
396 396  
397 -=== 2.4.6  Soil Temperature ===
398 398  
399 -(((
400 - Get the temperature in the soil. The value range of the register is -4000 - +800(Decimal), divide this value by 100 to get the temperature in the soil. For example, if the data you get from the register is __**0x09 0xEC**__, the temperature content in the soil is
401 -)))
405 +[[image:1654505874829-548.png]]
402 402  
403 -(((
404 -**Example**:
405 -)))
406 406  
407 -(((
408 -If payload is 0105H: ((0x0105 & 0x8000)>>15 === 0),temp = 0105(H)/100 = 2.61 °C
409 -)))
408 +(% style="color:blue" %)**Step 3**(%%)**:**  Create an account or log in Datacake.
410 410  
411 -(((
412 -If payload is FF7EH: ((FF7E & 0x8000)>>15 ===1),temp = (FF7E(H)-FFFF(H))/100 = -1.29 °C
413 -)))
410 +(% style="color:blue" %)**Step 4**(%%)**:**  Search the LSE01 and add DevEUI.
414 414  
415 415  
413 +[[image:1654505905236-553.png]]
416 416  
417 -=== 2.4.7  Soil Conductivity (EC) ===
418 418  
419 -(((
420 -Obtain (% style="color:#4f81bd" %)**__soluble salt concentration__**(%%) in soil or (% style="color:#4f81bd" %)**__soluble ion concentration in liquid fertilizer__**(%%) or (% style="color:#4f81bd" %)**__planting medium__**(%%). The value range of the register is 0 - 20000(Decimal)( Can be greater than 20000).
421 -)))
416 +After added, the sensor data arrive TTN, it will also arrive and show in Mydevices.
422 422  
423 -(((
424 -For example, if the data you get from the register is __**0x00 0xC8**__, the soil conductivity is 00C8(H) = 200(D) = 200 uS/cm.
425 -)))
418 +[[image:1654505925508-181.png]]
426 426  
427 -(((
428 -Generally, the EC value of irrigation water is less than 800uS / cm.
429 -)))
430 430  
431 -(((
432 -
433 -)))
434 434  
435 -(((
436 -
437 -)))
422 +== 2.7 Frequency Plans ==
438 438  
439 -=== 2.4.8  Digital Interrupt ===
424 +The LSE01 uses OTAA mode and below frequency plans by default. If user want to use it with different frequency plan, please refer the AT command sets.
440 440  
441 -Digital Interrupt refers to pin (% style="color:blue" %)**GPIO_EXTI**(%%), and there are different trigger methods. When there is a trigger, the NSE01 will send a packet to the server.
442 442  
443 -The command is:
427 +=== 2.7.1 EU863-870 (EU868) ===
444 444  
445 -(% style="color:blue" %)**AT+INTMOD=3 **(%%) ~/~/(more info about INMOD please refer [[**AT Command Manual**>>url:https://www.dragino.com/downloads/downloads/NB-IoT/NBSN95/DRAGINO_NBSN95-NB_AT%20Commands_v1.1.0.pdf]])**.**
429 +(% style="color:#037691" %)** Uplink:**
446 446  
431 +868.1 - SF7BW125 to SF12BW125
447 447  
448 -The lower four bits of this data field shows if this packet is generated by interrupt or not. Click here for the hardware and software set up.
433 +868.3 - SF7BW125 to SF12BW125 and SF7BW250
449 449  
435 +868.5 - SF7BW125 to SF12BW125
450 450  
451 -Example:
437 +867.1 - SF7BW125 to SF12BW125
452 452  
453 -0x(00): Normal uplink packet.
439 +867.3 - SF7BW125 to SF12BW125
454 454  
455 -0x(01): Interrupt Uplink Packet.
441 +867.5 - SF7BW125 to SF12BW125
456 456  
443 +867.7 - SF7BW125 to SF12BW125
457 457  
445 +867.9 - SF7BW125 to SF12BW125
458 458  
459 -=== 2.4.9  ​+5V Output ===
447 +868.8 - FSK
460 460  
461 -NSE01 will enable +5V output before all sampling and disable the +5v after all sampling. 
462 462  
450 +(% style="color:#037691" %)** Downlink:**
463 463  
464 -The 5V output time can be controlled by AT Command.
452 +Uplink channels 1-9 (RX1)
465 465  
466 -(% style="color:blue" %)**AT+5VT=1000**
454 +869.525 - SF9BW125 (RX2 downlink only)
467 467  
468 -Means set 5V valid time to have 1000ms. So the real 5V output will actually have 1000ms + sampling time for other sensors.
469 469  
470 470  
458 +=== 2.7.2 US902-928(US915) ===
471 471  
472 -== 2.5  Downlink Payload ==
460 +Used in USA, Canada and South America. Default use CHE=2
473 473  
474 -By default, NSE01 prints the downlink payload to console port.
462 +(% style="color:#037691" %)**Uplink:**
475 475  
476 -[[image:image-20220708133731-5.png]]
464 +903.9 - SF7BW125 to SF10BW125
477 477  
466 +904.1 - SF7BW125 to SF10BW125
478 478  
479 -(((
480 -(% style="color:blue" %)**Examples:**
481 -)))
468 +904.3 - SF7BW125 to SF10BW125
482 482  
483 -(((
484 -
485 -)))
470 +904.5 - SF7BW125 to SF10BW125
486 486  
487 -* (((
488 -(% style="color:blue" %)**Set TDC**
489 -)))
472 +904.7 - SF7BW125 to SF10BW125
490 490  
491 -(((
492 -If the payload=0100003C, it means set the END Node's TDC to 0x00003C=60(S), while type code is 01.
493 -)))
474 +904.9 - SF7BW125 to SF10BW125
494 494  
495 -(((
496 -Payload:    01 00 00 1E    TDC=30S
497 -)))
476 +905.1 - SF7BW125 to SF10BW125
498 498  
499 -(((
500 -Payload:    01 00 00 3C    TDC=60S
501 -)))
478 +905.3 - SF7BW125 to SF10BW125
502 502  
503 -(((
504 -
505 -)))
506 506  
507 -* (((
508 -(% style="color:blue" %)**Reset**
509 -)))
481 +(% style="color:#037691" %)**Downlink:**
510 510  
511 -(((
512 -If payload = 0x04FF, it will reset the NSE01
513 -)))
483 +923.3 - SF7BW500 to SF12BW500
514 514  
485 +923.9 - SF7BW500 to SF12BW500
515 515  
516 -* (% style="color:blue" %)**INTMOD**
487 +924.5 - SF7BW500 to SF12BW500
517 517  
518 -Downlink Payload: 06000003, Set AT+INTMOD=3
489 +925.1 - SF7BW500 to SF12BW500
519 519  
491 +925.7 - SF7BW500 to SF12BW500
520 520  
493 +926.3 - SF7BW500 to SF12BW500
521 521  
522 -== 2.6  ​LED Indicator ==
495 +926.9 - SF7BW500 to SF12BW500
523 523  
524 -(((
525 -The NSE01 has an internal LED which is to show the status of different state.
497 +927.5 - SF7BW500 to SF12BW500
526 526  
499 +923.3 - SF12BW500(RX2 downlink only)
527 527  
528 -* When power on, NSE01 will detect if sensor probe is connected, if probe detected, LED will blink four times. (no blinks in this step is no probe)
529 -* Then the LED will be on for 1 second means device is boot normally.
530 -* After NSE01 join NB-IoT network. The LED will be ON for 3 seconds.
531 -* For each uplink probe, LED will be on for 500ms.
532 -)))
533 533  
534 534  
503 +=== 2.7.3 CN470-510 (CN470) ===
535 535  
505 +Used in China, Default use CHE=1
536 536  
537 -== 2.7  Installation in Soil ==
507 +(% style="color:#037691" %)**Uplink:**
538 538  
539 -__**Measurement the soil surface**__
509 +486.3 - SF7BW125 to SF12BW125
540 540  
541 -Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting. [[https:~~/~~/img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg>>url:https://img.alicdn.com/imgextra/i3/2005165265/O1CN010rj9Oh1olPsQxrdUK_!!2005165265.jpg]]
511 +486.5 - SF7BW125 to SF12BW125
542 542  
543 -[[image:1657259653666-883.png]]
513 +486.7 - SF7BW125 to SF12BW125
544 544  
515 +486.9 - SF7BW125 to SF12BW125
545 545  
546 -(((
547 -
517 +487.1 - SF7BW125 to SF12BW125
548 548  
549 -(((
550 -Dig a hole with diameter > 20CM.
551 -)))
519 +487.3 - SF7BW125 to SF12BW125
552 552  
553 -(((
554 -Horizontal insert the probe to the soil and fill the hole for long term measurement.
555 -)))
556 -)))
521 +487.5 - SF7BW125 to SF12BW125
557 557  
558 -[[image:1654506665940-119.png]]
523 +487.7 - SF7BW125 to SF12BW125
559 559  
560 -(((
561 -
562 -)))
563 563  
526 +(% style="color:#037691" %)**Downlink:**
564 564  
565 -== 2. Firmware Change Log ==
528 +506.7 - SF7BW125 to SF12BW125
566 566  
530 +506.9 - SF7BW125 to SF12BW125
567 567  
568 -Download URL & Firmware Change log
532 +507.1 - SF7BW125 to SF12BW125
569 569  
570 -[[www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/Firmware/]]
534 +507.3 - SF7BW125 to SF12BW125
571 571  
536 +507.5 - SF7BW125 to SF12BW125
572 572  
573 -Upgrade Instruction: [[Upgrade_Firmware>>||anchor="H5.1200BHowtoUpgradeFirmware"]]
538 +507.7 - SF7BW125 to SF12BW125
574 574  
540 +507.9 - SF7BW125 to SF12BW125
575 575  
542 +508.1 - SF7BW125 to SF12BW125
576 576  
577 -== 2. Battery Analysis ==
544 +505.3 - SF12BW125 (RX2 downlink only)
578 578  
579 -=== 2.9.1  ​Battery Type ===
580 580  
581 581  
582 -The NSE01 battery is a combination of an 8500mAh Li/SOCI2 Battery and a Super Capacitor. The battery is none-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
548 +=== 2.7.4 AU915-928(AU915) ===
583 583  
550 +Default use CHE=2
584 584  
585 -The battery is designed to last for several years depends on the actually use environment and update interval. 
552 +(% style="color:#037691" %)**Uplink:**
586 586  
554 +916.8 - SF7BW125 to SF12BW125
587 587  
588 -The battery related documents as below:
556 +917.0 - SF7BW125 to SF12BW125
589 589  
590 -* [[Battery Dimension>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
591 -* [[Lithium-Thionyl Chloride Battery datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
592 -* [[Lithium-ion Battery-Capacitor datasheet>>http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/ER26500/]]
558 +917.2 - SF7BW125 to SF12BW125
593 593  
560 +917.4 - SF7BW125 to SF12BW125
561 +
562 +917.6 - SF7BW125 to SF12BW125
563 +
564 +917.8 - SF7BW125 to SF12BW125
565 +
566 +918.0 - SF7BW125 to SF12BW125
567 +
568 +918.2 - SF7BW125 to SF12BW125
569 +
570 +
571 +(% style="color:#037691" %)**Downlink:**
572 +
573 +923.3 - SF7BW500 to SF12BW500
574 +
575 +923.9 - SF7BW500 to SF12BW500
576 +
577 +924.5 - SF7BW500 to SF12BW500
578 +
579 +925.1 - SF7BW500 to SF12BW500
580 +
581 +925.7 - SF7BW500 to SF12BW500
582 +
583 +926.3 - SF7BW500 to SF12BW500
584 +
585 +926.9 - SF7BW500 to SF12BW500
586 +
587 +927.5 - SF7BW500 to SF12BW500
588 +
589 +923.3 - SF12BW500(RX2 downlink only)
590 +
591 +
592 +
593 +=== 2.7.5 AS920-923 & AS923-925 (AS923) ===
594 +
595 +(% style="color:#037691" %)**Default Uplink channel:**
596 +
597 +923.2 - SF7BW125 to SF10BW125
598 +
599 +923.4 - SF7BW125 to SF10BW125
600 +
601 +
602 +(% style="color:#037691" %)**Additional Uplink Channel**:
603 +
604 +(OTAA mode, channel added by JoinAccept message)
605 +
606 +(% style="color:#037691" %)**AS920~~AS923 for Japan, Malaysia, Singapore**:
607 +
608 +922.2 - SF7BW125 to SF10BW125
609 +
610 +922.4 - SF7BW125 to SF10BW125
611 +
612 +922.6 - SF7BW125 to SF10BW125
613 +
614 +922.8 - SF7BW125 to SF10BW125
615 +
616 +923.0 - SF7BW125 to SF10BW125
617 +
618 +922.0 - SF7BW125 to SF10BW125
619 +
620 +
621 +(% style="color:#037691" %)**AS923 ~~ AS925 for Brunei, Cambodia, Hong Kong, Indonesia, Laos, Taiwan, Thailand, Vietnam**:
622 +
623 +923.6 - SF7BW125 to SF10BW125
624 +
625 +923.8 - SF7BW125 to SF10BW125
626 +
627 +924.0 - SF7BW125 to SF10BW125
628 +
629 +924.2 - SF7BW125 to SF10BW125
630 +
631 +924.4 - SF7BW125 to SF10BW125
632 +
633 +924.6 - SF7BW125 to SF10BW125
634 +
635 +
636 +(% style="color:#037691" %)** Downlink:**
637 +
638 +Uplink channels 1-8 (RX1)
639 +
640 +923.2 - SF10BW125 (RX2)
641 +
642 +
643 +
644 +=== 2.7.6 KR920-923 (KR920) ===
645 +
646 +Default channel:
647 +
648 +922.1 - SF7BW125 to SF12BW125
649 +
650 +922.3 - SF7BW125 to SF12BW125
651 +
652 +922.5 - SF7BW125 to SF12BW125
653 +
654 +
655 +(% style="color:#037691" %)**Uplink: (OTAA mode, channel added by JoinAccept message)**
656 +
657 +922.1 - SF7BW125 to SF12BW125
658 +
659 +922.3 - SF7BW125 to SF12BW125
660 +
661 +922.5 - SF7BW125 to SF12BW125
662 +
663 +922.7 - SF7BW125 to SF12BW125
664 +
665 +922.9 - SF7BW125 to SF12BW125
666 +
667 +923.1 - SF7BW125 to SF12BW125
668 +
669 +923.3 - SF7BW125 to SF12BW125
670 +
671 +
672 +(% style="color:#037691" %)**Downlink:**
673 +
674 +Uplink channels 1-7(RX1)
675 +
676 +921.9 - SF12BW125 (RX2 downlink only; SF12BW125 might be changed to SF9BW125)
677 +
678 +
679 +
680 +=== 2.7.7 IN865-867 (IN865) ===
681 +
682 +(% style="color:#037691" %)** Uplink:**
683 +
684 +865.0625 - SF7BW125 to SF12BW125
685 +
686 +865.4025 - SF7BW125 to SF12BW125
687 +
688 +865.9850 - SF7BW125 to SF12BW125
689 +
690 +
691 +(% style="color:#037691" %) **Downlink:**
692 +
693 +Uplink channels 1-3 (RX1)
694 +
695 +866.550 - SF10BW125 (RX2)
696 +
697 +
698 +
699 +
700 +== 2.8 LED Indicator ==
701 +
702 +The LSE01 has an internal LED which is to show the status of different state.
703 +
704 +* Blink once when device power on.
705 +* Solid ON for 5 seconds once device successful Join the network.
706 +* Blink once when device transmit a packet.
707 +
708 +== 2.9 Installation in Soil ==
709 +
710 +**Measurement the soil surface**
711 +
712 +
713 +[[image:1654506634463-199.png]] ​
714 +
594 594  (((
595 -[[image:image-20220708140453-6.png]]
716 +(((
717 +Choose the proper measuring position. Avoid the probe to touch rocks or hard things. Split the surface soil according to the measured deep. Keep the measured as original density. Vertical insert the probe into the soil to be measured. Make sure not shake when inserting.
596 596  )))
719 +)))
597 597  
598 598  
599 599  
600 -=== 2.9.2  Power consumption Analyze ===
723 +[[image:1654506665940-119.png]]
601 601  
602 602  (((
603 -Dragino battery powered product are all runs in Low Power mode. We have an update battery calculator which base on the measurement of the real device. User can use this calculator to check the battery life and calculate the battery life if want to use different transmit interval.
726 +Dig a hole with diameter > 20CM.
604 604  )))
605 605  
729 +(((
730 +Horizontal insert the probe to the soil and fill the hole for long term measurement.
731 +)))
606 606  
733 +
734 +== 2.10 ​Firmware Change Log ==
735 +
607 607  (((
608 -Instruction to use as below:
737 +**Firmware download link:**
609 609  )))
610 610  
611 611  (((
612 -(% style="color:blue" %)**Step 1:  **(%%)Downlink the up-to-date DRAGINO_Battery_Life_Prediction_Table.xlsx from: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/>>url:https://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/Battery_Analyze/]]
741 +[[http:~~/~~/www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/>>url:http://www.dragino.com/downloads/index.php?dir=LoRa_End_Node/LSE01/Firmware/]]
613 613  )))
614 614  
744 +(((
745 +
746 +)))
615 615  
616 616  (((
617 -(% style="color:blue" %)**Step 2: **(%%) Open it and choose
749 +**Firmware Upgrade Method: **[[Firmware Upgrade Instruction>>doc:Main.Firmware Upgrade Instruction for STM32 base products.WebHome]]
618 618  )))
619 619  
620 -* (((
621 -Product Model
752 +(((
753 +
622 622  )))
623 -* (((
624 -Uplink Interval
755 +
756 +(((
757 +**V1.0.**
625 625  )))
626 -* (((
627 -Working Mode
628 -)))
629 629  
630 630  (((
631 -And the Life expectation in difference case will be shown on the right.
761 +Release
632 632  )))
633 633  
634 -[[image:image-20220708141352-7.jpeg]]
635 635  
765 +== 2.11 ​Battery Analysis ==
636 636  
767 +=== 2.11.1 ​Battery Type ===
637 637  
638 -=== 2.9.3  ​Battery Note ===
769 +(((
770 +The LSE01 battery is a combination of a 4000mAh Li/SOCI2 Battery and a Super Capacitor. The battery is non-rechargeable battery type with a low discharge rate (<2% per year). This type of battery is commonly used in IoT devices such as water meter.
771 +)))
639 639  
640 640  (((
641 -The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
774 +The battery is designed to last for more than 5 years for the LSN50.
642 642  )))
643 643  
777 +(((
778 +(((
779 +The battery-related documents are as below:
780 +)))
781 +)))
644 644  
783 +* (((
784 +[[Battery Dimension>>url:http://www.dragino.com/downloads/index.php?dir=datasheet/Battery/&file=LSN50-Battery-Dimension.pdf]],
785 +)))
786 +* (((
787 +[[Lithium-Thionyl Chloride Battery  datasheet>>url:https://www.dragino.com/downloads/downloads/datasheet/Battery/ER26500/ER26500_Datasheet-EN.pdf]],
788 +)))
789 +* (((
790 +[[Lithium-ion Battery-Capacitor datasheet>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC_1520_datasheet.jpg]], [[Tech Spec>>url:http://www.dragino.com/downloads/downloads/datasheet/Battery/SPC1520%20Technical%20Specification20171123.pdf]]
791 +)))
645 645  
646 -=== 2.9.4  Replace the battery ===
793 + [[image:image-20220610172436-1.png]]
647 647  
795 +
796 +
797 +=== 2.11.2 ​Battery Note ===
798 +
648 648  (((
649 -The default battery pack of NSE01 includes a ER26500 plus super capacitor. If user can't find this pack locally, they can find ER26500 or equivalence without the SPC1520 capacitor, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes).
800 +The Li-SICO battery is designed for small current / long period application. It is not good to use a high current, short period transmit method. The recommended minimum period for use of this battery is 5 minutes. If you use a shorter period time to transmit LoRa, then the battery life may be decreased.
650 650  )))
651 651  
652 652  
653 653  
654 -= 3. ​ Access NB-IoT Module =
805 +=== 2.11.3 Replace the battery ===
655 655  
656 656  (((
657 -Users can directly access the AT command set of the NB-IoT module.
808 +If Battery is lower than 2.7v, user should replace the battery of LSE01.
658 658  )))
659 659  
660 660  (((
661 -The AT Command set can refer the BC35-G NB-IoT Module AT Command: [[https:~~/~~/www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/>>url:https://www.dragino.com/downloads/index.php?dir=datasheet/other_vendors/BC35-G/]] 
812 +You can change the battery in the LSE01.The type of battery is not limited as long as the output is between 3v to 3.6v. On the main board, there is a diode (D1) between the battery and the main circuit. If you need to use a battery with less than 3.3v, please remove the D1 and shortcut the two pads of it so there won’t be voltage drop between battery and main board.
662 662  )))
663 663  
664 -[[image:1657261278785-153.png]]
815 +(((
816 +The default battery pack of LSE01 includes a ER18505 plus super capacitor. If user can’t find this pack locally, they can find ER18505 or equivalence, which will also work in most case. The SPC can enlarge the battery life for high frequency use (update period below 5 minutes)
817 +)))
665 665  
666 666  
667 667  
668 -= 4.  Using the AT Commands =
821 += 3. Using the AT Commands =
669 669  
670 -== 4.1  Access AT Commands ==
823 +== 3.1 Access AT Commands ==
671 671  
672 -See this link for detail: [[http:~~/~~/www.dragino.com/downloads/index.php?dir=NB-IoT/NSE01/>>url:http://www.dragino.com/downloads/index.php?dir=NB-IoT/NBSN50/]]
673 673  
826 +LSE01 supports AT Command set in the stock firmware. You can use a USB to TTL adapter to connect to LSE01 for using AT command, as below.
674 674  
675 -AT+<CMD>?  : Help on <CMD>
828 +[[image:1654501986557-872.png||height="391" width="800"]]
676 676  
677 -AT+<CMD>         : Run <CMD>
678 678  
679 -AT+<CMD>=<value> : Set the value
831 +Or if you have below board, use below connection:
680 680  
681 -AT+<CMD>=?  : Get the value
682 682  
834 +[[image:1654502005655-729.png||height="503" width="801"]]
683 683  
836 +
837 +
838 +In the PC, you need to set the serial baud rate to (% style="color:green" %)**9600**(%%) to access the serial console for LSE01. LSE01 will output system info once power on as below:
839 +
840 +
841 + [[image:1654502050864-459.png||height="564" width="806"]]
842 +
843 +
844 +Below are the available commands, a more detailed AT Command manual can be found at [[AT Command Manual>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]: [[https:~~/~~/www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0>>https://www.dropbox.com/sh/qr6vproz4z4kzjz/AAAD48h3OyWrU1hq_Cqm8jIwa?dl=0]]
845 +
846 +
847 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>? **(%%) : Help on <CMD>
848 +
849 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD> **(%%) : Run <CMD>
850 +
851 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=<value>**(%%) : Set the value
852 +
853 +(% style="background-color:#dcdcdc" %)**AT+<CMD>=?AT+<CMD>=?**(%%)  : Get the value
854 +
855 +
684 684  (% style="color:#037691" %)**General Commands**(%%)      
685 685  
686 -AT  : Attention       
858 +(% style="background-color:#dcdcdc" %)**AT**(%%)  : Attention       
687 687  
688 -AT?  : Short Help     
860 +(% style="background-color:#dcdcdc" %)**AT?**(%%)  : Short Help     
689 689  
690 -ATZ  : MCU Reset    
862 +(% style="background-color:#dcdcdc" %)**ATZ**(%%)  : MCU Reset    
691 691  
692 -AT+TDC  : Application Data Transmission Interval
864 +(% style="background-color:#dcdcdc" %)**AT+TDC**(%%)  : Application Data Transmission Interval 
693 693  
694 -AT+CFG  : Print all configurations
695 695  
696 -AT+CFGMOD           : Working mode selection
867 +(% style="color:#037691" %)**Keys, IDs and EUIs management**
697 697  
698 -AT+INTMOD            : Set the trigger interrupt mode
869 +(% style="background-color:#dcdcdc" %)**AT+APPEUI**(%%)              : Application EUI      
699 699  
700 -AT+5VT  : Set extend the time of 5V power  
871 +(% style="background-color:#dcdcdc" %)**AT+APPKEY**(%%)              : Application Key     
701 701  
702 -AT+PRO  : Choose agreement
873 +(% style="background-color:#dcdcdc" %)**AT+APPSKEY**(%%)            : Application Session Key
703 703  
704 -AT+WEIGRE  : Get weight or set weight to 0
875 +(% style="background-color:#dcdcdc" %)**AT+DADDR**(%%)              : Device Address     
705 705  
706 -AT+WEIGAP  : Get or Set the GapValue of weight
877 +(% style="background-color:#dcdcdc" %)**AT+DEUI**(%%)                   : Device EUI     
707 707  
708 -AT+RXDL  : Extend the sending and receiving time
879 +(% style="background-color:#dcdcdc" %)**AT+NWKID**(%%)               : Network ID (You can enter this command change only after successful network connection) 
709 709  
710 -AT+CNTFAC  : Get or set counting parameters
881 +(% style="background-color:#dcdcdc" %)**AT+NWKSKEY**(%%)          : Network Session Key Joining and sending date on LoRa network  
711 711  
712 -AT+SERVADDR  : Server Address
883 +(% style="background-color:#dcdcdc" %)**AT+CFM**(%%)  : Confirm Mode       
713 713  
885 +(% style="background-color:#dcdcdc" %)**AT+CFS**(%%)                     : Confirm Status       
714 714  
715 -(% style="color:#037691" %)**COAP Management**      
887 +(% style="background-color:#dcdcdc" %)**AT+JOIN**(%%)  : Join LoRa? Network       
716 716  
717 -AT+URI            : Resource parameters
889 +(% style="background-color:#dcdcdc" %)**AT+NJM**(%%)  : LoRa? Network Join Mode    
718 718  
891 +(% style="background-color:#dcdcdc" %)**AT+NJS**(%%)                     : LoRa? Network Join Status    
719 719  
720 -(% style="color:#037691" %)**UDP Management**
893 +(% style="background-color:#dcdcdc" %)**AT+RECV**(%%)                  : Print Last Received Data in Raw Format
721 721  
722 -AT+CFM          : Upload confirmation mode (only valid for UDP)
895 +(% style="background-color:#dcdcdc" %)**AT+RECVB**(%%)                : Print Last Received Data in Binary Format      
723 723  
897 +(% style="background-color:#dcdcdc" %)**AT+SEND**(%%)                  : Send Text Data      
724 724  
725 -(% style="color:#037691" %)**MQTT Management**
899 +(% style="background-color:#dcdcdc" %)**AT+SENB**(%%)                  : Send Hexadecimal Data
726 726  
727 -AT+CLIENT               : Get or Set MQTT client
728 728  
729 -AT+UNAME  : Get or Set MQTT Username
902 +(% style="color:#037691" %)**LoRa Network Management**
730 730  
731 -AT+PWD                  : Get or Set MQTT password
904 +(% style="background-color:#dcdcdc" %)**AT+ADR**(%%)          : Adaptive Rate
732 732  
733 -AT+PUBTOPI : Get or Set MQTT publish topic
906 +(% style="background-color:#dcdcdc" %)**AT+CLASS**(%%)  : LoRa Class(Currently only support class A
734 734  
735 -AT+SUBTOPIC  : Get or Set MQTT subscription topic
908 +(% style="background-color:#dcdcdc" %)**AT+DCS**(%%)  : Duty Cycle Settin
736 736  
910 +(% style="background-color:#dcdcdc" %)**AT+DR**(%%)  : Data Rate (Can Only be Modified after ADR=0)     
737 737  
738 -(% style="color:#037691" %)**Information**          
912 +(% style="background-color:#dcdcdc" %)**AT+FCD**(%%)  : Frame Counter Downlink       
739 739  
740 -AT+FDR  : Factory Data Reset
914 +(% style="background-color:#dcdcdc" %)**AT+FCU**(%%)  : Frame Counter Uplink   
741 741  
742 -AT+PWOR : Serial Access Password
916 +(% style="background-color:#dcdcdc" %)**AT+JN1DL**(%%)  : Join Accept Delay1
743 743  
918 +(% style="background-color:#dcdcdc" %)**AT+JN2DL**(%%)  : Join Accept Delay2
744 744  
920 +(% style="background-color:#dcdcdc" %)**AT+PNM**(%%)  : Public Network Mode   
745 745  
746 -= ​5.  FAQ =
922 +(% style="background-color:#dcdcdc" %)**AT+RX1DL**(%%)  : Receive Delay1      
747 747  
748 -== 5.1 How to Upgrade Firmware ==
924 +(% style="background-color:#dcdcdc" %)**AT+RX2DL**(%%)  : Receive Delay2      
749 749  
926 +(% style="background-color:#dcdcdc" %)**AT+RX2DR**(%%)  : Rx2 Window Data Rate 
750 750  
928 +(% style="background-color:#dcdcdc" %)**AT+RX2FQ**(%%)  : Rx2 Window Frequency
929 +
930 +(% style="background-color:#dcdcdc" %)**AT+TXP**(%%)  : Transmit Power
931 +
932 +(% style="background-color:#dcdcdc" %)**AT+ MOD**(%%)  : Set work mode
933 +
934 +
935 +(% style="color:#037691" %)**Information** 
936 +
937 +(% style="background-color:#dcdcdc" %)**AT+RSSI**(%%)           : RSSI of the Last Received Packet   
938 +
939 +(% style="background-color:#dcdcdc" %)**AT+SNR**(%%)           : SNR of the Last Received Packet   
940 +
941 +(% style="background-color:#dcdcdc" %)**AT+VER**(%%)           : Image Version and Frequency Band       
942 +
943 +(% style="background-color:#dcdcdc" %)**AT+FDR**(%%)           : Factory Data Reset
944 +
945 +(% style="background-color:#dcdcdc" %)**AT+PORT**(%%)  : Application Port    
946 +
947 +(% style="background-color:#dcdcdc" %)**AT+CHS**(%%)  : Get or Set Frequency (Unit: Hz) for Single Channel Mode
948 +
949 + (% style="background-color:#dcdcdc" %)**AT+CHE**(%%)  : Get or Set eight channels mode, Only for US915, AU915, CN470
950 +
951 +
952 += ​4. FAQ =
953 +
954 +== 4.1 ​How to change the LoRa Frequency Bands/Region? ==
955 +
751 751  (((
752 -User can upgrade the firmware for 1) bug fix, 2) new feature release.
957 +You can follow the instructions for [[how to upgrade image>>||anchor="H2.10200BFirmwareChangeLog"]].
958 +When downloading the images, choose the required image file for download. ​
753 753  )))
754 754  
755 755  (((
756 -Please see this link for how to upgrade:  [[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H2.HardwareUpgradeMethodSupportList]]
962 +
757 757  )))
758 758  
759 759  (((
760 -(% style="color:red" %)Notice, NSE01 and LSE01 share the same mother board. They use the same connection and method to update.
966 +How to set up LSE01 to work in 8 channel mode By default, the frequency bands US915, AU915, CN470 work in 72 frequencies. Many gateways are 8 channel gateways, and in this case, the OTAA join time and uplink schedule is long and unpredictable while the end node is hopping in 72 frequencies.
761 761  )))
762 762  
969 +(((
970 +
971 +)))
763 763  
973 +(((
974 +You can configure the end node to work in 8 channel mode by using the AT+CHE command. The 500kHz channels are always included for OTAA.
975 +)))
764 764  
765 -= 6.  Trouble Shooting =
977 +(((
978 +
979 +)))
766 766  
767 -== 6.1  ​Connection problem when uploading firmware ==
981 +(((
982 +For example, in **US915** band, the frequency table is as below. By default, the end node will use all channels (0~~71) for OTAA Join process. After the OTAA Join, the end node will use these all channels (0~~71) to send uplink packets.
983 +)))
768 768  
985 +[[image:image-20220606154726-3.png]]
769 769  
770 -(% class="wikigeneratedid" %)
987 +
988 +When you use the TTN network, the US915 frequency bands use are:
989 +
990 +* 903.9 - SF7BW125 to SF10BW125
991 +* 904.1 - SF7BW125 to SF10BW125
992 +* 904.3 - SF7BW125 to SF10BW125
993 +* 904.5 - SF7BW125 to SF10BW125
994 +* 904.7 - SF7BW125 to SF10BW125
995 +* 904.9 - SF7BW125 to SF10BW125
996 +* 905.1 - SF7BW125 to SF10BW125
997 +* 905.3 - SF7BW125 to SF10BW125
998 +* 904.6 - SF8BW500
999 +
771 771  (((
772 -(% style="font-size:14px" %)**Please see: **(%%)[[http:~~/~~/wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting>>http://wiki.dragino.com/xwiki/bin/view/Main/Firmware%20Upgrade%20Instruction%20for%20STM32%20base%20products/#H3.3Troubleshooting||style="background-color: rgb(255, 255, 255); font-size: 14px;"]]
1001 +Because the end node is now hopping in 72 frequency, it makes it difficult for the devices to Join the TTN network and uplink data. To solve this issue, you can access the device via the AT commands and run:
1002 +
1003 +* (% style="color:#037691" %)**AT+CHE=2**
1004 +* (% style="color:#037691" %)**ATZ**
773 773  )))
774 774  
1007 +(((
1008 +
775 775  
1010 +to set the end node to work in 8 channel mode. The device will work in Channel 8-15 & 64-71 for OTAA, and channel 8-15 for Uplink.
1011 +)))
776 776  
777 -== 6.2  AT Command input doesn't work ==
1013 +(((
1014 +
1015 +)))
778 778  
779 779  (((
780 -In the case if user can see the console output but can't type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn't send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1018 +The **AU915** band is similar. Below are the AU915 Uplink Channels.
781 781  )))
782 782  
1021 +[[image:image-20220606154825-4.png]]
783 783  
784 784  
785 -= 7. ​ Order Info =
786 786  
1025 += 5. Trouble Shooting =
787 787  
788 -Part Number**:** (% style="color:#4f81bd" %)**NSE01**
1027 +== 5.1 ​Why I can’t join TTN in US915 / AU915 bands? ==
789 789  
1029 +It is due to channel mapping. Please see the [[Eight Channel Mode>>doc:Main.LoRaWAN Communication Debug.WebHome||anchor="H2.NoticeofUS9152FCN4702FAU915Frequencyband"]] section above for details.
790 790  
1031 +
1032 +== 5.2 AT Command input doesn’t work ==
1033 +
1034 +(((
1035 +In the case if user can see the console output but can’t type input to the device. Please check if you already include the (% style="color:green" %)**ENTER**(%%) while sending out the command. Some serial tool doesn’t send (% style="color:green" %)**ENTER**(%%) while press the send key, user need to add ENTER in their string.
1036 +)))
1037 +
1038 +
1039 +== 5.3 Device rejoin in at the second uplink packet ==
1040 +
1041 +(% style="color:#4f81bd" %)**Issue describe as below:**
1042 +
1043 +[[image:1654500909990-784.png]]
1044 +
1045 +
1046 +(% style="color:#4f81bd" %)**Cause for this issue:**
1047 +
1048 +(((
1049 +The fuse on LSE01 is not large enough, some of the soil probe require large current up to 5v 800mA, in a short pulse. When this happen, it cause the device reboot so user see rejoin.
1050 +)))
1051 +
1052 +
1053 +(% style="color:#4f81bd" %)**Solution: **
1054 +
1055 +All new shipped LSE01 after 2020-May-30 will have this to fix. For the customer who see this issue, please bypass the fuse as below:
1056 +
1057 +[[image:1654500929571-736.png||height="458" width="832"]]
1058 +
1059 +
1060 += 6. ​Order Info =
1061 +
1062 +
1063 +Part Number**:** (% style="color:#4f81bd" %)**LSE01-XX-YY**
1064 +
1065 +
1066 +(% style="color:#4f81bd" %)**XX**(%%)**:** The default frequency band
1067 +
1068 +* (% style="color:red" %)**AS923**(%%): LoRaWAN AS923 band
1069 +* (% style="color:red" %)**AU915**(%%): LoRaWAN AU915 band
1070 +* (% style="color:red" %)**EU433**(%%): LoRaWAN EU433 band
1071 +* (% style="color:red" %)**EU868**(%%): LoRaWAN EU868 band
1072 +* (% style="color:red" %)**KR920**(%%): LoRaWAN KR920 band
1073 +* (% style="color:red" %)**US915**(%%): LoRaWAN US915 band
1074 +* (% style="color:red" %)**IN865**(%%):  LoRaWAN IN865 band
1075 +* (% style="color:red" %)**CN470**(%%): LoRaWAN CN470 band
1076 +
1077 +(% style="color:#4f81bd" %)**YY**(%%)**: **Battery Option
1078 +
1079 +* (% style="color:red" %)**4**(%%): 4000mAh battery
1080 +* (% style="color:red" %)**8**(%%): 8500mAh battery
1081 +
791 791  (% class="wikigeneratedid" %)
792 792  (((
793 793  
794 794  )))
795 795  
796 -= 8.  Packing Info =
1087 += 7. Packing Info =
797 797  
798 798  (((
799 799  
800 800  
801 801  (% style="color:#037691" %)**Package Includes**:
1093 +)))
802 802  
803 -
804 -* NSE01 NB-IoT Soil Moisture & EC Sensor x 1
805 -* External antenna x 1
1095 +* (((
1096 +LSE01 LoRaWAN Soil Moisture & EC Sensor x 1
806 806  )))
807 807  
808 808  (((
... ... @@ -809,20 +809,24 @@
809 809  
810 810  
811 811  (% style="color:#037691" %)**Dimension and weight**:
1103 +)))
812 812  
813 -
814 -* Size: 195 x 125 x 55 mm
815 -* Weight:   420g
1105 +* (((
1106 +Device Size: cm
816 816  )))
1108 +* (((
1109 +Device Weight: g
1110 +)))
1111 +* (((
1112 +Package Size / pcs : cm
1113 +)))
1114 +* (((
1115 +Weight / pcs : g
817 817  
818 -(((
819 819  
820 -
821 -
822 -
823 823  )))
824 824  
825 -= 9.  Support =
1120 += 8. Support =
826 826  
827 827  * Support is provided Monday to Friday, from 09:00 to 18:00 GMT+8. Due to different timezones we cannot offer live support. However, your questions will be answered as soon as possible in the before-mentioned schedule.
828 828  * Provide as much information as possible regarding your enquiry (product models, accurately describe your problem and steps to replicate it etc) and send a mail to [[support@dragino.com>>url:http://../../../../../../D:%5C%E5%B8%82%E5%9C%BA%E8%B5%84%E6%96%99%5C%E8%AF%B4%E6%98%8E%E4%B9%A6%5CLoRa%5CLT%E7%B3%BB%E5%88%97%5Csupport@dragino.com]]
1657245163077-232.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657246476176-652.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -492.6 KB
Content
1657249419225-449.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -81.0 KB
Content
1657249468462-536.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -483.6 KB
Content
1657249793983-486.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -85.8 KB
Content
1657249831934-534.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -72.5 KB
Content
1657249864775-321.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.0 KB
Content
1657249930215-289.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -77.3 KB
Content
1657249978444-674.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -139.5 KB
Content
1657249990869-686.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -96.9 KB
Content
1657250217799-140.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -98.7 KB
Content
1657250255956-604.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -99.0 KB
Content
1657259653666-883.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -344.4 KB
Content
1657260785982-288.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -138.2 KB
Content
1657261119050-993.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
1657261278785-153.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -126.1 KB
Content
image-20220708101224-1.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -22.2 KB
Content
image-20220708101605-2.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -87.5 KB
Content
image-20220708110657-3.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -251.7 KB
Content
image-20220708111918-4.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -38.8 KB
Content
image-20220708133731-5.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -8.7 KB
Content
image-20220708140453-6.png
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -132.7 KB
Content
image-20220708141352-7.jpeg
Author
... ... @@ -1,1 +1,0 @@
1 -XWiki.Xiaoling
Size
... ... @@ -1,1 +1,0 @@
1 -102.7 KB
Content